博士論文 - ir.nctu.edu.tw · 國 立 交 通 大 學 機 械 工 程 研 究 所 博士論文...

115
博士論文 助銲劑對 1020 碳鋼及 304 不銹鋼電漿銲接特 性之研究 Effects of flux on the characteristics of plasma arc weldment of 1020 carbon steel and 304 stainless steel 生:徐享文 指導教授:周長彬 中華民國九十八年一月

Upload: others

Post on 01-Sep-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 1020 304

    Effects of flux on the characteristics of plasma arc weldment

    of 1020 carbon steel and 304 stainless steel

  • 1020 304

    Effects of flux on the characteristics of plasma arc weldment

    of 1020 carbon steel and 304 stainless steel

    Student: Sheang-Wen Shyu

    Advisor: Chang-Pin Chou

    A Thesis

    Submitted to Institute of Mechanical Engineering College of Engineering

    National Chiao Tung University in Partial Fulfillment of the Requirements

    for the Degree of Doctor of Philosophy

    in Mechanical Engineering

    January 2009 Hsinchu, Taiwan, Republic of China

  • I

    1020 304

    AISI 1020 AISI 304

    Bead-on-plate

    MoO3MnO2TiO2SiO2Cr2O3Fe2O3 ZnO NiCO3

    MgCO3MnCO3

    EDS

  • II

    SiO2 304

    200 SiO2 60%+ MnO2 40%,

    300

  • III

    Effects of flux on the characteristics of plasma arc weldment of 1020 carbon

    steel and 304 stainless steel

    Student: Sheang-Wen Shyu Advisor:Chang-Pin Chou

    Department of Mechanical Engineering

    National Chiao Tung University

    ABSTRACT

    The purpose of this paper was to investigate the effects of activating flux on

    the characteristics of plasma arc welding process. This study compares plasma

    arc welding with TIG welding on the various properties of weldment, and also

    explores the mechanism of how activating flux improves weld penetration. In

    order to evaluate the effect of activating flux on the different materials, AISI

    1020 low carbon steel and AISI 304 austenitic stainless steel were used to

    produce a bead-on-plate welded joint. The activating fluxes were oxides (MoO3,

    MnO2, TiO2, SiO2, CrO3, Fe2O3 and ZnO) and carbonates (NiCO3,MgCO3 and

    MnCO3) powders. During welding, a CCD camera system was used to observe

    and record images of the arc profiles.

    The microstructure and morphology of the welds obtained were examined

    by means of an optical microscope using transverse weld cross-sections

    prepared by cutting. The retained ferrite content of welds was measured by

    using the Ferritscope. Transverse tensile and Vickers hardness tests were used to

    determine on the mechanical properties of weldments. EDS were employed for

    studying the elemental analysis of the welds. The mean vertical displacement

    method was utilized for calculating the welding angular distortion.

    The experimental results indicate that higher penetration depth and

    narrower HAZ range are the results of the increased energy density of the

    welding heat source, and therefore the angular distortion of carbon steel and

    austenitic stainless steel weldments can be reduced, while using a certain oxide

  • IV

    flux. Physically constricting the plasma column and reducing the anode spot are

    the possible mechanisms for the main contribution to the augmented weld

    penetration capability. The number of ferrite in stainless steel welds was

    increased due to the flux additions, and thus helps reduce hot cracking

    susceptibility in welded structures. The penetration capability up to 200% can be

    obtained in plasma welds that use SiO2 flux when compared with the non-flux

    addition welds. The SiO2 60%+ MnO2 40% mixture flux can greatly increase

    penetration depth up to around 300%. TIG and plasma welding with activating

    flux could bring about large benefits in terms of productivity and cost-effect and

    achieve practical use.

