ece5318 ch4

74
1 Chapter 4 Chapter 4 Linear Wire Antennas Linear Wire Antennas ECE 5318/6352 ECE 5318/6352 Antenna Engineering Antenna Engineering

Upload: diogo-lourenco

Post on 29-Jun-2015

172 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Ece5318 ch4

1

Chapter 4Chapter 4

Linear Wire AntennasLinear Wire Antennas

ECE 5318/6352ECE 5318/6352Antenna EngineeringAntenna Engineering

Page 2: Ece5318 ch4

2

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE

(only electrical current present)

(constant current)

l ≤ λ/50

I

l / 2

l / 2

Io

θImpinging

Wave

z

oIz zaI ˆ)( ' =

; thin wire ;λ<<l

00 =⇒= FIm

[4-1]

Page 3: Ece5318 ch4

3

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

222 zyxr ++=

Fig. 4.1(a) Geometrical arrangementof an infinitesimal dipole

l ≤ λ/50

Page 4: Ece5318 ch4

4

mixed coordinates in mixed coordinates in expression expression -- change to change to

sphericalspherical

222 zyxR ++≅

'''' ),,(4

dR

ezyx(x,y,z)jkR

ce

o−

∫≅ IAπ

μ

λ<<for

(x,y,z)

(x’,y’,z’)

source points

l

[4-2]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

( ) ( ) ( )2 2 2' ' 'R x x y y z z= − + − + −

Page 5: Ece5318 ch4

5

mixed coordinates in expression mixed coordinates in expression change to sphericalchange to spherical

[4-4]

∫−

≅2/

2/

'

4ˆ zd

re(x,y,z)

jkroo IaA z π

μ

jkroo er

(x,y,z) −≅π

μ4

ˆ IaA z

(x,y,z)

(x’,y’,z’)

source points

l

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 6: Ece5318 ch4

6

( ) ( ) ( ) 2'2'2' zzyyxxR −+−+−≅

θπ

μθθ sin4

sin jkrooz e

rIAA −=−=

θπ

μθ cos4

cos jkroozr e

rIAA −=−=

∫cd ' along source

0=φA

(x,y,z)

(x’,y’,z’)

source points

l

[4-6]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

mixed coordinates in expression mixed coordinates in expression need to change to sphericalneed to change to spherical

l ≤ λ/50

Page 7: Ece5318 ch4

7

Using Vector Potential Using Vector Potential A A , , calculate calculate HH & & EE fields fields

[ ] ⎥⎦⎤

⎢⎣⎡

∂∂

−∂∂

=×∇θθφ

rAArrr

)(1A

[ ]φφ μμAaAH ×∇=×∇=

1ˆ1

[4-7]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 8: Ece5318 ch4

8

Using Vector Potential Using Vector Potential A A , , calculate calculate HH fields fields

[4-8]

AH ×∇=μ1

jkro ejkrr

IkjH −⎥⎦

⎤⎢⎣

⎡+=

11sin4

θπφ

0=rH

0=θH

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 9: Ece5318 ch4

9

Using MaxwellUsing Maxwell’’s s EqnsEqns totocalculate calculate EE fields fields

[4-10]

HE ×∇=ωεj1

jkror e

jkrrIE −

⎥⎦

⎤⎢⎣

⎡+=

11cos2 2 θ

πη

0=φE

jkro erkjkrr

IkjE −⎥⎦

⎤⎢⎣

⎡−+= 22

111sin4

θπ

ηθ

Fig. 4.1(b) Geometrical arrangementof an infinitesimal dipole and its associated electric-field componentson a spherical surface

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 10: Ece5318 ch4

10

Using Using HHφφ, , EErr, , EEθθ,, calculate the complex Poynting vectorcalculate the complex Poynting vector

( )∗∗∗ −=×= φθφθ HEHE rr aaHEW ˆ21)(

21

⎥⎦⎤

⎢⎣⎡= −⎥

⎤⎢⎣

⎡3)(

112

2sin2

8 krj

rI

roW θλ

η

[4-12]( )2cos sin 112 3 216 ( )

k Ioj j

r krW η θ θ

θ π+

⎡ ⎤= ⎢ ⎥⎣ ⎦

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 11: Ece5318 ch4

11

Find total outward flux through a closed sphereFind total outward flux through a closed sphere

