early paleozoic diversification of sponges: new data … · early paleozoic diversification of...

13
Festschrift zum 60. Geburtstag von Helfried Mostler Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 20, S. 335-347, 1995 EARLY PALEOZOIC DIVERSIFICATION OF SPONGES: NEW DATA AND EVIDENCES Joachim Reitner & Dorte Mehl With 1 figure and 2 plates Abstract: Sponges are primitive metazoan organisms which occur since the late Proterozoic. The oldest sponge remains (hexac- tinellids) are from a shallow marine carbonate facies of the late Sinian Shibantan Member (China). From the Tommo- tian (Sansha, China) protospongiid and rossellimorph hexactinellids were discovered in shallow marine silicified rocks. The middle part of this section consists of silty shales with entirely preserved hexactinellid sponges: Sanshadic- tya, Hyalosinica, Solactinella, Triticispongia, Hunanospongia. The hexactinellids typically are soft bottom dwellers, which sometimes grow on and form in situ spiculites (spicule mats). The sponges from the Chengjiang deposits of At- dabanian age, which show a rossellimorph spicule organization typical of the conservative hexactinellid groups, which inhabited the deep sea during most of the Phanerozoic, were also typical soft bottom dwellers. All sponge taxa (Lepto- mitella, Leptomitus, Paraleptomitella etc.) described from this locality we consider to be hexactinellids and not de- mosponges, as originally classified. The sponge communities of carbonate-dominated archaeocyathid mounds are completely different from the above de- scribed sponge mounds. The sponges from the archaeocyath mounds of the Flinders Ranges (S.Australia) are characte- rized by Calcarea and demosponges (< modern type of pharetronid Calcarea Gravestockia pharetroniensis, and many tetractinellid demosponges, Geodiida). Questionable is the origin of four-rayed demosponge spicules found in some archaeocyaths. The oldest ceractinomorph demosponges are documented from the middle Cambrian (Vauxia - an aspi- cular sponge with kératose affinities, and isolated sigmata microscleres). Sponge communities of the Early Cambrian were highly developed, and already then they were taxonomically strongly dependent on substrates and trophic conditions. Zusammenfassung: Schwämme sind primitive Metazoen, die seit dem späten Proterozoikum vorkommen. Die ältesten Schwammfragmen- te (Hexactinelliden) stammen aus einer flachmarinen Karbonatfazies im späten Sinium des Shibatan Members in China. Aus dem Tommotium (Sansha, China) wurden protospongiide und rossellimorphe Hexactinelliden innerhalb flachmariner, verkieselter Gesteinsformationen entdeckt. Der mittlere Abschnitt dieses Profils besteht aus siltigem Tongestein mit körperlich erhaltenen hexactinelliden Schwämmen: Sanshadictya, Hyalosinica, Solactinella, Triticis- pongia, Hunanospongia. Die Hexactinelliden sind typische Weichbodenbewohner, die manchmal m-í/íM-Spiculite (Spicula-Matten) bilden und auf diesen wachsen. Die Schwämme der Chengjiang Lagerstätte (Atdabatium), die eine rossellimorphe Sklerenanordnung, typisch für konservative Hexactinellidengruppen des tieferen Wassers während des Phanerozoikums, zeigen, waren ebenfalls charakteristische Weichbodenbewohner. Alle Spongien-Taxa, die von dieser Lokalität beschrieben sind (Leptomitella, Leptomitus, Paraleptomitella, ect.), werden von uns als Hexactinellida ange- sehen und nicht als Demospongiae, wie sie sie ursprünglich klassifiziert wurden. Die Schwamm-Gemeinschaften der karbonatreichen Acrchaeocyathidenmounds unterscheiden sich von den oben be : schriebenen Spongienmounds signifikant. Die Schwämme aus den Archaeocyathenmounds der Flinders Ranges (Süd- australien) sind charakteristischerweise Calcarea und Demospongiae (pharetronide Calcarea von „moderner" Organi- sation wie Gravestockia pharetroniensis und viele tetractinellide Demospongiae der Geodiida). Umstritten bleibt der Ursprung der vierstrahligen demospongiiden Spicula, die in einigen Archaeocyathen gefunden wurden. Die bisher äl- testen ceractinomorphen Demospongien sind aus dem mittleren Kambrium nachgewiesen (Vauxia - ein aspikulärer Schwamm mit Affinität zu den Keratosen, und isolierte Sigmata-Mikroskleren). Spongien-Gemeinschaften des frühen Kambriums waren hochentwickelt und in ihrer taxonomischen Zusammenset- zung schon damals sehr vom Substrat und Nahrungsangebot abhängig. 335

Upload: others

Post on 18-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Festschrift zum 60. Geburtstag von Helfried MostlerGeol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 20, S. 335-347, 1995

EARLY PALEOZOIC DIVERSIFICATION OF SPONGES:NEW DATA AND EVIDENCES

Joachim Reitner & Dorte Mehl

With 1 figure and 2 plates

Abstract:Sponges are primitive metazoan organisms which occur since the late Proterozoic. The oldest sponge remains (hexac-tinellids) are from a shallow marine carbonate facies of the late Sinian Shibantan Member (China). From the Tommo-tian (Sansha, China) protospongiid and rossellimorph hexactinellids were discovered in shallow marine silicifiedrocks. The middle part of this section consists of silty shales with entirely preserved hexactinellid sponges: Sanshadic-tya, Hyalosinica, Solactinella, Triticispongia, Hunanospongia. The hexactinellids typically are soft bottom dwellers,which sometimes grow on and form in situ spiculites (spicule mats). The sponges from the Chengjiang deposits of At-dabanian age, which show a rossellimorph spicule organization typical of the conservative hexactinellid groups, whichinhabited the deep sea during most of the Phanerozoic, were also typical soft bottom dwellers. All sponge taxa (Lepto-mitella, Leptomitus, Paraleptomitella etc.) described from this locality we consider to be hexactinellids and not de-mosponges, as originally classified.The sponge communities of carbonate-dominated archaeocyathid mounds are completely different from the above de-scribed sponge mounds. The sponges from the archaeocyath mounds of the Flinders Ranges (S.Australia) are characte-rized by Calcarea and demosponges (< modern type of pharetronid Calcarea Gravestockia pharetroniensis, and manytetractinellid demosponges, Geodiida). Questionable is the origin of four-rayed demosponge spicules found in somearchaeocyaths. The oldest ceractinomorph demosponges are documented from the middle Cambrian (Vauxia - an aspi-cular sponge with kératose affinities, and isolated sigmata microscleres).Sponge communities of the Early Cambrian were highly developed, and already then they were taxonomically stronglydependent on substrates and trophic conditions.