  • V

  • VI

    1.1 -------------------------------------------------------- 1

    1.2 ----------------------------------------------------------------- 3

    1.3 ----------------------------------------------------------------- 4

    2.1 ----------------------------------------------------- 5

    2.2 ---------------------- 6

    2.3 --------------------------------------------------------------- 10

    2.3.1 AISI 1020 ------------------------------------ 10

    2.3.2 AISI 1020 ---------------------------------------------- 12

    2.3.3 AISI 1020 ---------------------------------------------- 14

    2.4 ------------------------------------------------------------------- 15

    2.4.1 -------------------------------------- 15

    2.4.2 ----------------------------------------------------- 16

    2.4.3 ----------------------------------- 19

    2.4.4 ----------------------- 22

    2.4.5 -------------------------------------- 24

    2.5 --------------------------------------------------------------- 25

  • VII

    2.5.1 ------------------------------------------------- 25

    2.5.2 ------------------------------------------------- 25

    2.5.3 ------------------------------------------------- 27

    2.6 --------------------------------------------------------------- 30

    2.6.1 ------------------------------------------------- 30

    2.6.2 ------------------------------------------- 32

    2.7 ------------------------------------------------------------------- 33

    2.7.1 ----------------------------------------------------- 33

    2.7.2 ----------------------------------------------------- 34

    2.7.3 -------------------------- 36

    2.8 ------------------------------------------ 39

    2.8.1 ----------------------- 40

    2.8.2 ----------------------------------------------------------- 41

    2.8.3 -------------------------------------- 42

    3.1 ---------------------------------------------------------------- 45

    3.2 ------------------------------------------------------- 46

    3.3 ------------------------------------------------------------ 46

    3.4 ------------------------------------------ 48

  • VIII

    3.5 ------------------------------------------------------------- 50

    3.6 ------------------------------------------------- 52

    3.7 ---------------------------------------------------------------- 52

    3.8 ------------------------------------------------------- 52

    3.9 ------------------------------------------------------- 54

    3.10 -------------------------------------------------------- 54

    3.11 -------------------------------------------------------------- 54

    3.12 SEM EDS --------------------------------------------------- 55

    4.1 AISI 1020 --------------------------------------------------- 56

    4.1.1 ----------- 56

    4.1.2 -------- 60

    4.1.3 ----------- 62

    4.1.4 -------------- 64

    4.1.5 EDS ---------------------------------------------------- 65

    4.2 304 -------------------------------------------------------- 66

    4.2.1 PAW ------------ 68

    4.2.2 PAW ---------------------- 71

    4.2.3 ---------------------------- 72

  • IX

    4.2.4 ------------------- 73

    4.2.5 ---------------------------- 75

    4.3 TIG PAW ------------------------------------------ 77

    4.3.1 -------------------------------------- 77

    4.3.2 -------------------------------------- 78

    4.4 -------------------------------- 79

    4.5 ----------------------- 84

    4.5.1 ----- 84

    4.5.2 ---------------------------------------------------- 87

    4.5.3 EDS ---------------------------------------------------- 89

    -------------------------------------------------------- 92

    ------------------------------------------------------------- 95

  • X

    2-1 --------------------------------------------------- 6

    2-2 (keyhole) ---------------------------- 6

    2-3 PAW ---------------------------------- 7

    2-4 TIG PAW ------------------------------ 8

    2-5 TIG -------------------------- 9

    2-6 AISI 1020 -------------------------------- 13

    2-7 (a)(b)(c)(7500) ----------------- 14

    2-8 -------------------------------------- 15

    2-9 Fe-Cr-Ni ---------------------------------------- 20

    2-10 ------------------------------------- 22

    2-11 ---------------------------------------------- 26

    2-12 ------------------------------- 29

    2-13 ---------------------------------------------- 31

    2-14 ------------------------------------- 32

    2-15 ------------------------------------- 41

    3-1 -------------------------------------------------- 46

    3-2 (pwh/m-4a welding torch) ---------- 47

  • XI

    3-3 (TIG) ---------------------------------------- 48

    3-4 -------------------------------------------- 49

    3-5 ----------------------------------------------- 51

    3-6 ----------------------------------------------- 53

    3-7 ----------------------------------------------------- 55

    4-1 ----------- 57

    4-2

    ---------------------------------------------------------------------- 61

    4-3 -------------------- 63

    4-4 ------------ 64

    4-5

    ---------------------------------------------------------------------------- 64

    4-6 PAW-Flux EDS ---------------------- 65

    4-7 304

    -------------------------------------------------------------------- 67

    4-8 304

    ---------------------------------------------------------------------- 68

    4-9 ----------------------------------- 70

    4-10 ------------------------------- 71

    4-11 ------------------------------- 72

  • XII

    4-12 ------------------------------------- 73

    4-13 ---------------------------------- 75

    4-14 ---------------------------------- 76

    4-15 SiO2 ----------------------- 77

    4-16 SiO2 304 ------------ 78

    4-17 TIG PAW

    ----------------------------------------------- 79

    4-18 TIG

    ----------------------------------------------------------------- 80

    4-19 PAW

    -------------------------------------------------------------------------- 84

    4-20 -------- 85

    4-21 ----- 86

    4-22 304 --------------------- 88

    4-23 SEM ----------------------------------- 89

    4-24 304 PAW-Flux EDS --- 90

  • XIII

    2-1 AISI 1020 ----------------------------------------------- 11

    2-2 AISI 1020 -------------------------------- 12

    2-3 ---------------------------------------------- 17

    2-4 -------------------------------------------------- 17

    2-5 -------------------------------------------------- 18

    2-6 ----------------------------------------------------- 26

    2-7 -------------------------------------------- 27

    4-1 PAW-Flux EDS ---------------------- 66

    4-2 -------------------------------- 77

    4-3 304 -------- 86

    4-4 304 PAW-Flux ----------------- 87

    4-5 304 PAW-Flux EDS ------- 91

  • 1

    1.1

    plasma arc welding, PAW

  • 2

    metal spraying

    PVDCVD[1]

    PAW

    PAW

    PAW MIG MIG TIG)

    PAW TIG

    PAW

    PAW

    (Activating

  • 3

    flux)

    TIG

    PAW

    PAW

    1.2

    PAW

    AISI 1020 304 PAW

    AISI 1020 AISI 304

    PAW

    AISI 1020 AISI 304

    PAW

    AISI 1020 AISI 304

    PAW

  • 4

    AISI 1020 AISI 304

    PAW

    AISI 1020 AISI 304

    PAW

    1.3

    Bead-on-plate AISI

    1020 AISI 304

    EDS

  • 5

    2.1

    ( 2-1)

    ( 2-2)

    (cutting)metal spraying[1-4]

  • 6

    2-1 [1]

    2-2 (keyhole)[1]

    2.2 [3-5]

  • 7

    TIG

    TIG (

    2-3 )( Insert

    tip)(

    )( 0.8

    5.0mm)

    (

    )

    (a)TIG (b)MIG

    (c)PAW 2-3 PAW [1]

  • 8

    MIG TIG

    TIG

    ( 2-4 )

    2-4 TIG PAW [5]

    2-5 TIG

    TIG 15 KW/cm2

    50100 KW/cm2

  • 9

    2-5 TIG [5]

    TIG

    TIG 10A

    1A 20 mA

    TIG

    1.