(only contributions from Wr)

[4-14]∫∫ •=s

dP sW

⎥⎦

⎤⎢⎣

⎡−⎥⎦

⎤⎢⎣⎡= 3

2

)(11

3 krjIo

λπη

θθφπ

θ

π

φdrWd r sin

0

22

0 ∫∫ ===

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 12: Ece5318 ch4

12

Find total outward flux through a closed sphereFind total outward flux through a closed sphere

roo

rad RIIP 22

21

3=⎥⎦

⎤⎢⎣⎡=

ληπ

316.002.050

=⇒== rRλλ

2

2280

λπ=rR

2120 πη =

Real P = total radiated power Prad

ExampleExample [Ω]

Radiation resistance

for free space where

[4-19]

[4-16]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

(Impedance would also have a large capacitive term that is not calculated here.)

Page 13: Ece5318 ch4

13

( )3

2 13 kr

Io⎥⎦⎤

⎢⎣⎡−=

λπη

Imaginary part of P = reactive power in the radial direction

(Note: this → 0 as kr → ∞, so it is essentially not present in far field; only important in near field considerations)

[4-17]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 14: Ece5318 ch4

14

Near Field approximations Near Field approximations [ [ krkr <<<< 1 ]1 ]

(field point very close or very low frequency case)

θπφ sin

4 2reIH

jkro

Dominant terms ⇒

[4-20]

θπ

η cos2 3rk

eIjEjkr

or

−≅

θπ

ηθ sin

4 3rkeIjE

jkro

−≅

Like ‘quasistationary” fields

E near static electric dipole

H near static current element

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 15: Ece5318 ch4

15

Near Field approximations Near Field approximations [ [ krkr <<<< 1 ]1 ]

Biot – Savart Law : infinitesimal current element in directionaz

(same as above when kr →0)

(note E and H are 90° out of phase)

NO RADIAL POWER FLOW --REACTIVE FIELDS

θπφ sin

2rIoaH ≅

][Re21 ∗×= HEWavg

0=avgW

[4-21]

[4-22]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 16: Ece5318 ch4

16

Intermediate FieldsIntermediate Fields[ [ krkr >> 1]1]

(beginnings of radial power flow; still have radial fields)

1Erθ ∼

1Erφ ∼2

1rE

r∼

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 17: Ece5318 ch4

17

r = λ/2π (Radian Distance)

(Radius of Radian Sphere)

Energy basically imaginary (stored)

Energybasically

real(radiated)

Fig. 4.2 Radiated field terms magnitude variation versus radial distance

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 18: Ece5318 ch4

18

Far Field Far Field [ [ krkr >>>> 1 ]1 ]

Dominant terms ⇒

[4-26]θπφ sin

4 reIkjH

jkro

0r rE E H Hφ θ≅ ≅ ≅ ≅

θπ

ηθ sin

4 reIkjE

jkro

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 19: Ece5318 ch4

19

Far Field Far Field [ [ krkr >>>> 1 ]1 ]

ηφ

θ =H

E( both E and H are TEM to )

ra

θsin

Similar to plane wave but propagation in direction

With and variationsr1

[4-27]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

ra

l ≤ λ/50

Page 20: Ece5318 ch4

20

DirectivityDirectivity (use Far Field approx.)

RADIATION INTENSITY

][Re21 ∗×= HEWavg 2

22 sin

42ˆ

rIk o

πη

⎥⎥⎥

⎢⎢⎢

= a

θπ

η 242 sin22

⎥⎥⎦

⎢⎢⎣

⎡== oIkavgWrU

( Note: as before for )2

22 sin8 r

oIavgW θ

λη

⎥⎦

⎤⎢⎣

⎡= )( Real rW

[4-28]

[4-29]