Zusammenfassung:Schwämme sind primitive Metazoen, die seit dem späten Proterozoikum vorkommen. Die ältesten Schwammfragmen-te (Hexactinelliden) stammen aus einer flachmarinen Karbonatfazies im späten Sinium des Shibatan Members inChina. Aus dem Tommotium (Sansha, China) wurden protospongiide und rossellimorphe Hexactinelliden innerhalbflachmariner, verkieselter Gesteinsformationen entdeckt. Der mittlere Abschnitt dieses Profils besteht aus siltigemTongestein mit körperlich erhaltenen hexactinelliden Schwämmen: Sanshadictya, Hyalosinica, Solactinella, Triticis-pongia, Hunanospongia. Die Hexactinelliden sind typische Weichbodenbewohner, die manchmal m-í/íM-Spiculite(Spicula-Matten) bilden und auf diesen wachsen. Die Schwämme der Chengjiang Lagerstätte (Atdabatium), die einerossellimorphe Sklerenanordnung, typisch für konservative Hexactinellidengruppen des tieferen Wassers während desPhanerozoikums, zeigen, waren ebenfalls charakteristische Weichbodenbewohner. Alle Spongien-Taxa, die von dieserLokalität beschrieben sind (Leptomitella, Leptomitus, Paraleptomitella, ect.), werden von uns als Hexactinellida ange-sehen und nicht als Demospongiae, wie sie sie ursprünglich klassifiziert wurden.Die Schwamm-Gemeinschaften der karbonatreichen Acrchaeocyathidenmounds unterscheiden sich von den oben be :

schriebenen Spongienmounds signifikant. Die Schwämme aus den Archaeocyathenmounds der Flinders Ranges (Süd-australien) sind charakteristischerweise Calcarea und Demospongiae (pharetronide Calcarea von „moderner" Organi-sation wie Gravestockia pharetroniensis und viele tetractinellide Demospongiae der Geodiida). Umstritten bleibt derUrsprung der vierstrahligen demospongiiden Spicula, die in einigen Archaeocyathen gefunden wurden. Die bisher äl-testen ceractinomorphen Demospongien sind aus dem mittleren Kambrium nachgewiesen (Vauxia - ein aspikulärerSchwamm mit Affinität zu den Keratosen, und isolierte Sigmata-Mikroskleren).Spongien-Gemeinschaften des frühen Kambriums waren hochentwickelt und in ihrer taxonomischen Zusammenset-zung schon damals sehr vom Substrat und Nahrungsangebot abhängig.

335

Introduction Hexactinellida

Sponges are a monophyletic metazoan groupcharacterized by choanoflagellate cell types(choanocytes). Based on studies of MEHL &REISWIG (1991), REITNER (1992), REITNER &MEHL (in press) and MÜLLER et al. (1994) thefirst sponge-metazoans originated in the Pro-terozoic from a choanoflagellate ancestor.Probably the original sponge was an aggregateof choanoflagellates closely related to variousmicrobial communities. It is evident that allknown sponge taxa bear various amounts ofoften species-specific bacterial associationswithin their mesohyle. Very important datagive the analyses of the metazoan ß-galactose-binding lectins (S-type lectins) in spongeswhich was hitherto analysed only from verte-brates and the nematode Caenorhabditis ele-gans (PFEIFER et al. 1993, MÜLLER et al., 1994).The development of this sponge lectin mayhave occurred before 800 my (HIRABAYASHI &KASAI, 1993). This biochemical hypothesis thatsponges are Proterozoic metazoans is tested bythe new findings of indubitable sponge spicu-les from the Shibantan Member (DengyingFormation, late Sinian of the Hubei Province,China, STEINER et al., 1993). RIGBY (talk on the4 th internat. Porifera Congress, Amsterdam1993) has presented a nearly complete speci-men of a hexactinellid sponge from the Ediaca-ra type locality of South Australia. Remarkableare also biomarker analyses made by MOLDO-

WAN et al. (1994) who detected C30 steranewhich are characteristic for demosponges in1,8 mrd.y. old black shales!

The diversification of the demosponges andcalcareous sponges is linked with the shallowcalcareous facies often related to the archaeo-cyaths. Within archaeocyath mounds spongespicules are very common, and beside hexac-tines, tetractines and.modified monaxonic onesdo occur. One of the authors (JR) has studiedthe spicules of the Atdabanian and BotomianArchaeocyath mounds of the South AustralianFlinders Ranges intensively (REITNER, 1992;DEBRENNE & REITNER, in press).

According to the data presently available, theHexactinellida are the oldest metazoan group,which can be definitely attributed to an extanttaxon. Spicule remains with clear relics of axialcanals, mainly monaxons but also including typi-cally hexactinellid triaxones, probably staurac-tins, were documented from thin sections oflimestones from the Dengying Formation inSouth China (STEINER et al., 1993). These spicu-les are from the Shibatan Member of Late Pro-terozoic age (stratigraphie equivalent of the Aus-tralian Ediacara Member).