  • 10

    2.

    3.

    4.

    5.

    6.

    7.

    TIG :

    1. 25

    2.

    3.

    2.3

    2.3.1 AISI 1020 [6]

    AISI(American Iron and Steel Institute) SAE(Society of Automotive

    Engineers) 4 5

    3 AISI 1020

    0.20 2-1 2-2

  • 11

    0.12~0.20%

    P S 0.12~0.050%

    2-1 AISI 1020 [6]

    AISI 1020 1500~1600 F

    2300~1800 F.

    900~1200 F.

    1020

    1600 to 1800 F

    600 -1000 F

    AISI 1020

  • 12

    2-2 AISI 1020 [6]

    6.7

    (Btu/lb/Deg F - [32-212 Deg F]) 0.107

    7.86

    (lb / cu. in.) 0.284

    (F) 2760

    Poissons Ratio 0.3

    Btuin/ft2h 360

    ksi 60

    ksi 33

    B76

    137

    C0.18-0.23 Mn0.30~0.60

    P0.04S0.05

    2.3.2 AISI 1020

    2-6 Fe3C

    2.11%

  • 13

    A3

    Acm A1

    A1

    2-7 (

    )

    C

    2-6 AISI 1020 [6]

  • 14

    2-7 (a)(b)(c)(7500)

    2.3.3 AISI 1020

    A1

    (heat-affected zone)

    CCT

    2-8

    A1

    A1

  • 15

    2-8 (a)(b)

    (c)[7]

    2.4

    2.4.1 [8]

    (Cr) Cr

    Cr Cr2O3

    Cr 12% 30%Cr

    12%Cr

    12%Cr

    13 12%(corrosion resisting steel)

  • 16

    30%

    (Ni)

    (Ni - Cr)

    2.4.2 :

    :

    l.(matensitic stainless steels)

    2.(austenitic stainless steels)

    3.(ferritic stainless steels)

    4.(precipitation stainless steels)

    ( 2-3 2-4 ) [8]

    (AISI)

    ( 2-5) 304

  • 17

    2-3 [8]

    1.

    (AISI 400 )

    1.

    2.

    2.

    (AISI 200 300 )

    3.

    4.

    2-4 [8]

    g/cc

    Cu=1

    cal/g

    %

    m/cm

    7.9 1395 0.12 9.6 0.117 3.0 75.0

    7.7 1430 0.17 9.5 0.118 3.0 57.0

    7.7 1507 0.17 9.5 0.334 3.0 60.0

  • 18

    2-5 [8]

    2xx Cr-Ni-Mn

    3xx Cr-Ni

    4xx Cr

    4xxc

    0.12

    Cr

    5xx Cr-Mo

    PH (

    )

    +

    Cr-Ni (

    )

    Fe-Cr-Ni

    16%

  • 19

    C 0.2%Cr l7-20%Ni

    7-10% 18-8

    (face-centered cubic , FCC)

    (preheat treatment)(post-weld heat treatment)[9]

    2.4.3

    (ferrite structure)

    (cooling rate)[10]

    Fe-Cr-Ni (pseudo-binary diagram)

    2-9

    (++L) LL++

    (primary ferrite)

  • 20

    (retained

    delta-ferrite)

    L+L

    (primary austenite)

    Liquid

    +L++L

    +L

    -Solvus+ -Solvus

    %Cr %NiCr / Ni

    Tem

    pera

    ture

    Low Ferrite

    High Ferrite

    FullyAustenitic

    2-9 Fe-Cr-Ni [11]

    Suutala [12-17]

    Brooks [18,19]Katayama [20] Savage [21]

  • 21

    Suutala

    Creq / Nieq 2-10

    1.A ( ab )Creq / Nieq 1.48

    vermicular

    ferrite

    2.B ( cd )1.48 Cr eq / Nieq 1.95

    vermicular ferrite lathy ferrite

    3.C ( e )Creq / Nieq 1.95

    lathy ferrite

    (widmanstatten)

    (habit plane)

  • 22

    2-10 [12]

    2.4.4

    [22-26]

  • 23

    1.

    (hot cracking)

    2. SPSi

    2~8%

    3.500~800

    Fe Cr

    4.

    5.

  • 24

    6.

    (pitting)

    (stress corrosion

    cracking)(sensitization)

    7.

    2.4.5

    1.5 1/3

    (1)(2)

    (3)

    [27]

    (1)

  • 25

    (2)

    (thermal history)

    (3)

    2.5

    2.5.1

    1.

    2.(

    )

    2.5.2 [28-29]

    :

  • 26

    1.(density)

    2-6

    (CO2>Ar>O2>N2>He>H2)

    2-6 [29]

    Welding gas Ar He CO2 O2 H2 N2

    Specific

    gravity

    1.380 0.137 1.530 1.105 0.069 0.967

    2.(thermal conductivity)

    [30] 2-11

    2-11 [30]

  • 27

    3.(ionization potential)

    2-7

    (He>Ar H2 N2>CO2>O2)

    2-7 [29]

    Welding gas Ar He CO2 O2 H2 N2

    Ionization

    potential b

    15.7 24.5 14.4 12.5 15.6 15.5

    b Unit is electron volts

    2.5.3 [29]

    1.(argon)

    (1).