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 21: Ece5318 ch4

21

(in θ = 90° direction) [4-31]

rado P

UD max4π=

2

max 42 ⎥⎦

⎤⎢⎣

⎡=

πη oIkU

2

3 ⎥⎦⎤

⎢⎣⎡=

λπη o

radIP

5.123

3

82

2

==

⎥⎦⎤

⎢⎣⎡

⎥⎦⎤

⎢⎣⎡

=

λπη

λη

o

o

oI

I

D

DirectivityDirectivity

INFINITESIMAL DIPOLEINFINITESIMAL DIPOLE(CONT)(CONT)

l ≤ λ/50

Page 22: Ece5318 ch4

22

SMALL DIPOLESMALL DIPOLE

Uniform current assumption - only valid for ideal case( approximated by capacitor plate antenna)

value of fields compared to constant current case

1_2

λ/50 < l < λ/10

λ/50 < l < λ/10

θπ

ηθ sin

8 reIkjE

jkro

=

θπφ sin

8 reIkjH

jkro

=

[4-36]

Page 23: Ece5318 ch4

23

SMALL DIPOLESMALL DIPOLE(CONT)(CONT)

For physical small dipole triangular current distribution

value of case of constant current

1_4

same as constant current case

λ/50 < l < λ/10

[4-37]

2

12 ⎥⎦⎤

⎢⎣⎡=

ληπ o

radIP

2220 ⎥⎦

⎤⎢⎣⎡=λ

πrR

5.1=oD

Page 24: Ece5318 ch4

24

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(length comparable to λ)

(max error where θ = 90° ; 4th term = 0 there)

approx. error

2' 21cos sin

2zR r z

rθ θ

′⎛ ⎞= − + +⎜ ⎟

⎝ ⎠

[4.41]

Fig. 4.5 Finite dipole geometryand far-field approximations

Page 25: Ece5318 ch4

25

Phase and Magnitude considerationsPhase and Magnitude considerations

In calculating phase assumecan tolerate phase error of π/8 (22°)

Must choose r far enough away so that ….

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 26: Ece5318 ch4

26

Phase and Magnitude considerationsPhase and Magnitude considerations

2max ' =z

2

2 8k z

rπ′

ORIGIN OF DEFINITION OF FAR FIELD

λ

22>r⇒≤

882 2 πλπ

r

jkre−For phase term ⇒ use θcos'zrR −=

For magnitude term ⇒ user1 rR =

[4-45]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 27: Ece5318 ch4

27

Finite dipole Current distributionFinite dipole Current distribution

(“thin” wire, center fed, zero current at end points)

λ / 2 < l < λ

[4-56]⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ − '

2sinˆ zkIoza

20 ' ≤≤ z

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ + '

2sinˆ zkIoza 0

2' ≤≤− z

=== ),0,0( ''' zyxeI

(see Fig. 4.8)

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 28: Ece5318 ch4

28

Current distribution for linear wire antennaCurrent distribution for linear wire antenna

Fig. 4.8 Current distribution along the length of a linear wire antenna

DIPOLE

Page 29: Ece5318 ch4

29

Radiated fields at (Radiated fields at (x, y, zx, y, z) ) of finite dipoleof finite dipole

''

sin4

)( zdRezkjEd

jkRe θ

πηθ

≅I

( ) 2'22 zzyxR −++=⇒

For infinitesimal dipole at z’ of length Δ z’

Since source is only along the z axis ( )0,0 '' == yx

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 30: Ece5318 ch4

30

Radiated fields of finite dipole at (Radiated fields of finite dipole at (x, y, zx, y, z))

In far field regionin phase term

θcos'zrR −=( let )⇒

'cos'

'

sin4

)( zderezkjEd jkz

jkre θ

θ θπ

η−

≅I

[4-58]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 31: Ece5318 ch4

31

Far Field Far Field E & H E & H Radiating fields Radiating fields

∫−=

2/

2/ θθ EdE

'cos2/

2/

' '

)(sin4

zdezIr

ekjE jkze

jkrθ

θ θπ

η∫−

Total Field

[4-58a]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 32: Ece5318 ch4

32

Far Field Far Field E & H E & H Radiating fields Radiating fields

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

≅−

θ

θ

πη

θ sin2

coscos2

cos

2

kk

reIjE

jkro

For sinusoidal current distribution

[4-62]

