ece 695 numerical simulations lecture 31 - purdue...

27
ECE 695 Numerical Simulations Lecture 31: Finite-Difference Time Domain Band Structures Prof. Peter Bermel April 3, 2017

Upload: others

Post on 19-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

ECE 695Numerical Simulations

Lecture 31: Finite-Difference Time Domain Band Structures

Prof. Peter Bermel

April 3, 2017

Page 2: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Recap from Friday: MEEPPV Graphical User Interfacehttps://nanohub.org/tools/meeppv

Click here to select 2D/3D solar cell for simulation

You will be directed to

this page if the

graphical user

interface (first option)

is selected.

Users can input

parameters that

describe the solar cell

features as well as the

simulation domain.

2

Page 3: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Outline

• Photonic Crystal Waveguides:

– Photonic Bandstructure

– Defect Resonant Modes

– Waveguide Transmission

• Inverse Opal Photonic Crystals:

– Photonic Band structures

– Photonic Crystal Phosphors

4/3/2017 ECE 695, Prof. Bermel 3

Page 4: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Photonic Bandstructure(define-param eps 13) ; dielectric constant of waveguide(define-param w 1.2) ; width of waveguide(define-param r 0.36) ; radius of holes (define-param sy 12) ; size of cell in y direction (perp. to wvg.)(define-param dpml 1) ; PML thickness (y direction only!)(set! geometry-lattice (make lattice (size 1 sy no-size)))(set! geometry (list (make block (center 0 0)

(size infinity w infinity)(material (make dielectric (epsilon eps))))

(make cylinder (center 0 0) (radius r)(height infinity) (material air))))

(set-param! resolution 20)(set! pml-layers (list (make pml (direction Y) (thickness dpml))))

4/3/2017 ECE 695, Prof. Bermel

Our 1x12 unit cell

𝑤 2𝑟

𝑑𝑝𝑚𝑙

4

Page 5: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Photonic Bandstructure(define-param fcen 0.25) ; pulse center frequency(define-param df 1.5) ; pulse frequency width(set! sources (list (make source (src

(make gaussian-src (frequency fcen)(fwidth df))) (component Hz) (center 0.1234 0))))

(set! symmetries (list (make mirror-sym (direction Y) (phase -1))))(set-param! k-point (vector3 0.4 0))(run-sources+ 300 (after-sources (harminv Hz (vector3 0.1234) fcen df)))(define-param k-interp 19)(run-k-points 300 (interpolate k-interp (list (vector3 0) (vector3 0.5))))

4/3/2017 ECE 695, Prof. Bermel 5

Page 6: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Photonic Bandstructure

• Output frequencies at each 𝑘𝑥 – for example:freqs:, 14, 0.325, 0.0, 0.0, 0.171671252741341, 0.319717964514696,

0.323470450791478freqs-im:, 14, 0.325, 0.0, 0.0, -8.74808991364674e-8, 1.82230861728163e-4, 0.00144227925408331 • Extract frequency lines via grep:unix% meep holey-wvg-bands.ctl | tee holey-wvg-bands.outunix% grep freqs: holey-wvg-bands.out > fre.datunix% grep freqs-im: holey-wvg-bands.out > fim.dat

ECE 695, Prof. Bermel4/3/2017 6

Page 7: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes

N holes on each side surround a defect cavity of size d (in units of a)

4/3/2017 ECE 695, Prof. Bermel 7

Page 8: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes(define-param eps 13) ; dielectric constant of waveguide(define-param w 1.2) ; width of waveguide(define-param r 0.36) ; radius of holes(define-param d 1.4) ; defect spacing (ordinary spacing = 1)(define-param N 3) ; number of holes on either side of defect(define-param sy 6) ; size of cell in y direction (perpendicular to wvg.)(define-param pad 2) ; padding between last hole and PML edge(define-param dpml 1) ; PML thickness(define sx (+ (* 2 (+ pad dpml N)) d -1)) ; size of cell in x direction(set! geometry-lattice (make lattice (size sx sy no-size)))(set! geometry (append ; combine lists of objects:

(list (make block (center 0 0) (size infinity w infinity)(material (make dielectric (epsilon eps)))))

(geometric-object-duplicates (vector3 1 0) 0 (- N 1) (make cylinder(center (/ d 2) 0) (radius r) (height infinity) (material air)))

(geometric-object-duplicates (vector3 -1 0) 0 (- N 1) (make cylinder(center (/ d -2) 0) (radius r) (height infinity) (material air)))))

4/3/2017 ECE 695, Prof. Bermel 8

Page 9: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes

(set! pml-layers (list (make pml (thickness dpml))))(set-param! resolution 20) (define-param fcen 0.25) ; pulse center frequency(define-param df 0.2) ; pulse width (in frequency)(set! sources (list (make source (src (make gaussian-src (frequency fcen) (fwidth df))) (component Hz) (center 0 0)))) (set! symmetries (list (make mirror-sym (direction Y) (phase -1)) (make mirror-sym (direction X) (phase -1))))(run-sources+ 400 (at-beginning output-epsilon) (after-sources (harminv Hz (vector3 0) fcen df)))(run-until (/ 1 fcen) (at-every (/ 1 fcen 20) output-hfield-z))