Well-preserved sponge fossils have been de-scribed earlier from the famous Burgess Shale(RIGBY, 1986) and from the House Range Moun-tains and Wheeler Shale, Utah (RIGBY, 1978,1983; a.o.). A hexactinellid sponge fauna ofcomparably high diversity is known from LowerCambrian (Tommotian) strata of the Sansha sec-tion, Yangtze Platform, South China. Six generaand species of sponges, most of which, or maybeall, are Hexactinellida, including the earliest re-presentatives of several large Paleozoic groups,were found in the Sansha section as well-pre-served natural spicule-assemblages. Sanshadictyamicroreticulata MEHL & REITNER (in: STEINER etal., 1993) is the earliest sponge with regular hori-zontal-vertical rows of diactins and stauractins.This reticulate spicule organization is the diagnos-tic feature of the Dictyospongiidae HALL, 1884,known from the Ordovician till the end of thePermian. However, the monophyly of Dictyo-spongiidae is not definitely established, and it isuncertain whether or not Sanshadictya really be-longs to this group, since no Middle or LateCambrian representatives are known so far. Thespecies Hyalosinica archaica MEHL & REITNER

was decribed on account of isolated root tufts oflong monaxial spicules, twisted in a clockwisedirection. The attachment of the main spongebody by a long, flexible stalk like a glass rope isa feature of the recent amphidiscophoran group,Hyaloneametidae GRAY, which comprise a largenumber of species (e.g. SCHULZE, 1877). Hyalo-nema GRAY, 1832, known from Late Cretaceous

336 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

Fig. 1: Drawings of hexactinellid spicules from Georgina Basin (Australia, Middle-Cambrian).1: Follipinules of new hexactinellid (MEHL, 1995: holotype). 2-4: Various follipinules attributed to this species. 5-7: Heavily in-flated stauractins, diactins, and hexactins which are associated with follipinules, and which may probably be attributed to the sametaxon as those. 8. Kometiaster. 9, 13: special type of Cambrian stauractins flattened in the area of the axial cross (axial canal brokenup in 13). 10: Stauractin with its paratangential rays all bent to point in one direction. 11: Tylodisc similar to those described as Na-baviella elegans MOSTLER & MOSLEH-YAZDI, 1976. 12: Clavule. All scales = 100 urn.

(MEHL, 1992) till today is characterized by a twist-ed root tuft of anchoring spicules, which may bemore than 1 m long and is colonized by sym-

biotic soft corals encrusting and thus additionallystabilizing the "glass rope". It was a strategy alsoof many fossil Hexactinellida, such as many Or-

Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995 337

dovician Protospongiidae (DAWSON & HINDE,

1888, 1889) of Little Métis, Canada, the EarlyDevonian Retifungus rudens RJETSCHEL, 1970,from the Hunsriickschiefer, Germany, or Hyalo-stelia smithii YOUNG & YOUNG, 1877, from theCarboniferous of Ayrshire, England. These aregroups which may or may not belong to the Hya-lonematidae. Triticispongia diagonata MEHL &REITNER (in: STEINER et al., 1993) most probablyis a precursor of Diagoniella RAUFF, 1894, aMiddle Cambrian representative of the Early Pa-leozoic Protospongiidae SALLER. Sanshapentelladapingi MEHL & ERDTMANN, 1994, exhibits adermal skeleton very similar to the isolated he-xactins with all their paratangential rays bent inone direction, which gave rise to Hunanospongiadelicata QIAN & DING, 1988. Similarly triaxialspicules, stauractins, with all rays curved in onedirection are found in sediments of the GeorginaBasin (fig. 1:10). No post-Cambrian Paleozoicrepresentatives of this type of hexactins withtheir paratangential rays all bent in one direction,but they are found in the Late Cretaceous (Co-niacian) Arnagerkalk from Bornholm, Denmark(MEHL, 1992). Solactiniella piumata MEHL &REITNER, characterized by diactin spicules radiat-ing from a center in all directions represents aconservative bauplan of the Porifera. A radiatingspicule organization is very common within theDemospongiae, e.g. the Middle Cambrian Choiaridley WALCOTT, 1920. Hexactinellids which ex-hibit a similarly conservative skeletal architectu-re were called "rossellimorph", which is not thename of a monophyletic group, but merely thedesignation of a very persistent morphologicaltrend within the Hexactinellida (MEHL, 1995).Quadrolaminiella CHEN et al., 1990, from theLower Cambrian Atdabatian of Chengjiang fromHunan, China, was originally attributed to theDemospongiae. However, Quadrolaminiella ex-hibits a spicular architecture with strong affinityto the Tommotian hexactinellid Solactiniella.According to our observations on unpublishedmaterial from Chengjiang, comprising also spe-cimens which most probably belong to Quadro-laminiella, all Chengjiang sponges including thespecies described by CHEN et al. (1990), are He-

xactinellida. So far, no definite triaxons havebeen observed within these sponges. However,their spiculation is very similar to that of otherPaleozoic "rossilimorphs", some of which do,others apparently do not possess triaxial spicules.Although the Hexactinellida are characterized bytriaxons, basically hexactins, most of the hexac-tins of the so-called "lyssacinosans" are reducedto stauractins, e.g. the Protospongiidae (compareMEHL, 1991) or diactins. Thus, occasionallyfossil or recent hexactinellids are found withexclusively diactin "megascleres". In recent re-presentatives and in very well-preserved fossils,their hexactinellid nature can easily be recog-nized because of the typical soft tissue organiza-tion and the triaxial "microscleres" (hexastersand amphidiscs). However, in fossil sponges nor-mally no "microscleres" are preserved, and thusthe classification of sponges with exclusivelymonaxial "megascleres" is often problematic.Hexactinellid "microscleres" are mainly foundas isolated spicules washed out of sediments(MEHL & MOSTLER, 1995). One criterion of di-stinction is the fact that hexactinellids often havemuch larger and coarser spicules than Demo-sponges. The largest poriferan spicules are foundin the recent amphidiscophoran hexactinellidMonorhaphis SCHULZE, 1904, which is rooted inthe sediment by a single anchoring spicule, up to3 m long and 1 cm thick. The root-tuft spicules ofHyalonema may exceed 1 m in length and severalmm in thickness. Of course some hexactinellidshave small, only delicate "megascleres", but especi-ally fossil sponges characterized by coarse spicules,several cm in length, in almost every case can beproven by the presence of triaxons to be hexac-tinellid. In the case of Quadrolaminiella, with co-arse spiculation and strong affinity to Solactiniellathe hexactinellid identity is very probable, eventhough the examination of further material wouldbe necessary to definitely prove this hypothesis.