ηθ

φEH ≅

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 33: Ece5318 ch4

33

Power DensityPower Density

2

2

2 2

cos cos cos2 2

8 sino

r avg

k kIW

r

θηπ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

[4-63]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 34: Ece5318 ch4

34

Radiation IntensityRadiation Intensity

2

2

22

sin2

coscos2

cos

8⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

==θ

θ

πη

kkIWrU o

avg [4-64]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

l ≥ λ/2

Page 35: Ece5318 ch4

35

33--dB BEAMWIDTHdB BEAMWIDTH

3-dB

BE

AM

WID

TH

90°87°

78°64°

48°

.25 1.75.5 λ

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 36: Ece5318 ch4

36

33--dB BEAMWIDTHdB BEAMWIDTH

λ>If allow new lobes begin to appear

Fig. 4.7(b) 2-D amplitude pattern for a thin dipolel = 1.25 λ and sinusoidal current distribution

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 37: Ece5318 ch4

37

Elevation plane amplitude patterns for a thin dipole with sinusoElevation plane amplitude patterns for a thin dipole with sinusoidal current distributionidal current distribution

Fig. 4.6

Page 38: Ece5318 ch4

38

Radiated power Radiated power

Results of integration give terms involving Ci & Si [4-68]

∫∫ •=s

avgrad dP sW [4.66]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 39: Ece5318 ch4

39

Radiated power Radiated power

sin and cos integrals (tabulated functions like trig. functions, but not as common)

Can find Rr and Do in terms of Ci and Si

Do, Rr, Rin plotted in fig. 4.9

[4-75][4-70]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 40: Ece5318 ch4

40

Radiation resistance, input resistance and directivity of a thinRadiation resistance, input resistance and directivity of a thin dipole with sinusoidal dipole with sinusoidal current distributioncurrent distribution

Fig. 4.9

FINITE LENGTH DIPOLE

Page 41: Ece5318 ch4

41

Input ResistanceInput Resistance

(note that Rr uses Imax in its derivation)

≥for

oin II ≠

at input terminalsI

VZin =

z’

Ie (z’)

maxIIo =

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 42: Ece5318 ch4

42

Input ResistanceInput Resistance

So, even for lossless antenna ( RL = 0 )

[4-77a]

rin

oin R

IIR

2

⎥⎦

⎤⎢⎣

⎡=inr RR ≠ ⇒

⎟⎠⎞

⎜⎝⎛

=

2sin2 k

Rr

z’

Ie (z’)

maxIIo =

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 43: Ece5318 ch4

43

Input Resistance (cont)Input Resistance (cont)

Not true in practical case, current not exactly sinusoidal at the feed point(due to non-zero radius of wire and finite feed gap at terminals)

Numerous ways to account for more exact current distribution, result in currents that are both in and out of phase, and in Rin + j Xin

(subject of extensive research, numerical and analytical)

Note: when ; andλn= ∞→inR0→inI

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 44: Ece5318 ch4

44

Empirical formula for Empirical formula for RinRin

)12max( ⎥⎦⎤

⎢⎣⎡Ω<inR

40 λ

≤≤4

0 π≤≤ G220GRin ≅

17.414.11 GRin ≅

5.27.24 GRin ≅24λλ

≤≤

λλ 64.02

≤≤

24ππ

≤≤ G

22

≤≤ Gπ )200max( ⎥⎦⎤

⎢⎣⎡Ω<inR

)76max( ⎥⎦⎤

⎢⎣⎡Ω<inR

let 2kG = for dipole of length

λπ

=G⇒

[4-107] → [4-110]

FINITE LENGTH DIPOLEFINITE LENGTH DIPOLE(CONT)(CONT)

Page 45: Ece5318 ch4

45

For MONOPOLEFor MONOPOLE

[ ]5.427321 jZin +≅

kG =

21Rin (monopole) = Rin (dipole)

[ ]Ω+≅ 2.215.36 jZin

for wavelength monopole14

same current; voltage ⇒ impedance21

21

[4-106]

Page 46: Ece5318 ch4

46

HALF WAVE DIPOLEHALF WAVE DIPOLE

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

≅−

θ

θπ

πη

θ sin

cos2

cos

2 reIjE

jkro

2

22

2

sin

cos2

cos

8⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

θπ

πη

rIW o

avg

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛

≅−

θ

θπ

πφ sin

cos2

cos

2 reIjH

jkro

ll = = λλ/2/2

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (deg)

Nor

mal

ized

Pow

er

θ2sin

θ3sin

[4-84]

