ece356 -- 20150910 -- bradt

38
ECE 356 September 10, 2015 Mitch Bradt, PE Electric Power Processing for Alterna6ve Energy Systems, Slide 1 Wind Turbine Generators: The Basics ECE 356—Electric Power Processing for Alternative Energy Systems

Upload: mitch-bradt-pe

Post on 13-Jan-2017

177 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  1  

Wind  Turbine  Generators:  The  Basics  

ECE 356—Electric Power Processing for Alternative Energy Systems

Page 2: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  2  

U.S.  Wind  Energy  Poten;al  

Copyright © 2008 3TIER, Inc. All Rights Reserved. For permission to reproduce or distribute: [email protected]

Page 3: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  3  

U.S.  Wind  Project  Installa;ons  Source: American Wind Energy Association U.S. Wind Industry Annual Market Report –

2014 Fourth Quarter

Page 4: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  4  

WTG:    The  Basics  -­‐-­‐  Outline    

 Wind  Turbine  Generator  Technology:  

   The  Mechanical  Side    Wind  Turbine  Generator  Technology:  

   The  Electrical  Side    

Page 5: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  5  

Wind  Turbine  Generator  Technology:  The  Mechanical  Side  

Page 6: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  6  

Page 7: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  7  

Wind  Turbine  Generator  Technology:  The  Mechanical  Side  

Page 8: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  8  

LiC  and  Drag:  Aerodynamic  Forces  

Wind attack point!

lift!

Pressure!

Vacuum!The air moving along the upper!surface of the blade travels faster !than air on the lower surface !

Reduced lift!Flow on upper and lower surface equal ⇒ no lift!

Wind attack point!

Reduced lift , Stall !Wind attack point!

drag!

Page 9: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  9  

The wind turbine seen from above:!

Page 10: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  10  

The wind turbine seen from above:!

View of the tip profile, the largest profile, the blade twist and blade root (circle)!

The wind direction will vary!

with the wind speed! variation!

!The wind force resulting from the rotor tip speed !!

The tip speed is specific for each WTG type and normally near 60 m/s!

Wind direction!

On the next slides !we will look at the blade tip position!

ROTOR PLANE!

Page 11: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  11  

Angle  of  AIack,  alpha  

CL

Wind speed12 m/s

60 m/s

Increased power

As wind speed increases, the rotor turning power becomes greater and the generator produces more electricity

The blade section will see the resulting wind direction only and it will create a lifting force (CL)

CL can be split into a rotor thrust force and a power direction

Blade tip speed 60 m/s

Wind speed 8 m/s Resulting wind direction

CL Rotor thrust Power

Page 12: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  12  

Wind !speed !16 m/s!

Tip speed 60 m/s! !The stall-mode is developed gradually throughout the blade!

Aerodynamic - Wind influence on the blade!

!!! !!

!The higher wind, the more stall!

!!

!!

Stall rotor- fixed position!

At high wind speed the lift force is lost due to stall!

CL!

Changing the Wind Speed Changes Wind Direction Relative to the Rotor Blade

Page 13: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  13  

Aerodynamic - Variable speed !

!!

Blade tip speed 80 m/s!

Wind speed 16 m/s!

CL!

Power!

Blade tip speed 70 m/s!

Wind speed 16 m/s!

CL!

Power!

Page 14: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  14  

Pitch regulation and blade position!

q  The normal stop position is +90° !

m/s!

kW!

Wind!

l  To control the rotor acceleration, the blades have variable blade position in order to carry out a smooth grid cut-in!

l  Pitch turbines achieve variable speed compared to the fixed speed rotor of stall wind turbines!

•  Up to 7-8 m/s winds,! the pitch is set to 0°!

Page 15: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  15  

Genera;ng  LiC  …  

Page 16: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  16  

…and  then  Torque  

R

Rotational Speed ω Tip Speed ω⋅R

Page 17: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  17  

Betz’s  Elemental  Momentum    Theory  

q  Given that and

2

21 vmE ⋅= Avm ⋅⋅= ρ

ρ — air density

v — air speed

A— swept area of blades

q  Then.. AvEPWind ⋅⋅== 3

21ρ

q  We can state that the Power a turbine can extract is:

!"

#$%

& ⋅⋅⋅= AvCP PTurbine3

21ρ

q  Betz showed through conservation of momentum that the maximum Power Coefficient (CP) happens when the downstream speed is slowed to 1/3 of the incident speed

593.02716

, ==BetzPC

Page 18: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  18  

Real  Power  Coefficients  

q  It turns out that energy is lost due: •  Finite number of Blades •  Wake Rotation •  Airfoil Drag

Tip Speed Ratio

WindVR⋅=ωλ

Page 19: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  19  

Wind  Turbine  Generator  Technology:  The  Electrical  Side  

Page 20: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  20  

Power  Systems  

Page 21: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  21  

AC  Systems  •  Power system voltages and currents are AC, and have the form

where in N. America.

•  Instantaneous power

•  Manipulating where

Real component

Imaginary component

Page 22: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  22  

Instantaneous  Power  V and I in phase I lags V by 30 deg

P=0.5, Q=0.0 P=0.433, Q=0.25

Page 23: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  23  

Apparent  (complex)  Power  l  Using phasors to find P and Q.

–  Apparent power: Volt-Amps “VA” –  Power factor: = P/S =

Active power Watts

Reactive power Volt-Amps Reactive “VARs”

(where * means complex conjugate)

Page 24: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  24  

Ac;ve  (real)  and  Reac;ve  (imaginary)  Power  l  Active power – frequency.