    (2)

  • 28

    (3)

    (4)()

    (5)()

    (6)()

    2.(helium)

    (1)

    (2)()

    (3)()

    (4)()

    (5)()

    (6)()

    (7)

    3.(carbon dioxide)

    (1)()

    (2)

    (3)

    (4)

    (5)

  • 29

    4.(nitrogen)

    (1)()

    (2)

    (3)

    (4)

    (5)

    ( 2-12(a))

    ( 2-12(a)

    ) -( 2-12(b))

    Ar He Ar-He

    (a) (b)-

    2-12 [9]

  • 30

    2.6

    2.6.1

    2-13

    1.(transverse shrinkage)

    2.(longitudinal shrinkage)

    3.(angular distortion)

    4.(rotational distortion)

    5.(bending distortion)

    6.(buckling distortion)

  • 31

    (A) Transverse Shrinkage (B) Longitudinal Shrinkage

    (C) Angular Distortion (D) Rotational Distortion

    (E) Bending Distortion (F) Buckling Distortion

    2-13[33]

  • 32

    2.6.2 [31-34]

    (butt-welded)

    2-14

    (transverse shrinkage force)

    ( 2-14 A )

    ( 2-14 B )

    ACentroid of the filler metal

    BCentroid of the base metal

    FTransverse shrinkage force

    2-14 [34]

  • 33

    2.7

    2.7.1 [1]

    ()

    (1)

    COCO2

    H2H2O

    (2)

    AlTiSiMnC

    (3)

  • 34

    (4)

    CaCO3K2CO3

    Na2CO3KNO3 KNaCa

    2.7.2 [1]

    1.(E6011TC-11)

    30

    2.(E6013TR-13R-13)

    35

  • 35

    3.(D4303F-03TAC-03)

    30 20

    4.(D4301E-10EL-10)

    30

    5.(E7016D4316)

    CO2

    (dilution)

  • 36

    6.(E7018E7028)

    25~40

    7.(E7024T-24)

    50

    170~200

    T

    8.(E-6027T-27T-27L)

    2.7.3

    (International

    Institute of Welding, IIW)(basic index B.I.)

  • 37

    B.I.[35-36]

    )ZrO+TiO+OAl(21

    +SiO

    )FeO+MnO(21

    +CaF+OK+ONa+BaO+MgO+CaO=.I.B

    22322

    222

    1.( B.I.1.5)

    B.I. Mn P S

    B.I.B.I.

    (Af)

  • 38

    ( Af0.6 )( Af=0.3~0.6 )( Af=0.1~0.3 )

    ( Af0.1 )

    (weld pool)

    304

    [37-38]

    1. SiO2Cr2O3ZnOMnO2Fe2O3 TiO2

    1

    2.

    ZnOSiO2 TiO2

    3. Al2O3 304

    4. 304 SiO2Cr2O3ZnOMnO2

    Fe2O3 TiO2

    100A 150A 2

  • 39

    200A 3

    5. CaF2NaF

    CaF2

    6.

    SiO2 Na2CO3

    SiO2

    7. SiO2Cr2O3ZnOMnO2Fe2O3 TiO2 150A

    200A 100A

    2.8

    304 HAZ

    [39-42]

    [43]

    SMgAlCa

    [44-49][50-54]

  • 40

    2.8.1

    (weld pool)

    (1)(2)(3)

    (4)

    2-15

    (dr/dt) 2-15(a)

    SO

    (dr/dt) 2-15(b)

    ()(

    )

    SO

  • 41

    Weld pool

    Tungstenelectrode

    Arc

    Weld pool

    Tungstenelectrode

    Arc

    Weld pool

    Tungstenelectrode

    Arc

    Weld pool

    Tungstenelectrode

    Arc

    dr/dt0

    Aerodynamicdrag force

    (d)Buoyancy(c)Electromagnetic(or Lorentz)

    (b)Thermocapillary force(a)Aerodynamic drag force

    2-15 [51]

    2.8.2 [50-54]

    (anode root)

    80

  • 42

    2.8.3 [55-57]

    1.(S)

    S ,/(D/W)

    S S

    50ppm

    D/W S 50ppm

    D/W S

    (ripple)(undercut) S

    2.(O)

    O D/W O 60ppm D/W

    0.3 O 100ppm D/W 0.7

    O 60ppm

    3.(Al)

  • 43

    Al 40ppmD/W 0.7Al 90ppm

    D/W 0.3 Al Al O

    O Al D/W

    Al Al

    4.(Si)

    Si 0.5 D/W Si Si

    0.5D/W Si Si

    Si

    O D/W

    5.(Mn)

    Mn 1.0D/W Mn

    Mn Mn

    O D/W

    6.