θθ

θπ

πη π

dIP orad ∫

⎟⎠⎞

⎜⎝⎛

=0

22

sin

cos2

cos

4[4-88]

[4-86]

[4-85]

Page 47: Ece5318 ch4

47

ll = = λλ/2/2

HALF WAVE DIPOLE HALF WAVE DIPOLE (CONT)(CONT)

Slightly moredirective thaninf. dipole withDo = 1.5

64.14 max ≅=rad

o PUD π

where 435.2)2( ≅πinC)2(

2

πη

ino

rad CIP = [4-89]

[4-91]

Page 48: Ece5318 ch4

48

l l = = λλ/2/2

HALF WAVE DIPOLE HALF WAVE DIPOLE (CONT)(CONT)

since (if lossless)rin RR ≅ inII =max

[ ] [ ]Ω+≅⇒Ω≅ 5.42735.42 jZX inin

[ ]Ω≅== 734

2 )2(2 ππ

ηin

o

radr C

IPR

[4-93]

Page 49: Ece5318 ch4

49

PRACTICAL DIPOLEPRACTICAL DIPOLE

[ ]Ω≅ 300inR

[ ]Ω≅ 300oZ

Folded dipole

Useful for matching to two-wire

lines where

l l slightly < slightly < λλ/2/2

Usually choose ll slightly less than so that is totally real.2λ

ininX Z0 &→

Page 50: Ece5318 ch4

50

PRACTICAL DIPOLEPRACTICAL DIPOLE(CONT)(CONT)

Resistance and Reactance Variations

2λ(pure real for length slightly less than )

l l slightly < slightly < λλ/2/2

0.5 1.0 λ

G , B

G

B

Page 51: Ece5318 ch4

51

IMAGE THEORYIMAGE THEORY

Can calculate the fields in the UHP by removing the conductorand finding the field due to the actual and image sources.

Linear antennas near an infinite ground plane could approximate case of earth.

h1

Direct

Reflectedh2

Page 52: Ece5318 ch4

52

IMAGE THEORYIMAGE THEORY(CONT)(CONT)

In the Lower Half Plane, E = H = 0→→

h

μο, εο

h

h

μο, εο

μο, εο

Image

σ = ∞

Actual Problem Equivalent Problem

Observation Point

Observation Point

Page 53: Ece5318 ch4

53

IMAGE THEORY IMAGE THEORY (CONT)(CONT)

Fields due to image source are actually produced by the induced currents in the ground plane

+

+

⇓ ⇓

actual

image

I

I

image

actual

I

Iactual

image

I

I

Page 54: Ece5318 ch4

54

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Electric dipoles above an infinite perfect electric conductorElectric dipoles above an infinite perfect electric conductor

Fig. 4.12(a) Vertical electric dipole above anInfinite, flat, perfect electric conductor

Fig. 4.24 Horizontal electric dipole, and its associated image, above an infinite, flat, perfect electric conductor

Page 55: Ece5318 ch4

55

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Electric dipoles above ground planeElectric dipoles above ground plane

Fig. 4.14(a)

Fig. 4.25(a)

Page 56: Ece5318 ch4

56

Far FieldFar Field

Electric dipoles above an infinite perfect electric conductorElectric dipoles above an infinite perfect electric conductor

Fig. 4.14(b) Fig. 4.25(b)

Page 57: Ece5318 ch4

57

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS

r1

h

h

r

r2

θ

h cos

θ

x

y

z

h

h

r1

r

r2

x

y

z

ψ

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

approx. in phase terms

θcos1 hrr −≅θcos2 hrr +≅

in magnitude terms321 rrr ≅≅[4-97]

[4-98]

Page 58: Ece5318 ch4

58

Summing two contributions

total = incident + reflected total = actual + imaginary

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

rd EEE21 θθθ +≅

11

sin4

1

θπ

ηθ r

eIkjEjkr

od−

22

sin4

2

θπ

ηθ r

eIkjEjkr

or−

ψπ

ηψ sin

4 1

1

reIkjE

jkrod

ψπ

ηψ sin

4 2

2

reIkjE

jkror

−≅

rd EEE21 ψψψ +≅

[4-94]

[4-95]

[4-111]

[4-112]