From the Late Atdabatian (Qiongzhusi Stage)of the Shaanxi province, southern China, a high-ly diverse association of isolated ? demospongi-an, calcarean (heteractinid), and mainly hexac-tinellid spicules has been described (ZHANG &PRATT, 1994). It contains oxypentasters and

338 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

-staurasters with 2 or 3 secondary rays which areoften clading into Tertiary branches, before theyend as simply pointed rays. These peculiarspicules, so far known from the Cambrian only,might be precusor forms of true oxyhexasters(compare MEHL & MOSTLER, 1995).

The Middle Cambrian phosphorites of the Ge-orgina Basin in South Australia are being studiedby one of the authors (DM). They contain micro-fossils in extraordinary, often soft-part preservati-on. Further, a diverse association of spongespicules has been washed out of dissolved sam-ples of these sediments. Their major part consistsof hexactinellid spicules, but also the Demospon-giae and Calcarea (Heteractinida) are represented.Hexactins are found in high variability of shapes.Generally, the hexactins are rather large and com-monly measure up to several mm in total length.Average hexactins measure about 2-500 urn andshow six rays of approximately equal length,which may be a little curved or inflated to variousdegrees (fig. 1:7). One or more rays can show va-rious degrees of reduction and thus the spiculesgrade into pentactins, stauractins (fig. 1: 9,13), orother triaxial dérivâtes. Some of the smaller tria-xons, commonly stauractins, may be inflated likepillows, and the triaxial nature of such heavily in-flated spicules is hardly recognizable. Pinules aretree-like spicules, hexactins or stauractins withtheir distal rays pinulate and often inflated,which, according to the functional morphologyand position in recent hecactinellids, are margi-nal, normally dermal spicules. Classical pinulesof the Georgina assemblage are rather large,average size 500 to 1000 um.

Follipinules (MEHL, 1995) are special pinules,average size only about 400 urn, with their dis-tally extremely inflated rays decorated with lon-gitudinal ridges, ball-shaped, and almost "ab-sorbing" the other reduced rays, so the axialcross sometimes is not visible (fig. 1: 1̂ 4-). Anew taxon is erected on account of a hypotheti-cal reconstruction of the Cambrian spongescarrying this special type of dermal spicules inMEHL (1995). Inflated pentactin pinules withsome similarity to follipinules from the Cambri-an of Texas were interpreted as dermal spicules

by RIGBY (1975). MOSTLER & MOSLEH-YAZDI

(1976) documented smooth hexactins with oneor more swollen rays from Late Cambrian sedi-ments of Iran and based on these spicules thetaxon Rigbyella ruttneri. Heavily inflated spicul-es like "pillow-stauractins" (fig. 1: 5-6) and fol-lipinules are a widespread feature within Paleo-zoic, especially Cambrian, Hexactinellida. Thistype of probably dermal armouring layers indica-tes a special strategy of Early Paleozoic hexac-tinellida, which was realized beside the fragileskeletal architecture known from e.g. the Proto-spongiidae (compare MEHL, 1995). The armou-ring strategy probably reflects the adaptation toanother type of environment as that of the fragilehexactinellids, eigther as stabilizor by higherwater energies or as a defence against sponge-feeding predators.

Kometiasters (gr. Kometes = long-haired star)(Fig. I: 8). These are triaxons 400-800 urn in dia-mètre with numerous short pointed secondaryrays. One or two of these principalia are split upinto a large number (ca. 30-50) of secondaryrays, which are long (350-500 um), gently curv-ed, and slightly barbed at their distal ends. Fromthe Late Ordo vician of New South Wales a highlyinteresting hexactinellid spicule assemblage hasbeen documented recently by WEBBY & TROTTER

(1993). The hexasters of the new species Kometiacruciformis WEBBY & TROTTER, 1993, are similarto those from the Georgina Basin. If they can beregarded as true hexasterophorid spicules, thesehexasters, which are called kometiasters (MEHL

1995), are the oldest ones found so far. Thus, themajor hexactinellid group Hexasterophora mightbe traced back as far as to the Middle Cambrian.

Tylodiscs: Only one spiculum of this type wasfound within the collection (fig. 1: 11). It is290 urn long with one end like a clavule fromwhich at least six spines are curved back about2/3rd of the entire length of the spiculum. Theother end is inflated and forms a small bud. Thisspicule, though much smaller, shows great simi-larity to Nabaviella elegans described by MOST-

LER & MOSLEH-YAZDI (1976) from Late Cambri-an sediments of Iran. Some clavules also occur(fig. 1: 12).

Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995 339

The Early Paleozoic radiation of the Hexac-tinellida

The monophylum Hexactinellida comprisesthe sister groups Amphidiscophora and Hexas-terophora, which can be traced back to the EarlyPaleozoic (MOSTLER, 1986; MEHL, 1991, 1995).Oxyhexasters from the Late Ordovician and am-phidiscs from the Late Silurian were documentedby MOSTLER (1986). From Late Cambrian sedi-ments MOSTLER & MOSLEH-YAZDI (1976) docu-mented large (about Ö.6-3.2 mm) monaxon spi-cules with one clavulate and one swollen, turbu-lated end. These spicules, first classified as chan-celloriides, were re-interpreted as hemidiscs byMOSTLER (1986). In case the spicules Nabaviellaelegans are really hemidiscs, it would imply thatthey were amphidiscs with partly atrophied rays.Further, this would infer that both sister groups,Amphidiscophora and Hexasterophora, were do-cumented since the Cambrian. However, no trueamphidiscs are known older than Silurian, inspite of careful investigation of sediments frommany different localities and facies types (MOST-

LER, pers. comm.). For this reason, MEHL (1992)chose the name tylodiscs for the Early Paleozoicparaclavule-like spicules with one inflated end.The alternative hypothesis that the amphidisc arephylogenetically .derived from hemidiscs (FINKS,

1970), is considered even more unestablished(MEHL, 1991). The oldest true Hemidiscs foundso far were reported from the sponges, Uralone-ma karpinskii and Microhemidiscia ortmanni ofthe Late Carboniferous from Ural and Uruguay,respectively (LIBROVITCH, 1929; KLING & REIF,

1969). According to close observations of thetype material to those species by one of the au-thors (DM), in St. Petersburg and Tubingen, res-pectively, these true hemidiscs are quite differentfrom the Cambrian tylodiscs. Hemidiscs are thusmost probably derived from amphidiscs by ray-reduction, and tylodiscs can be considered asconvergently evolved, may be related with theparaclavules (the latter spicules are known fromsome Dictyospongiidae, e.g. Griphodictya epi-phanes HALL & CLARKE, 1898). The occurrenceof highly evolved hexactinellids, such as Hyalo-

sinica archaica already in the Early Cambrian(Tommotian) as well as the very rich and diverseassemblages of hexactinellid spicules found inCambrian sediments (also by BENGTSON, 1986;BENGTSON et al., 1990) indicate an Early Cam-brian radiation within the Hexactinellida.

Archaeocyatha

The archaeocyaths are probably representati-ves of coralline sponges which secrete a secon-dary calcareous skeleton of high Mg-calcite(REITNER, 1990, 1992; VACELET & DEBRENNE,

1984; WOOD et al., 1992; ZHURAVLEV, 1989).Within some irregular archaeocyaths of the Flin-ders Ranges (South Australia) tetractine and mo-naxonic spicules were found (REITNER, 1992).The spicules are often intramurally enrichedwithin endo- or exothecal buds (pi. 2, figs. 3-6).The calcifying tissue of the archaeocyaths hasovergrown more or less entirely the primary spi-cular skeleton which is presumably related to thebuds (pi. 2, figs. 3^) . The biomineralization ofcalcareous buds was a fast process which ex-plains that the spicules are often more or less intheir natural position. The special biomineraliza-tion of the buds may explain the scarcity of spi-cules within archaeocyath basal skeletons (pi. 2,figs. 5-6). The incorporation of spicules withinthe basal skeleton is probably a calcification arte-fact, a phenomenon which is also seen within thebasal skeletons of Triassic coralline sponge Cas-sianothalamia zardinii REITNER (REITNER, 1987)and Lower Cretaceous Acanthochaetetes sp.(REITNER & ENGESER, 1987). The observed spic-ule types are modified tetractines ("dodeca-actine", triaenes) (pi. 2, figs. 4, 6) and monactinespicules (pi. 2, fig. 4) with demosponge affini-ties. The spicules exhibit the characteristic dia-genesis which is known from fossil siliceousspicules: The early dissolution molds arecemented by a granular and/or equant calciteoften associated with early prismatic marine ce-ment. In contrast, fossil calcareous spicules stillexhibit their mono- to paucicrystalline character.

340 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

The validity of the relationship of these spic-ules to the host archaeocyaths is under discussi-on. The spicules are doubtless tetractine spiculesand therefore not related to hexactinellids.

However, the archaeocyath tissue was able toincorporate allochthonous material, as trilobateremains, isolated spicules, further organic re-mains, and overgrow sessile benthic organisms(e.g., Gravestockia pharetroniensis REITNER). TO

decide whether or not spicules were a constituentcharacter of the archaeocyathid animal alwaysdepends on a paleobiological reconstruction ofthe studied specimen.

Cambrian. KRUSE (1990) has found sigmatamicroscleres (autapomorphy of this taxon) in theMiddle Cambrian Daly and Georgina Basin.First record of a probable kératose sponge isVauxia sp., e.g. known from the Lower Cambri-an of Greenland (RIGBY 1987). Desma type me-gascleres (orchoclad lithistids with dendro-clones) occurred latest in the Middle Cambrian(anthaspidellid sponge Rankenella, KRUSE,

1983). Based on phylogenetic reconstructionthis spicule type should be an archaic one, butno desmas are know from the Lower Cambrianup to now.

Demosponges

Only few informations on the early history(Cambrian) of demosponges are available(BENGSTON et al., 1990; RIGBY, 1991; KRUSE,

1983, 1990; VAN KEMPEN, 1990) and are restrict-ed to the Middle Cambrian. The spongesdescribed by CHEN et al. (1990) from the Cheng-jang deposits, as explained above, are most prob-ably no demosponges but hexactinellids. Identi-fiable articulated demosponges from the LowerCambrian are until yet not known.

The spicules of the demosponges in Archae-ocyath mounds are exclusively restricted to theTetractinellida. First Ceractinomorpha do occurduring the Middle Cambrian (KRUSE, 1990;REITNER, 1992; REITNER & MEHL, in press). Be-side tetractine spicules, typical modified dermalspicules (nail-types) (pi. 1, fig. 1-3), monaxonicspicules (large tylostyles) (pi. 1, fig. 3) and largeaster microscleres (autoapomorphy of the Tetrac-tinellida) (sterrasters, Geodiidae) (pi. 1, fig. 4)were found which proves the high level of tetrac-tinellid evolution in the early Cambrian (GRUBER

& REITNER 1991). The tetractinellid spicules ofthe Lower Cambrian differ in some aspects frommodern ones. Most of the observed Cambrianspicules are generally larger (500 um to 3 cm)and thicker (ca. 50um) than the recent ones.