    Ar O2 SO2 O2

  • 44

    Ar 5H2

  • 45

    3.1

    TIG-flux PAW-flux

  • 46

    3.2

    AISI 304 AISI 1020

    (constraint-free)

    #400

    150mm150mm5mm 3-1

    3-1

    3.3

    PAW

    TIG 3-23-3

  • 47

    bead-on-plate

    3mm AISI 1020 AISI 304

    1501505mm 75A100A

    125A 100mm/min125 mm/min150 mm/min

    3-2 pwh/m-4a welding torch

  • 48

    3-3 TIG

    3.4

    Cr2O3Fe2O3MnO2MoO3SiO2

    TiO2 ZnO

    Cr2O3SiO2 TiO2 MnO2MoO3

    NiCO3MgCO3MnCO3 #400

    10mm 150mm

    3-4

  • 49

    (c) Mixing

    0.000

    PowderA

    PowderB

    (a) Weighing (b) Grinding

    (d) Coating

    150mm

    150mm

    10mm

    Brush

    Flux

    Base metal

    Acetone

    Fluxpowder

    3-4

  • 50

    3.5

    3-5 P1P2 P3

    0.005mm 3-5

    0.01mm

    P1P2 P3

    (A~E)(F~J) Z 5

    X 50mm Z(50

    tan 1- Z= )

    3-5 5

  • 51

    Start point of measureEnd point of measureReference point of measure

    A

    B

    C

    D

    E

    F

    G

    H

    I

    J

    P1

    P3

    P2

    30 mm

    15 mm

    Y

    X

    Z

    X

    Direction of measure

    X

    Z

    (b) Measuring position (c) Measuring theory

    Flux

    Directi

    on of tra

    vel

    Torch

    Scribing Locating

    Drilling Leveling

    Welding Measuring

    Specim

    en

    Indicator

    Welds

    Indicator

    (a) Measuring step

    3-5

  • 52

    3.6

    TIG&PAW-Flux

    3-2

    3.7

    1020 304

    #1200

    0.3m

    (optical microscope)

    Olympus BX60M

    AISI 304 10g CuSO4+50ml HCl+50ml H2O AISI 1020

    2mlHNO3100mlC2H5OH 4~5

    3.8

    40mm

    Marbles (10g CuSO4+50ml

  • 53

    HCl+50ml H2O)AISI 304 Nital2AISI 1020

    4~5 (stereomicroscope)

    (Depth)(Width)(Depth

    Width Ratio) 3-6

    WDTR

    DT

    W

    (a)

    R

    D T

    W

    (b)

    R

    D T

    W

    (c)R

    3-6 (a) (b)(c)(WDTR

  • 54

    3.9

    Ferritscope M10B-FE

    1.2mm 0.04FN

    3.10

    Matsuzawa MHT-1

    200 15

    1mm 0.25mm

    3.11

    ASTM E8 3-7

    10KN Instron 8501

    0.05mm/sec(UTS)

  • 55

    (YS)(elongation)

    32 3230

    1006.25 3R

    3.5

    10

    Unit : mm

    3-7

    3.12 SEM EDS

    1020 304

    (energy dispersive spectrometer, EDS)

    (scanning electron microscope, SEM)

    SEM JEOL JSM 6360 EDS

    OXFORD INCA Energy 300 B~ U

    5~92

  • 56

    4.1 AISI 1020

    4.1.1

    4.1

    MoO3MnO2

    TiO2SiO2 Cr2O3 AISI 1020

    MoO3

    (125A100mm/min)

    33%

    (75A150mm/min) MoO3

    21%

  • 57

    With MoO3 Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    With MnO2 Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    4-1

  • 58

    With TiO2 Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    With SiO2 Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    4-1

  • 59

    With Cr2O3 Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    Without Flux 75A 100A 125A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    4-1

  • 60

    4.1.2

    4-2

    MoO3

    MnO2TiO2SiO2 Cr2O3

    28%

    12%

  • 61

    100 125 150Travel Speed (mm/min)

    0.0

    0.2

    0.4

    0.6

    0.0

    0.2

    0.4

    0.6

    Without Flux

    With Cr2O3 Flux

    0.0

    0.2

    0.4

    0.6

    With SiO2 Flux

    0.0

    0.2

    0.4

    0.6

    With TiO2 Flux

    0.0

    0.2

    0.4

    0.6

    With MnO2 Flux

    0.0

    0.2

    0.4

    0.6

    With MoO3 Flux

    Dep

    th /

    Wid

    th R

    atio

    75A 100A 125AWelding Current

    4-2

  • 62

    4.1.3

    4-3

    MoO3MnO2

    TiO2SiO2 Cr2O3

    9%

    8%

  • 63

    100 125 150Travel Speed (mm/min)

    160

    180

    200

    220

    240

    160

    180

    200

    220

    240

    Without Flux

    With Cr2O3 Flux

    160

    180

    200

    220

    240With SiO2 Flux

    160

    180

    200

    220

    240With TiO2 Flux

    160

    180

    200

    220

    240With MnO2 Flux

    160

    180

    200

    220

    240With MoO3 Flux

    Vic

    kers

    Har

    dnes

    s (H

    v)75A 100A 125A

    Welding Current

    4-3

  • 64

    4.1.4

    4-4 4-5

    NiCO3

    Flux Without flux NiCO3 MgCO3 MnCO3

    Welding current 125A

    Travelling speed 150mm/min

    4-4

    Welding current 125ATravelling speed 150mm/min

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    Without flux NiCO3 MgCO3 MnCO3

