ece5461: low power soc designcontents.kocw.net/kocw/document/2014/sungkyunkwan/hanta... ·...

55
ECE5461: Low Power SoC Design Tae Hee Han: [email protected] Semiconductor Systems Engineering Sungkyunkwan University

Upload: others

Post on 17-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

ECE5461:Low Power SoC Design

Tae Hee Han: [email protected]

Semiconductor Systems Engineering

Sungkyunkwan University

Page 2: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Course Information

n Objectivesn This course covers all major aspects of low-power design of SoCs, and addresses

emerging topics related to future design. It explores the many different domains and disciplines that impact power consumption from system-level to device level.

n Lecture Schedulen Mon. /Wed. 9:00 ~ 10:15 AM

n References for this coursen Findlay Shearer, Power Management in Mobile Devices, Newnes, 2007n Jan Rabaey, Low Power Design Essentials, Springer, 2009n Liming Xiu, VLSI Circuit Design Methodology Demystified, Wiley Inter-Science, 2008

2

Page 3: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Course Schedule

Schedule Contents Remarks

Week 1 Basic Concept, Introduction

Week 2 Battery Aware Power Management / System-level Power Estimation

Week 3~4 System level power optimization

Week 5 Algorithm / Architecture level power optimization

Week 6~7 Logic/Circuit/Device level Power Reduction

Week 8 Term paper assign

Week 9 Logic/Circuit/Device level Power Reduction

Week 10~12 Case studies

Week 13~15 Term paper discussion

Week 16 Final Exam.

3

Page 4: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Grading System

n Homework/Term Paper: 50%

n Attendance: 10%

n Final Exam: 30%

n Etc. : 10%

4

Page 5: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

5

Basic Concept & Introduction

Page 6: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Sad fact: Computers turn electrical energy into heat. Computation is a byproduct.

Air or water carries heat away, or chip melts.

6

Page 7: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

7/36

55 W-hour battery stores the energy of

1/2 a stick of dynamite.

If battery short-circuits, catastrophe is possible ...

Page 8: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

What Consumers Care About

n Users want more features in their mobile devices:n MP3, Camera, Video, GPS...

n Convenient form factor, affordable price

n But also need long battery lifen Battery technology is not evolving fast enough!è Need to manage power consumption

8

Page 9: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Smart Devices and ICT Convergence

9

Page 10: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Needs vs. Reality

10

1

10

100

1000

10000

100000

1000000

10000000

Battery Capacity1G

2G

3G

Processor Performance (Moore’s Law)

Algorithmic/ApplicationComplexity 4G

Page 11: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Problem Statement: Explosive Growth of SoC Complexity

n Massive feature integration: Driving SoC complexity to the extremen Multiple processors

n CPU processorn DSP processorn Graphic processor

n Many high-performance enginesn Video cores n DMA engines

11

Distributed Heterogeneous Architectures

Page 12: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

What Drives the Widening Power Gap

n Performance and style dictates designn To be smarter, more performance and functionalities are neededn Demand for portability equates to space limitations on batteries

n Slow Battery Research and Developmentn Cutting edge battery R&D is focused elsewhere (hybrid vehicle technology)

n Development focuses on delivering higher discharge vs. power conserving batteries

n Convergence is primary contributorn Users continue to demand more applicationsn Operators derive increasing revenue streams from application based services

12

Page 13: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Energy and Power

n Energy: ability to do workn Most important in battery-powered systems

n Power: energy per unit timen Important even in wall-plug systems --- power becomes heat

n Power draw increases with…

n Vccn Clock speedn Temperature

13

Page 14: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Why are Power & Energy Important?

n Battery life for mobile devices

n Reliability at high temperatures

n Power density (cooling)n Limits compaction & integration

n Costn Energy costn Cost of power delivery, cooling system, packaging

n Environmental issuesn IT responsible for 0.53 billion tons of CO2 in 2002

14

Page 15: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Metrics

n Energy (Joules) = Power (Watts) ´ Time (sec)n Power is limited by infrastructure (e.g., power supply)n Energy: what the utilities charge for or battery can store

n Power density = power/arean The major metrics for the cooling system

n Combined metricsn How to tradeoff performance for power savingsn TPS/W, energy ´ delay (EDP), energy ´ delay2 (EDP2), …