–  System frequency is governed (approximately) by

§  System frequency, §  Total mechanical power, §  Total electrical power,

–  If exceeds , the power system will slow down. –  If exceeds , the power system will speed up. –  Governors on generators regulate system frequency by controlling the

mechanical power. l  Reactive power – voltage.

–  Not as simple as frequency dynamics. –  General principle:

§  Injecting reactive power into the system raises (local) voltages. §  Absorbing reactive power from the system lowers (local) voltages.

§  Total system inertia, §  Total system damping,

Page 25: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  25  

Basic  3φ  Machine  Types  

If

N

S

a-

a+

b-

c+ b+

c-

ω

Wound Rotor Synchronous:

a-

a+

b-

c+ b+

c- N

S

a-

a+

b+

b-

c+

c-

Permanent Magnet Synch. Induction

ω

Characteristic Wound Rotor Synch Perm Magnet Synch Induction Rotor Speed (Elec.): Synchronous with ω Asynchronous (slip) Rotor Field Excitation: Varies-—field winding Fixed—PM Varies by Induction Power Range: kW-GW W-kW W-MW Reactive Power: Source or Sink ≅0 Sink Conventionally used: Almost all Generation “new kid on the block” Most Industrial Motors Used in WTG: Some, not many Increasing in WTG First turbines

Only type 4 Types 1, 2, 3

Page 26: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  26  

Basic  Synchronous  Machines  

If

N

S

A-

A+

B-

C+ B+

C-

ω

q  Sinusoidally Distributed Balanced 3φ Stator Windings

Stator Windings (Distributed)

Rotor Winding (Distributed)

Wound Rotor

l  The Rotor Field Winding is Energized with DC Current If.

(2-Pole Machines Depicted)

l  The Field Bf Rotates Synchronously with the Rotor at speed ω:

–  Induces Sinewave Voltages in Stator Windings

Bf

Page 27: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  27  

Basic  Induc;on  Machines  

q  Sinusoidally Distributed Balanced 3φ Stator Windings

q  Rotor Speed is Generally Non-Synchronous: Rotor Can turn Faster (Generator) …

… or Slower (Motor) than Input Frequency

q  Wound Rotors: •  Rotor Windings brought out through Slip Rings: Allowing Speed/Torque Control

q  “Squirrel-Cage” Rotors: •  Rotor Windings are simple Shorted Bars cast into Rotor Laminations

•  Low-Cost, Rugged è Commercial / Industrial Work-Horse FIRST WINDTURBINES

Wound Rotor Squirrel-Cage Rotor

a-

a+

b+

b-

c+

c-

ωr

ωωω rs −

=Slip:

Page 28: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  28  

Type  1  Wind  Turbine  

Fixed Speed -- limited control of slip (2-3%) and Real Power Consumes VARs

Gear Box IG Collector

Feeder

The rotor blades may be pitch-regulated to control power

Soft Starter Cap Bank

Examples: Vestas V-82, Mitsubishi MWT-1000 ** becoming less common

Page 29: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  29  

Real  and  Reac;ve  Power  

Page 30: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  30  

Type  2  Wind  Turbine  

Variable Speed -- More control of slip (up to 10%) Consumes VARs

Variable Rotor Resistance • Via slip rings with wound rotor IG • Placed on rotor as with OptiSlip®

Gear Box IG Collector

Feeder

Soft Starter Cap Bank

Examples: Vestas V-47, Suzlon S-64/88 no longer common—stepping stone to Type 3…

Page 31: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  31  

Real  and  Reac;ve  Power  with  Rext  

Page 32: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  32  

Type  3  Wind  Turbine  Variable Speed -- More control of slip (up to 50%) Can control VARs Partial Scale Converters Required (~30% of Machine)

Gear Box

Collector Feeder IG

IG Pstator

Protor

Pnet

Operation Below Synchronous Speed

IG Pstator

Protor

Pnet

Operation Above Synchronous Speed

Ex: GE 1.5, Acciona 1500, Vestas V90, Gamesa G80 ** State of the Art

Page 33: ECE356 -- 20150910 -- Bradt

REPower 5M (126 m dia.) Commissioned offshore. 5MW Output Based on Doubly Fed type machine

Page 34: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  34  

Type  4  Wind  Turbine  

Variable Speed -- Wide control of slip (up to 100%) Can control VARs Full Scale Converters Required (>100% of Machine)

Machine’s excitation can be controlled by machine side converter ⇒Can use any type of machine! Field Wound SG, PM-SG or even IG

Gear Box

IG/ SG

Collector Feeder

An opportunity to eliminate the gearbox exists Since “Wild AC” from generator can be conditioned to 60Hz grid

Ex: GE 2.5, Siemens 2.3, Clipper 2.5, Enercon E112 ** State of the Art

Page 35: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  35  

Areva Wind

Direct-Drive���PM Wind Turbines

q  S;sldjfl;asjdf

l  Many alternative wind turbine and PM machine configurations

l  Machine ratings up to 8 MW

ABB

GE The Switch

Page 36: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  36  

Size of Modern Wind Generators

Manwell Fig 1.15

Page 37: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  37  

Factors Driving Recent Growth of Wind Power

• Fiber composites for constructing low cost blades.

• Improved operation and maintenance leading to increased availability.

• Economy of scale.

• Application of power electronics to allow variable blade speed and enhance efficiency and energy output.

• Decreasing cost of power electronics.

• Accumulated field experience improving the capacity factor (% of rated kWhr attained on annual basis)

(in addition to financial subsidies)

Page 38: ECE356 -- 20150910 -- Bradt

ECE  356  September  10,  2015  Mitch  Bradt,  PE  Electric  Power  Processing  for  Alterna6ve  Energy  Systems,  Slide  38  

Thank  You!  

q  Are there any Questions?

Mitch Bradt, PE [email protected]