The second main tribe of the demosponges,the Ceractinomorpha, occurs first in the Middle

Calcarea

The Heteractinida are the most characteristiccalcareous sponges in the Paleozoic (RIGBY,

1991; RIETSCHEL, 1968). They extinct at theend of the Permian. Within Lower Cambrianstrata these sponges are rare and only few spi-cules are known {Eiffelia sp.) (pi. 2, fig. 2).The spicule types of the Heteractinida are ex-tremely variable and completely different fromthe "modern" type Calcarea. It is astonishingthat the "modern" type of calcitic spicules iscommon in Lower Cambrian strata. Up to now,regular calcitic triaene spicules were firstknown from Mesozoic strata. The modern typeof spicules of Calcarea from the Lower Cam-brian give absolutely new aspects of the phylo-geny of this group. Remarkable is this evidenceof calcareous sponges with "modern" affini-ties. The main problem is that typical Paleo-zoic Calcarea are the Heteractinida with theirmulti-rowed spicules or characteristic octac-tines. Entirely preserved sponges with regulartriaene or tetractine calcitic spicules are notknown from the Paleozoic. Beside isolated re-gular calcitic spicules one taxon is known fromthe archaeocyath mounds of the Flinders Ran-ges with cemented choanosomal spicules("Pharetronida"), Gravestockia pharetroniensisREITNER, 1992 (pi. 1, fig. 5-6). This pharetro-nid sponge exhibits a rigid skeleton of simple

Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995 341

tetractine calcareous spicules and diactine-freedermal ones. These sponges grew preferably onarchaeocyaths and are sometimes overgrown bythe secondary skeletons of the archaeocyaths.This "intramural" spicule record is not to beconfused with the isolated tetractinellid spicu-les with demosponge affinities, as describedabove.

Most of the observed calcarean spiculeshave affinities to the modern Calcaronea (pi. 1,fig. 1), only few with calcinean affinities areknown (pi. 2, fig. 1).

Conclusions

- The Hexactinellida are the oldest definite Po-rifera documented, their record goes back tothe Late Proterozoic, and their radiation tookplace in the Early Cambrian.

- The Archaeocyatha were most probably de-mosponges with secondary calcareous basalskeletons. Evidence of "intramural" spiculeswithin archaeocyaths may be interpreted astrapped dermal spicules that belong to thebudding archaeocyath specimens.

- The main radiation of the Pinacophora (De-mospongiae/Calcarea-taxon) took place in theMiddle Cambrian.

- All main sponge taxa occur latest in the Midd-le Cambrian. New fundamental evolutionarytrends were not realized during the followingtime.

Acknowledgements

Prof. Dr. K.J. MÜLLER (Bonn) and Dr. J.H.SHERGOLD (Canberra, Australia) are acknowl-edged for loan of their rich collection of spongespicules from the Georgina Basin.

The Deutsche Forschungsgemeinschaft (DFG)is gratefully acknowledged for financing the pro-ject Ke 322/5-3 on palaeobiology of siliceoussponges of the Paleozoic.

References

BENGTSON, S.; CONWAY MORRIS, S.; COOPER, B.J.; JELL,

P.A. & RUNNEGAR, B.N. (1990): Early Cambrian Fos-

sils of South Australia. - Ass. Austr. Palaeont.,

Mem., 9, 364 p., Brisbane.

BENGTSON, S. (1986): Siliceous microfossils from the

Upper Cambrian of Queensland. - Alcheringa, 10,

195-216, Adelaide.

CHEN, J., HOU, X. & Li, H. (1990): New Lower Cambrian de-

mosponges - Quadrolaminiella gen. nov. from Cheng-

jiang, Yunnan. - Acta Paeont. Sinica, 28, 1,401-414.

CHEN, J. & ERDTMANN, B.-D. (1991): Lower Cambrian

fossil Lagerstätte from Yunnan, China: Insights for

reconstructing early metazoan life. - In: SIMONETTA,

A.M. & CONWAY MORRIS, S. (eds.): The early evolu-

tion of Metazoa and the significance of problematic

taxa, 57-76, Cambridge.

CHEN, J., Hou, X. & Lu, H. (1989): Lower Cambrian

Leptomitids (Demospongea), Chengjiang, Yunnan. -

Act Palaeont. Sinica, 28, 17-30.

CHEN, J., Hou, X. & Lu, H. (1990): New Lower Cambri-

an Demosponges - Quadrolaminiella Gen. Nov. from

Chengjiang, Yunnan. - Act Palaeont. Sinica, 29,

410-413.

DAWSON, J.W. & HINDE, G.J. (1888): New species of

fossil sponges from Little Métis, Province of Quebec,

Canada. - Can Ree. Sci., 3, 49-68.

DAWSON, J.W. & HINDE, G.J. (1889): New species of

fossil sponges from the Siluro-Cambrian at Little

Métis on the Lower St. Lawrence. - Trans. Roy. Soc.

Can., 7, 31-55.

DEBRENNE, F. & REITNER, J. (submitted): New phyloge-

netic and palaeoecological aspects of late Precambri-

an and early Cambrian sponges and cnidaria. - Univ.

Press Columbia.

DEBRENNE, F. & VACELET, J. (1984): Archaeocyatha: Is

the sponge model consistent with their structural orga-

nization? - Palaeontographica Americ, 54, 358-369.

FINKS, R.M. (1970: The evolution and ecologie history

of sponges during Palaeozoic times. - Symp. Zool.

Soc. London, 25, 3-22.