4/3/2017 ECE 695, Prof. Bermel 9

Page 10: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes

• Create a movie of defect mode over time:

unix% h5topng -RZc dkbluered -C holey-wvg-cavity-eps-000000.00.h5 holey-wvg-cavity-hz-*.h5

unix% convert holey-wvg-cavity-hz-*.png holey-wvg-cavity-hz.gif

4/3/2017 ECE 695, Prof. Bermel 10

Page 11: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes

• Determine quality factor versus number of holes:unix% meep N=4 compute-mode?=true holey-wvg-cavity.ctl |grep harminvunix% meep N=5 compute-mode?=true holey-wvg-cavity.ctl |grep harminv...

4/3/2017 ECE 695, Prof. Bermel 11

Page 12: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Defect Resonant Modes• For large N, a second mode is observed…harminv0:, frequency, imag. freq., Q, |amp|, amplitude, errorharminv0:, 0.235201161007777, -1.34327185513047e-5, 8754.78631184943, 9.83220617825986, 6.83285024080876-7.06996717944934i, 3.03237056700397e-9harminv0:, 0.328227374843021, -4.6405752015136e-4, 353.649451404175, 0.134284355228178, -0.131856646632894-0.0254187489419837i, 4.11557526694386e-7• Generate field profile in time for extended mode at band edge:unix% meep sy=12 fcen=0.3282 df=0.01 N=16 holey-wvg-cavity.ctl

4/3/2017 ECE 695, Prof. Bermel 12

Page 13: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Waveguide Transmission

(define-param nfreq 500) ; num. frequencies at which to compute flux (set! sources (list (make source (src (make gaussian-src

(frequency fcen) (fwidth df))) (component Ey)(center (+ dpml (* -0.5 sx)) 0) (size 0 w))))

(set! symmetries (list (make mirror-sym (direction Y) (phase -1))))(define trans ; transmitted flux

(add-flux fcen df nfreq(make flux-region (center (- (* 0.5 sx) dpml 0.5) 0) (size 0 (* w 2)))))

(run-sources+ (stop-when-fields-decayed 50 Ey (vector3 (- (* 0.5 sx) dpml 0.5) 0) 1e-3)(at-beginning output-epsilon)(during-sources (in-volume (volume (center 0 0) (size sx 0)) (to-appended "hz-slice" (at-

every 0.4 output-hfield-z)))))(display-fluxes trans) ; print out the flux spectrum

4/3/2017 ECE 695, Prof. Bermel 13

Page 14: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Waveguide Transmission

• View 𝐻𝑧 field over space and time:unix% meep holey-wvg-cavity.ctl | tee holey-wvg-cavity.outunix% h5topng holey-wvg-cavity-eps-000000.00.h5unix% h5topng -Zc dkbluered holey-wvg-cavity-hz-slice.h5

4/3/2017 ECE 695, Prof. Bermel

𝑡

𝑥

14

Page 15: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Waveguide Transmission

• Transmission spectrum computed as ratio:unix% meep N=0 holey-wvg-cavity.ctl | tee holey-wvg-cavity.out0unix% grep flux1: holey-wvg-cavity.out > flux.datunix% grep flux1: holey-wvg-cavity.out0 > flux0.dat unix% divide2.pl flux0.dat flux.dat > flux-q.dat

4/3/2017 ECE 695, Prof. Bermel 15

Page 16: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

SiO2 Opal Films• Opal films are polycrystalline, 10 m thick, FCC films

with the (111) planes oriented parallel to the surface.

• For visible spectrum, lattice constant ~ 140 – 500 nm.

300 nm1 µm

E. Graugnard et al., Photonic Crystals at Georgia Tech, www.nanophotonics.gatech.edu/PCs_at_GaTech.ppt

4/3/2017 ECE 695, Prof. Bermel 16

Page 17: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Inverse Opal:Fabrication

• Self-assembled silica opal template

– 10 μm thick FCC polycrystalline film, (111) oriented.

• Infiltration of opal with high index materials

– ZnS:Mn n~2.5 @ 425 nm (directional PBG)

– TiO2 (rutile) navg~ 3.08 @ 425 nm (omni-directional PBG)

Sintered Opal Infiltrated Opal Inverted Opal

Self Assembly ALD Etch

E. Graugnard et al., Photonic Crystals at Georgia Tech, www.nanophotonics.gatech.edu/PCs_at_GaTech.ppt

4/3/2017 ECE 695, Prof. Bermel 17

Page 18: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

ALD of TiO2 at 100ºC

433 nm opal infiltrated with TiO2

433 nm TiO2 inverse opal

(111)

• TiO2 infiltration at 100ºC produces very smooth and conformal

surface coatings with rms roughness ~2Å.

• Heat treatment (400C, 2 hrs.) of infiltrated opal converts it to

anatase TiO2, increasing the refractive index from 2.35 to 2.65,

with only a 2Å increase in the rms surface roughness.