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

Page 59: Ece5318 ch4

59

VERTICAL DIPOLEVERTICAL DIPOLEHORIZONTAL DIPOLEHORIZONTAL DIPOLE

[ ]θθθ θ

πη coscossin

4jkhjkh

jkro ee

reIkjE +≅ −

[ ]θθψ ψ

πη coscossin

4jkhjkh

jkro ee

reIkjE −≅ −

φθψ 22 sinsin1sin −=

φθψ sinsincos =

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

Page 60: Ece5318 ch4

60

[4-99]

[4-116]

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Single source at origin array factor

( )sin 2 cos cos4

jkrok I eE j kh

rθη θ θ

π

≅ ⎡ ⎤⎣ ⎦

Single source at origin array factor

( )[ ]θφθπ

ηψ cossin2sinsin1

422 khj

reIkjE

jkro −≅

for 0=θE 0<z

FAR FIELD RADIATING FIELDSFAR FIELD RADIATING FIELDS(CONT)(CONT)

Page 61: Ece5318 ch4

61

Amplitude patterns at different heightsAmplitude patterns at different heights

Fig. 4.15Fig. 4.26

Number of lobes

Note minor lobes that are

formed for

HORIZONTAL DIPOLEHORIZONTAL DIPOLEVERTICAL DIPOLEVERTICAL DIPOLE

Number of lobes

Note minor lobes that are

formed for

12+≅

λh

≥h2λ

≥h

λh2

≅[4-100] [4-117]

Page 62: Ece5318 ch4

62

Amplitude patterns at different heightsAmplitude patterns at different heights(CONT)(CONT)

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Note max radiation is in θ = 90° direction

Fig. 4.16Fig. 4.28

Page 63: Ece5318 ch4

63

VERTICAL DIPOLEVERTICAL DIPOLE

HORIZONTAL DIPOLEHORIZONTAL DIPOLE[4-102]

[4-118]

R(kh)

RADIATION POWERRADIATION POWER

( )( )

( )( ) ⎥

⎤⎢⎣

⎡+−⎥⎦

⎤⎢⎣⎡= 32

2

22sin

22cos

31

khkh

khkhIP o

rad λπη

( )( )

( )( )

( )( ) ⎥

⎤⎢⎣

⎡+−−⎥⎦

⎤⎢⎣⎡= 32

2

22sin

22cos

22sin

31

khkh

khkh

khkhIP o

rad λπη

Page 64: Ece5318 ch4

64

[4-104]

[4-123]

DIRECTIVITYDIRECTIVITYVERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Fig. 4.29 Radiation resistance and max. directivityof a horizontal infinitesimal electric dipole as afunction of its height above an infinite perfectelectric conductor.

( )( )

( )( ) ⎥

⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡+−

==

32

max

22sin

22cos

31

24

khkh

khkhP

UDrad

o π

⎟⎠⎞

⎜⎝⎛ ≥≥

42R(kh)4 λπ hkh

==rad

o PUD max4π

( )⎟⎠⎞

⎜⎝⎛ ≤≤

42R(kh)sin4 2 λπ hkhkh

Fig. 4.18 Directivity and radiation resistanceOf a vertical infinitesimal electric dipole as afunction of its height above an infinite perfectelectric conductor.

Page 65: Ece5318 ch4

65

DIRECTIVITYDIRECTIVITY(CONT)(CONT)

VERTICAL DIPOLEVERTICAL DIPOLEHORIZONTAL DIPOLEHORIZONTAL DIPOLE

Limiting case of kh→ 0

Note:

!5!3sin

53 xxxx +−=

!421cos

42 xxx +−=

2345611sin 2

23 ⋅⋅⋅+−=

xxx

x

234211cos 2

22 ⋅⋅+−=

xxx

x

32

sincos31

xx

xx

+−⇒

32

64

61

21

31

==−+≅

⎥⎦

⎤⎢⎣

⎡⋅⋅⋅

+−+⎥⎦

⎤⎢⎣

⎡⋅⋅

+−−≅23456

112342

1131 2

2

2

2

xx

xx

Note: direction of maximum radiationchanges as “h” is varied. Dg (θ=0)

Dg(θ=0)

h/λ

Page 66: Ece5318 ch4

66

VERTICAL DIPOLEVERTICAL DIPOLE HORIZONTAL DIPOLEHORIZONTAL DIPOLE

6.0∞∞

6.57.4582.88

300

Doh/λkh

6.0∞

slightly

> 6.0.615+n/2(n=1,2,3…)