    Dep

    th/W

    idth

    Rat

    io

    Without flux NiCO3 MgCO3 MnCO3

    4-5

  • 65

    4.1.5 EDS

    EDS 4-6 4-1

    4-6 NiCO3

    4-1

    NiCO3

    Without flux

    NiCO3

    4-6 PAW-Flux EDS

  • 66

    4.1 PAW-Flux EDS

    Without flux NiCO3 flux

    Element Weight, % Atomic, Element Weight, % Atomic,

    C 4.57 18.20 C 7.41 26.98

    Ti 0.24 0.24 P

    S S 0.02 0.02

    Cr 0.22 0.20 Cr

    Mn 0.37 0.32 Mn 1.59 1.27

    Fe 94.83 80.78 Fe 90.18 70.62

    Co 0.22 0.18 Co 0.17 0.13

    Ni 0.10 0.08 Ni

    Si Si 0.63 0.99

    4.2 304

    4-7 MoO3 MnO2 T iO2 SiO2Cr2O3Fe2O3 ZnO

    4-74-8 SiO2 304

    200

    350

  • 67

    Without Flux MoO3 Flux MnO2 Flux

    TiO2 Flux SiO2 Flux Cr2O3 Flux

    Fe2O3 Flux ZnO Flux

    Welding current 125A

    Travelling speed 150mm/min

    4-7 304

  • 68

    00.20.40.60.8

    11.2

    With

    out fl

    uxMo

    O 3Mn

    O 2 TiO2

    SiO2

    Cr 2O 3

    Fe 2O 3 Zn

    O

    Welding current 125ATravelling speed 150mm/min

    Dep

    th/W

    idth

    Rat

    io

    4-8 304

    4.2.1 PAW

    4-9

    125 min MoO3MnO2

    SiO2 Cr2O3Fe2O3 ZnO 125A

    2-14

  • 69

    4-9 MoO3MnO2SiO2 Cr2O3

    Fe2O3Cr2O3 TiO2 75A

    (MnO2=2.18, TiO2=2.02, Fe2O3=2.1, MoO3=2.28, mm)

    Pavlovsky [58]

    Watanabe [58]

    0.5

    0.5

    0.5

    75A MnO2TiO2Cr2O3Fe2O3

    SiO2

    2-14

  • 70

    / 0.5

    4-9

    75A

    4-9

    0

    0.5

    1

    1.5

    2

    2.5

    0 50 100 150

    Welding Current(A)

    Angula

    r D

    isto

    ration(d

    egre

    e)

    without fluxMoO3 MnO2 TiO2 SiO2 Cr2O3 Fe2O3 ZnO

    Without flux MoO3 MnO2 TiO2 SiO2 Cr2O3 Fe2O3 ZnO

  • 71

    4.2.2 PAW

    SiO2 304

    SiO2

    4-10 SiO2

    SiO2,

    0

    10

    20

    30

    40Without Flux

    75A100A125A

    75 100 125 150 175Travel Speed (mm/min)

    0

    10

    20

    30

    40SiO2 Flux

    75A100A125A

    Wel

    d Ar

    ea (m

    m2 )

    4-10

  • 72

    4.2.3

    4-11 4-12

    SiO2

    SiO2

    0

    2

    4

    6

    8

    10Without Flux

    75A100A125A

    75 100 125 150 175Travel Speed (mm/min)

    0

    2

    4

    6

    8

    10SiO2 Flux

    75A100A125A

    Pen

    etra

    tion

    (mm

    )

    4-11

  • 73

    Without

    Flux 75 A 100 A 125 A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    (a)

    SiO2 Flux 75 A 100 A 125 A

    100

    mm/min

    125

    mm/min

    150

    mm/min

    (b) SiO2

    4-12

    4.2.4

    [60-61] 4-13

  • 74

    SiO2

    [20-25] SPSi

    (pitting)

  • 75

    2

    4

    6

    8

    10

    12

    Without Flux 75A100A125A

    75 100 125 150 175Travel Speed (mm/min)

    2

    4

    6

    8

    10

    12

    SiO2 Flux 75A100A125A

    Ferr

    ite C

    onte

    nt (F

    N)

    4-13

    4.2.5

    SiO2

    4-14

    5

    SiO2

  • 76

    75 100 125 150 175Travel Speed (mm/min)

    140

    160

    180

    200SiO2 Flux

    75A100A125A

    140

    160

    180

    200

    Without Flux 75A100A125A

    Vic

    kers

    Har

    dnes

    s (H

    V)

    SiO2Flux

    Without Flux

    4-14

    4.2 304

    125A 125mm/min SiO2

  • 77

    4.2

    FFlluuxx UTS(MPa) Elongation(%)

    Without flux 589.52 32.53

    SiO2 flux 612.24 31.27

    4.3 TIG PAW

    4.3.1

    (a) TIG weld (b) PAW weld

    4-15 SiO2

    4-15 304 TIG PAW

    4-15 (a) SiO2

    4-15 (b)

    PAW

  • 78

    4.3.2

    4-16 TIG PAW

    125A SiO2

    PAW TIG

    TIG

    4-18. 4-20.