Cross-sections

E. Graugnard et al., Photonic Crystals at Georgia Tech, www.nanophotonics.gatech.edu/PCs_at_GaTech.ppt

2 µm

433 nm TiO2 inverse opal

4/3/2017 ECE 695, Prof. Bermel 18

Page 19: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Specular Reflectivity• Measurements: 15° from normal

• Probes changes in -L photonic band structure (111)

400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

Norm

aliz

ed R

eflectivity

Wavelength (nm)

(a) (c) (b)

330 nm opal

ZnS:Mn

200 nm opal

TiO2

200 300 400 500 600 700 800

(c)

No

rmaliz

ed R

eflectivity

Wavelength (nm)

(a)(b)

-L PPBGs -L PPBGsFlat band peaksFlat band peaks

sintered

as-infiltrated

inverse opals

E. Graugnard et al., Photonic Crystals at Georgia Tech, www.nanophotonics.gatech.edu/PCs_at_GaTech.ppt4/3/2017 ECE 695, Prof. Bermel 19

Page 20: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Photonic Crystal Band Diagramω vs. k as calculated from Finite-difference time domain (FDTD)

• Photonic band gaps (PBG)

• Pseudo-photonic band gaps (PPBG)

• Flat bands, low group velocity

• Superprism and giant refraction

Photonic Bands of inverted 3D Si-air PC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k-vector

No

rm

ali

zed

Freq

uen

cy

X U L W

mse6059

Source-->Exec.

metalpc.f90 --> metalpc

This file:

\My documents\GT project\PcP

project\FDTD\defect\band

diagram\band diagram air_Si.xls

# ixmax= 20

# iymax= 20

# izmax= 20

# dx=1

# ikmax= 16

# nmax =32768

# n_pts_store=16

# radius=0.5

# eps_b=11.9

# eps_s=1

# sig_b=0

# sig_s=0

FPBG ratio=3.5%

K

PPBG FCC Brillouin zone

UPBG

4/3/2017 ECE 695, Prof. Bermel 20

Page 21: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Inverse Opal Reflectivity300

400

500

600

700

800

900

1000

1100

Wa

ve

len

gth

(n

m)

L

Normalized Reflectivity Band Diagram

2-3 PPBG

Fabry-Perot

fringes

Flat band peaks

400

500

600

700

800

900

1000

1100

Wa

ve

len

gth

(n

m)

L

Normalized Reflectivity Band Diagram

2-3 PPBG

Flat band

peaks

300

400

500

600

700

800

900

1000

10-11

PPBG's

Wa

ve

len

gth

(n

m)

Normalized Intensity

L

Band Diagram

2-3 PPBG

5-68-9

• TiO2 infiltration of 330 nm opal.• ~88% filling fraction• 2.65 Refractive Index

• Agreement: full index attained!

Sintered Opal

Infiltrated Opal

Inverse Opal

E. Graugnard et al., Photonic Crystals at Georgia Tech, www.nanophotonics.gatech.edu/PCs_at_GaTech.ppt4/3/2017 21

Page 22: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Opal Defect Engineering

Silica Opal with DefectInfiltrated Opal

Inverted Opal Structure

(With Defect – soon!)

4/3/2017 ECE 695, Prof. Bermel 22

Page 23: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Inverse Opal Defect Mode Calculations for PhCPs• What is the main idea behind Photonic Crystal Phosphor (PhCP)?

– Combining a 3D inverse opal with nanophosphors as a local defect in the PhC lattice

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Si-air Pc slice Luminescent nanocrystal

4/3/2017 ECE 695, Prof. Bermel 23

• Specific frequencies in the Photonic Band-Gap of the inverse structure are inhibited except for the defect modes

• A broad luminescent material spectrum within this band-gap would be filtered by the resonant frequency and therefore tuned up

Page 24: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Photonic Band-Gap Analysis

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.5 1 1.5 2

Defect

mode

Fre

quency

4/3/2017 ECE 695, Prof. Bermel 24

Page 25: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Spectrum analysis forPhCPs

Regular spectrum of a green

phosphor

Both spectrum combine and

Emission Energy of phosphor is totally

quenched into the defect mode

Regular spectrum of a defect

mode

4/3/2017 ECE 695, Prof. Bermel 25

Page 26: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Main Characteristics of PhcPs

• The cavity mode emission spectrum lies within the phosphor emission spectrum

• The position and peak cavity spectrum from the host statically controls the color, luminous intensity and decay time

• Ultimate tunability would be achieved by tunable materials like liquid-crystal, PLZT, etc. to change both the position and peak of cavity mode

PhCPs are candidates for High-Definition Display devices

4/3/2017 ECE 695, Prof. Bermel 26

Page 27: ECE 695 Numerical Simulations Lecture 31 - Purdue Universityweb.ics.purdue.edu/~pbermel/ece695/Lectures/ECE695-Lecture31-S17.pdf•Photonic Crystal Waveguides: –Photonic Bandstructure

Next Class

• Next time: we will continue finite-difference time domain techniques

• Suggested reference: S. Obayya’sbook, Chapter 5, Sections 4-6

4/3/2017 ECE 695, Prof. Bermel 27