GRUBER, G. & REITNER, J. (1991): Isolierte Mikro- und

Megaskleren von Porifera aus dem Untercampan von

Höver (Norddeutschland) und Bemerkungen zur Phy-

logenie der Geodiidae (Demospongiae). - Berliner

Geowiss. Abh. (A): 134, 107-117, Berlin.

342 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

HiRABAYASHi, J. & KASAI, K. (1993): The family of me-tazoan metal-independent ß-galactose-binding lec-tins: structure, function and molecular evolution. -Glycobiol. 3, 297-304, Oxford.

KEMPEN VAN, T.M.G. (1990): On the Oldest TetraxonMegascleres. - In: RÜTZLER, K. (ed.): New Perspec-tives in Sponge Biology, 9-16; Washington (Smith.Inst. Press)

KLING, S.A. & REIF, W.E. (1969): The Paleozoic history

of amphidisc and hemidisc sponges: New evidencefrom the Carboniferous of Uruguay. - Jour. Paleont.,43, 6, 1429-1434.

KRUSE, P. (1983): Middle Cambrian "Archaeocyathus"from the Georgina Basin is an anthaspidellid sponge.- Alcheringia, 7, 49-58.

KRUSE, P. (1990): Cambrian Palaeontologiy of the DalyBasin. - Dept. Mines Energy North. Terr. Geol. Surv.Rep. 7, 58 p., Darwin.

LIBROVITCH, L.S. (1929): Uralonema Karpinskii nov.gen., nov. sp. i drugie kremnevie gubki iz kamennou-golnikh otlozhenii vostochnogo sklona Urala. -Trudy Geol. Kom.-ta., nov. ser., 179, 11-57, Mo-skau.

MEHL, O. & ERDTMANN, B . -D. (1994): Sanshapentella

dapingi n. gen., n. sp. - a new hexactinellid spongefrom the Early Cambrian (Tommotian) of China. -Berliner Geowiss. Abh. Ser. E, 13, 315-319.

MEHL, O. & MOSTLER, H. (1995): Phylogenetisch-taxo-nomische Bedeutung, stratigraphische Bedeutung undTerminologie der „Mikroskleren" bei den Hexactinel-lida, Porifera.- Geol. Paläont. Mitt. Innsbruck (inpress).

MEHL, O. & REISWIG, H.M (1991): The presence of fla-gellar vanes in choanomeres of Porifera and their pos-sible phylogenetic implications. - Z. syst. Zool. Evo-lutionsforsch., 29, 312-319; Hamburg.

MEHL, D. (1991): Are Protospongiidae the stem group ofmodern Hexactinellida?. - In: REITNER, J. & KEUPP,

H. (eds.): Fossil and Recent Sponges, 43-53 (Sprin-ger).

MEHL, D. (1992): Die Entwicklung der Hexactinellidaseit dem Mesozoikum. Paläobiologie, Phylogenie undEvolutionsökologie. - Berliner geowiss. Abh. (E), 2,1-164, Berlin.

MEHL, D. (1995): Phylogenie und Evolutionsökologieder Hexactinellida (Porifera) im Paläozoikum. -Geol. Paläont. Mitt. Innsbruck (in press).

MOLDOWAN, J.M., DAHL, J., JABOSON, S.R., HUIZINGA,

B.J., MCCAFFREY, M. A. & SUMMONS, R.E. (1994):Molecular fossil evidence for late Proterozoic-EarlyPaleozoic Environments. - Terra nova Abstracts, 3,suppl. Terra nova, 6, 5, Oxford.

MOSTLER, H. & MOSLEH-YAZDI, A. (1976): Neue Porife-ren aus oberkambrischen Gesteinen der Milaformati-on im Elburzgebirge (Iran). - Geol. Paläont. Mitt.Innsbruck, 5, 1, 1-36.

MOSTLER, H. (1986): Beitrag zur stratigraphischenVerbreitung und phylogenetischen Stellung derAmphidiscophora und Hexasterophora (Hexactinel-lida, Porifera). - Mitt. österr. geol. Ges., 78,319-359.

MÜLLER, W.E.G., SCHRÖDER, H.C., MÜLLER, I.M. & GA-

MULIN, V. (1995): Phylogenetic Relationship of Ubi-quitin Repeats in the Polyubiquitin Gene from the Ma-rine Sponge Geodia cydonium. - J. Mol. Evol., 39, inpress.

PFEIFER, K., HAASEMANN, M., GAMULIN, V., BRETTING,

FAHRENHOLZ, F. & MÜLLER, W.E.G. (1993): S-typelectins occur also in invertebrates: High conservationof the carbohydrate recognition domain in the lectingenes from the marine sponge Geodia cydonium. -Glycobiology, 3, 179-184; Oxford

REISWIG, H.M & MEHL, D. (1991): Tissue organisationof Farrea occa (Porifera, Hexactinellida). - Zoomor-phology, 110, 301-311; Hamburg

REITNER, J. & MEHL, D. (in press): Monophyly and sy-stematics of the Porifera. - Abh. Naturwiss. VereinHamburg (NF), Hamburg.

REITNER, J. & ENGESER, T. (1987): Skeletal structuresand habitates of recent and fossil acanthochaetetes(subclass Tetractinomorpha, Demospongiae, Pori-fera). - Coral Reefs, 6, 151-157; Berlin.

REITNER, J. (1987): A new calcitic sphinctozoan sponge

belonging to the Demospongiae from the Cassian

. Formation (Lower Carnian; Dolomites, Northern

Italy) and ist phylogenetic relationship. - Geobios,20, 571-589; Lyon.

REITNER, J. (1990): The polyphyletic origin of the"Sphinctozoans". - In: RÜTZLER, K. (ed.): New Per-spectives in sponge Biology, 33-42; Washington(Smith. Inst. Press).

REITNER, J. (1992): „Coralline Spongien" Der Versucheiner phylogenetisch-taxonomischen Analyse. - Ber-liner geowiss. Abh. (E), 1, 352 p.; Berlin.

Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995 343

RiGBY, J.K. (1975): Some unusual hexactinellid spongespicules from the Cambrian Wilberns Formation ofTexas. - Jour. Paleont, 49, 2, 416-415.

RIGBY, J.K. (1978): Porifera of the Middle CambrianWheeler Shale, from the Wheeler Amphitheater,House Range, in Western Utah. - Jour. Paleont., 52,6, 1325-1345.

RIGBY, J.K. (1983): Sponges of the Middle CambrianMarjum Limestone from the House Range and DrumMountains of Western Millard Country, Utah. - Jour.Paleont., 57, (2,: 240-270.

RIGBY, J.K. (1986): Sponges from the Burgess Shale(Middle Cambrian), British Columbia. - Palaeontogr.Canad., 1986, 2, 1-105.

RIGBY, J. K. (1987): Cambrian and Silurian spongesfrom northern Greenland. - In: PEEL, JS. (ed.): NorthGreenland Lower Paleozoic paleontology and strati-graphy: Shorter Contributions. - Grnl. Geol. Under-S0gelse Rapp., 132, 51-63.

RIGBY, J. K. (1991): Evolution of Paleozoic HeteractinidCalcareous Sponges and Demosponges. - In: REIT-NER, J. &KEUPP, H. (eds.): Fossil and Recent Spon-ges, 83-101, Berlin (Springer).

RIGBY, J. K. (1993): Fossils in Time, the record and itsinterpretation (talk). - 4 t h Internat. Porifera Congress,Amsterdam.

RIETSCHEL, S. (1968): Die Octactinellida und ihnenverwandte paläozoische Kalkschwämme (Pori-fera, Calcarea). - Paläont. Z., 42, 13-32, Stutt-gart.

SCHULZE, F.E. (1887): Report on the Hexactinellida. -In: MURRAY, J. (ed.): Report on the scientific results

of the voyage of H.M.S. CHALLENGER during theyears 1873-76, 21, 1-513, London.

STEINER, M., MEHL., O., REITNER, J. & ERDTMANN, B.-D.

(1993): Oldest entirely preserved sponges and otherfossils from the Lowermost Cambrian and a new fa-cies reconstruction of the Yangtze platform (China).- Berliner geowiss. Abh. (E), 9, 293-329; Berlin

WALCOTT, CD. (1920): Middle Cambrian Spongiae. -Smithsonian Misc. Coll., 67, 261-364.

WEBBY, B.D. & TROTTER, J. (1993): Ordovician spongespicules from New South Wales. - Jour. Paleont., 67,1,21-48.

WOOD, R., ZHURAVLEV, A.YU & DEBRENNE, F. (1992):Functional Biology and Ecology of Archaeocyatha. -Palaios,7, 131-156, Tulsa.

YOUNG, J. & YOUNG, J. (1877): On a Carboniferous

Hyalonema and other sponges from Ayrshire. - Ann.Mag. Nat. Hist., ser. 4, 20, 425-432.

ZHANG, XI-GUANG & PRATT, B.R. (1994): New and ex-traordinary Early Cambrian sponge spicule assembla-ge from China. - Geology, 22, 43-46.

ZHURAVLEV, A.YU. (1989): Poriferan aspects of archaeo-cyathan skeletal function. - Ass. Australas. Palaeon-tols Mem. 8, 387-399.

Authors' addresses:Prof. Dr. Joachim Reitner, Institut und Museum für Geologieund Paläontologie, Universität Göttingen, Goldschmidtstr. 3,D-37077 Göttingen; Dr. Dorte Mehl, Institut für Paläontologieder Freien Universität Berlin, Malteserstr. 74-100, D-12249Berlin.

Manuscript submitted: February 20, 1995

Plate 1: Atdabanian archaeocyath mound of the Flinders Ranges, Wilkawillina Limestone

Fig. 1: Vertical section of a triaene dermal spicule of a tetractinellid demosponge (a). The spicule exhibits the charac-teristic granular cements of former siliceous scleres. In contrast to the diagenetically altered siliceous spicule,the calcarean spicule (b) exhibits a monocrystalline structure. Scale 500 urn.

Fig. 2: Horizontal section of a phylotriaene dermal spicule (Demospongiae). Scale 500 urn.

Fig. 3: Tylostyle (a) and triaene (8b) demospongian megascleres. Scale 500 urn.

Fig. 4: Modified kidney-shaped sterraster microscleres with demosponge affinities (Geodiidae). Scale 300 urn

Fig. 5: Gravestockia pharetronensis REITNER 1992; Calcaronea with pharetronid affinities. This sponge preferred tosettle on archaeocyathids. Scale 500 (jm.

Fig. 6: Detailed magnification of the rigid spicular skeleton of Gravestockia pharetroniensis which shows the secon-dary calcite cement (arrow) of the pharetronids. Scale 150 urn.

344 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

345

Plate 2: Atdabanian archaeocyath mound of the Flinders Ranges, Wilkawillina Limestone

Fig. 1: Regular monocrystalline calcitic triactine spicule with Calcinean affinities. Scale 250 urn.

Fig. 2: Sexiradiate spicule with heteractinid affinities {Eiffelia ?). Scale 300 urn.

Fig. 3: Endothecal bud of an archaeocyathid with intramural spicules (arrows). Scale 500 urn.

Fig. 4: Detailed magnification of the basal skeleton with intramural spicules of Fig. 3. Clearly visible are triaenes and

cross sections of the long spicule axis (white dots). Scale 100 (am.

Fig. 5: Entrapped spicules within the primary layer of the main skeleton of an archaeocyath (white dot and arrow).

Scale 1 mm.

Fig. 6: Detailed magnification of a dodecaactinellid shape of spicule, a modified siliceous caltrop spicule (Fig. 5,

arrow). Scale 200 (im

346 Geol. Paläont. Mitt. Innsbruck, Bd. 20, 1995

347