7.50

Doh/λ

63

12

lim

=→

∞→

oDkh

33

22

0lim

=→

oDkh

( ) 2

0lim )(

sin5.7 ⎥⎦

⎤⎢⎣

⎡=

khkh

oDkh

[4-124]

DIRECTIVITYDIRECTIVITY(CONT)(CONT)

Page 67: Ece5318 ch4

67

VERTICAL DIPOLEVERTICAL DIPOLE

Input Impedance of a Input Impedance of a λλ/2 dipole above a /2 dipole above a flat lossy electric conductive surfaceflat lossy electric conductive surface

Fig. 4.20

ininin XRZ +≅ [ ]Ω+≅ 5.4273 jZin

Page 68: Ece5318 ch4

68

HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Input Impedance of a Input Impedance of a λλ/2 dipole above a /2 dipole above a flat lossy electric conductive surfaceflat lossy electric conductive surface

Fig. 4.30ininin XRZ +≅ [ ]Ω+≅ 5.4273 jZin

Page 69: Ece5318 ch4

69

GROUND EFFECTSGROUND EFFECTS

Finite conductivity σearth

(“real” earth as ground plane)

h1

h2

Direct

Reflected

σearth

Assume earth flat (ok. for Rearth >> λ)

10 → 1 [S/m]

Page 70: Ece5318 ch4

70

GROUND EFFECTSGROUND EFFECTS(CONT)(CONT)

(real earth as ground plane)

Fig. 4.31 Elevation plane amplitude patterns of an infinitesimal vertical dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]

VERTICAL DIPOLEVERTICAL DIPOLE

HORIZONTAL DIPOLEHORIZONTAL DIPOLE

Fig. 4.32 Elevation plane ( φ = 90°)amplitude patterns of an infinitesimal horizontal dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]

Page 71: Ece5318 ch4

71

(real earth as ground plane)

σσ = = ∞∞

σσearthearth

For low and medium frequency applications when height is comparable to skin depth [ δ = 2/ωμσ ]of the ground ⇒ increasing changes in input impedance; less efficient; use of ground wires)

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

Page 72: Ece5318 ch4

72

Usually negligible effect for observation angle ψgreater than 3°.

EARTH CURVATUREEARTH CURVATURE

Fig. 4.34 Geometry for reflections from a spherical surface

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

Page 73: Ece5318 ch4

73

EARTH CURVATUREEARTH CURVATURE

Curved surfaces spreads out radiation (divergent) that is reflected more than from flat surface.(can introduce a divergence factor)

Fig. 4.35 Divergence factor for a 4/3 radius earth(ae = 5,280 mi = 8,497.3 km) as a function ofgrazing angle ψ.

reflected field from spherical surface

reflected field from flat surface___________________=

DDivergence factor

= rf

rs

EE

GROUND EFFECTS GROUND EFFECTS (CONT)(CONT)

Page 74: Ece5318 ch4

74

l=λl=λ/2l=λ/10l=λ/50

0 (-∞ dB)1.5746 (1.972 dB)0.2181 (-6.613 dB)0.0374 (-14.27 dB)G0abs

0 (-∞ Db)

0.9642 (-0.158 dB)

0.1556 (-8.08 dB)

0.0271(-15.67 dB)

er

10.18929-0.9189-0.9863Γ

2.4026(3.807 dB)

1.6331(2.13 dB)

1.4009(1.464 dB)

1.3782(1.393 dB)

G0

2.411 (3.822 dB)

1.6409 (2.151 dB)

1.5 (1.761 dB)

1.5 (1.761 dB)

D0

0.9965 (-0.015 dB)

0.9952 (-0.021 dB)

0.9339 (-0.296 dB)

0.9188(-0.368 dB)

ecd

∞731.97390.3158Rin

199731.97390.3158Rr

0.69810.3490.13960.0279RL

1.39620.6980.27920.0279Rhf

DIPOLE SUMMARYDIPOLE SUMMARY(Resonant ⇒ XA=0; f = 100 MHz; σ = 5.7 x 107 S/m; Zc = 50; b = 3x10-4l)