    4-17

    Without flux SiO2 flux

    TIG weld

    PAW weld

    4-16 SiO2 304

  • 79

    50 75 100 125 150Welding Current (A)

    1

    2

    3

    4

    5

    6Pe

    netra

    tion

    (mm

    )

    PAWTIG

    With flux

    Without flux

    Travelling Speed : 150 mm/minFlux SiO2

    4.4

    ATIG

    TIG CCD

    4-18 SiO2

    TIG

    (

    ) 4-18

    4-17. TIG PAW

  • 80

    TIG Without flux SiO2 flux

    Plasma column

    Anode spot

    4-18 304 TIG

    (1)

    Heiple [45-49,63,64]

    (ddT)

  • 81

    (outward flow) 2-15(a)

    (inward flow)

    2-15(b)

    (2)

    4-18

  • 82

    (anode spot)

    /

    [47,48]

    (aerodynamic drag force)

    BPAW

    TIG

  • 83

    TIG

    D.S. Howse W. Lucas

    65

    4-19

    PAW TIG

    1)2)

  • 84

    PAW Without flux SiO2 flux

    Plasma column

    Anode spot

    4-19. PAW

    4.5

    4.5.1

    SiO2TiO2 Cr2O3MoO3 Fe2O3 ZnO

    MnO2 125A 125 min 4-20

    60%MnO2

    250%

    4-20 4-21 4-3 40%~80%MnO2 20%~60% SiO2

  • 85

    95% 60% SiO2-40% MnO2

    SiO2 MnO2

    [60-61]

    Flux MnO2 80%

    Other 20% MnO2 60%

    Other 40%

    MnO2 40%

    Other 60%

    MnO2 20%

    Other 80%

    SiO2

    TiO2

    Cr2O3

    MOO3

    Fe2O3

    ZnO

    Welding current 125A Travelling speed 125mm/min

    4-20

  • 86

    4-21

    4-3 304

    Flux MnO2 80%

    Other 20% MnO2 60%

    Other 40%

    MnO2 40%

    Other 60%

    MnO2 20%

    Other 80%

    SiO2 0.97 0.98 0.92 0.77

    TiO2 0.82 0.77 0.89 0.97

    Cr2O3 0.55 0.76 0.8 0.84

    MOO3 0.81 0.9 0.88 0.87

    Fe2O3 0.77 0.65 0.63 0.55

    ZnO 0.81 0.97 0.92 0.88

    Welding current 125A Travelling speed 125mm/min

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    SiO2 TiO2 Cr2O3 MoO3 Fe2O3 ZnO

    Dep

    th/W

    idth

    Rat

    io

    20%

    40%

    60%

    80%

    MnO2

    SiO2 TiO2 Cr2O3 MoO3 Fe2O3

    Dep

    th/W

    idth

    Rat

    io

  • 87

    4.5.2

    4-4 60%SiO2-40%MnO2 304

    SiO2 MnO2

    4-22

    60%SiO2-40%MnO2

    4-23 60%SiO2 -40%MnO2 flux

    SEM PAW

    Dimple

    4-4 304 PAW-Flux

    FFlluuxx UTS(MPa) Hardness (Hv)

    Without flux 589.52 169.5

    With flux

    (60%SiO2-40%MnO2)

    620.32 178.3

  • 88

    Without flux 60%SiO2 -40%MnO2 flux

    200x 200x

    200x 200x

    4-22. 304

  • 89

    Without flux 60%SiO2 -40%MnO2 flux

    4-23 SEM

    4.5.3 EDS

    EDS 4-5

    4-24 SiO2 MnO2

  • 90

    Without flux

    60%SiO2 -40%MnO2 flux

    4-24 304 PAW-Flux EDS

  • 91

    4-5 304 PAW-Flux EDS

    Without flux 60%SiO2 -40%MnO2 flux

    Element Weight, % Atomic, % Element Weight, % Atomic, %

    Cr 20.08 21.17 Cr 20.97 22.12

    Mn 1.17 1.16 Mn 0.69 0.69

    Fe 71.10 69.79 Fe 70.84 69.56

    Ni 6.93 6.47 Ni 6.88 6.43

    Si 0.72 1.41 Si 0.62 1.20

  • 92

    AISI 1020 AISI 304

    304

    304

    A. AISI 1020

    1. MoO3MnO2TiO2SiO2 Cr2O3

    MoO3 33%

    2.

    9

    3. NiCO3 MgCO3MnCO3

    4.

    B. AISI 304

    1.

  • 93

    2. SiO2

    3.

    SiO2

    4. TIG

    5. SiO2

    6. MoO3MnO2SiO2 Cr2O3Fe2O3 ZnO

    125A

    7. - SiO2 304

    200

    8. SiO2 60%+ MnO2 40%,

    300

  • 94

    9. SiO2 60%+ MnO2 40%

  • - 95 -

    1.

    1997

    2.

    19975pp.44~48

    3.

    19977p.50

    4. 19939

    pp.32~36

    5. 75 1

    6. , ,,p201,pp205207,p211,p214.

    7. 76 8

    pp140~148

    8.

    86

    9.

    90 6

    10. J.M. Vitek and S.A. David, The Effect of Cooling Rate on Ferrite in Type

  • - 96 -

    308 Stainless Steel Weld Metal, Weld. J., 1988, 67(4), 95s-102s.

    11. C.D. Lundin and C.P. Chou, Hot Cracking Susceptibility of Austenitic

    Stainless Steel Weld Metals, Welding Research Council Bulltin, Bull.,

    1983, 289, 1-80.

    12. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1979, 10A(4),512-514.

    13. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1979, 10A(8), 1173-1181.

    14. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1979,10A(8), 1183-1190.

    15. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1980, 11A(5), 717-725.

    16. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1982, 13A(l2), 2121-2130.

    17. N. Suutala, T. Takalo, and T. Moisio, Metallurgical Transactions A-Physical

    Metallurgy and Materials Science, 1983, 14A(2), 191-197.

    18. J.A. Brooks, J.C. Williams, and A.W. Thompson, Metall. Trans., 1983,

    14A(1), 23-31.

    19. J.A. Brooks, J.C. Williams, and A.W. Thompson, Metall. Trans., 1983,

  • - 97 -

    14A(7), 1271-1281.

    20. S. Katayama, T. Fujimoto, and A. Matsunawa, Trans. JWRI, 14(1), 1985,

    123-137.

    21. J.C. Lippoid and W.F. Savage, Weld. J.(Suppl.), 1980, 59(2), 48s-58s.

    22. F.C. Hull, Weld. J.(Suppl.), 1967, 46(9), 399s-409s.

    23. .J.C. Boland, Suggested Explanation of Hot Cracking in Mild Low Steel

    Weld, Weld.J., 1982, 61(5), 139s-148s

    24. J.A. Brooks, A.W.Thompson and J.C.Willians, A Fundamental Study of the

    Beneficial Effect of Delta Ferrite in Reducing Weld Cracking, Weld.J.,

    1984, 63(4), 71s-83s.

    25. F.C. Hill, Effect of Delta Ferrite on Hot Cracking of Stainless Steel,

    Weld.J., 1973, 52(5), 193s-203s.

    26. F. Matusda, H. Nakogawa, T. Uehara, S. Katayama and Y. Arata, 1979,

    Japanese Weld. Res. Inst. Trans., 8(1), p105.

    27.

    1992182155-171

    28.1999

    29. Welding Handbook, 8th ed., Miami, American Welding Society 1987, 1.

    30. MIG/MAG

    76 12 pp.159-172

  • - 98 -

    31. 1998, 7, PP.5157

    32. C.L.TsaiWelding Stress and Distortion

    1985pp.298~385

    33. K. Masubuchi, Analysis of Weld Structures, 1st ed., Pergamon Press,

    1980.

    34.

    74 12

    35. 1996 4

    36.

    1996 6

    37. Y. TakeuchiR. Takagi and T. Shinoda, Effect of Bismuth on Weld Joint

    Penetration in Austenitic Stainless SteelWeld. J. 1992 71(8)

    pp.283~289

    38. H.B.CaryModern Welding Technology4th ed.1998New Jersey

    Prentice Hall

    39. W.T. DeLong, G.A. Ostrom and E.R. Szumachowsk: Weld. J., 1956, 34(11),

    521.

    40. J.F. Lancaster, Metallurgy of Welding, George Allen & Unwin, London,

    1980.

    41. G.W. Oyler, R.A. Matsuzesk and C.R. Garr, Weld. J., 1967, 46(12), 1006.

    42. B.J. Keene, K.C. Mills, R.F. Brooks: Mater. Sci. Tech., 1985, 1, 568.

    43. J.A. Lambert: Weld. J., 1991, 70(5), 41-52.

  • - 99 -

    44. I19977(5)40-49

    45.C.R. Heiple and J.R. Roper: Weld. J., 1981, 60(8), 143-145.

    46. C.R. Heiple and J.R. Roper: Weld. J., 1982, 61(4), 97-102.

    47. C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden: Weld. J., 1983, 62(3),

    72-77.

    48.C.R. Heiple and P. Burgardt: Weld. J., 1985, 64(6), 159-162.

    49. P. Burgardt and C.R. Heiple: Weld. J., 1986, 65(6), 150-155.

    50. M.M. Savitskii: Avtom. Svarka, 1979, 7, 17.

    51. O.E. Ostroviski , The effect of activating fluxes on the penetration

    capability of the welding arc and energy concentration in the anode

    spot,Svar. Proiz, 1977, 3, 3-4

    52. D. S. Howse and W. Lucas : Sci. Technol Weld. Joining., 2000, 5, (3),

    189-193.

    53. Paulo J. Modenesi, Eustquio R. Apolinrio, Iaci M. Pereira: J. Mater.

    Process. Technol., 2000, 99, 260-265.

    54. M. Kuo, Z. Sun, and D. Pan: Sci. Technol Weld. Joining., 2001, 6(1), 17-22.

    55. 200212(3)20-24

    56. R.I. Hsieh, Y.T. Pan and H.Y. Liou: C.J.M.S., 1998, 30(4), 283-291.

    57. 19988(6)58-66

    58. V.I. Pavlovsky and K. Masubuchi: Weld. Res. Counc. Bull., 1994, 388,

    44-48.

    59. M. Watanabe and K. Satoh: Weld. J. (Suppl.), 1961, 40(8), 377s-384s.

  • - 100 -

    60. K.H. Tseng and C.P. Chou: J. Mater. Process. Technol., 2002, 123, 346-353.

    61. K.H. Tseng and C.P. Chou: Sci. Technol. Weld. Joining, 2001, 6(3),

    149-153.

    62. Y. Takeuchi, R. Takagi and T. Shinoda: Weld. J., 1992, 71(8), 283-289.

    63. B. Pollard: Weld. J., 1988, 67(9), 202-213.

    64. A.A. Shirali and K.C. Mills: Weld. J., 1993, 72(7), 347-353.

    65. D. S. Howes and W. Lucas : Sci. Technol Weld. Joining., 2000, 5(3),

    189-193.

    1234567891011