15

Page 16: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Recall: Charge-based Digital Logic

n Key principles in the charge based digital logicn Representation of digital states

n Logic “0”: No Charge in the capacitorn Logic “1”: Charge stored in the capacitor

n Change of digital staten Charge/dis-charge capacitor through a resistor

Vmin

Ron

C Vout=Q/C

Time

VoltageVmin

“0”

“1”

16

Page 17: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Power Consumption in ICs

n Dynamic or active power consumption

n Charging and discharging capacitorsn Depends on switching activity

n Short circuit currentsn Short circuit path between supply

rails during switchingn Depends on the size of the

transistors

n Leakage current or static power consumption

n Leaking diodes and transistorsn Gets worse with smaller devices and

lower Vddn Gets worse with higher temperatures

17

Can be ignored

Page 18: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Power Wall

18

• Intel 80386 consumed ~ 2 W

• 3.3 GHz Intel Core i7 consumes 130 W

• Heat must be dissipated from 1.5 x 1.5 cm chip

• This is the limit of what can be cooled by air

Active power Standby power

v Memory Wall

v ILP Wall

v Power Wall

n Moore’s Lawn Transistor density increases every

18~24 months

n CMOS Powern Total Power = V2 × f × C × a + V × Ileakage

n Drastic increase in leakage current and decrease in noise margin prevent the voltage scaling around 1V

Limitations in Processor Performance Not only Battery, but also Heat!

Page 19: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Pollack’s Rule: Trade-offs

19

CMOS Process Technology (mm)

Area(Lead / Compaction)

0

1

2

3

4

1.5 1 0.7 0.5 0.35 0.18

improvement (X)

Performance(Lead / Compaction)

Pollack’s RulePollack’s Rule:"performance increase due to m-architecture advances is roughly proportional to [the] square root of [the] increase in complexity“

Implications (in the same technology)• New m-Arch consumes about 2-3x die area

of the last m-Arch, but provides 1.5-1.7x performance

Page 20: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Reducing Power/Energy

n An interdisciplinary issuen Circuits, architecture, software, systems

n Key high-level ideasn Reduce redundant work/componentsn Turn off unused componentsn Pick implementation that best matches constraints

n E.g., don’t use a 3GHz processor if 1GHz would do

20

Page 21: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Reducing Power/Energy: Another Option

21

Page 22: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Energy Reduction Portfolio

n Holistic Approach for entire energy dilivery chain

EnergyGeneration

EnergyStorage

EnergyConversion

ENERGY MANAGEMENTENERGY MANAGEMENT

Energy Generation

Energy Storage

RFtransceiver Processor Digital logic Memory

Energy Conversion

Analog

22

Page 23: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Energy/Power Flow in Mobile Device

23

Power Supply

§ Standard IC• 5V, 3.3V, 2.5V, 1.8V, 1.1V, …• Vcore

§ RF IC/Device• Low noise required

§ Display• LED Lighting/Flash• LCD/OLED/EL Bias• CCFL supply

§ Motor/Inductive• Vibrator• HDD

§ USB Host• Ports

§ Others• Tuners, …

§ Adaptor• 5V, 12V, …

• ± 10% Tolerance

• Xmer/Switching

• Car outlet

§ USB Port• 4.5V ~ 5.25V

• Imax: 500mA (USB 2.0) ~ 900mA (USB 3.0)

§ Li+/Li-Poly• 3V ~ 4.2V

§ NiMH/Akaline• 0.9V ~ 1.5V

§ Solar/Fuel cell

§ Role• Main / Backup

§ Type• Primary

• Secondary

§ Management• Protector

• Gas gauge

• Security

Battery Power Conversion Load

Charge

Discharge

ø EL: Electro Luminescence

ø CCFL: Cold Cathode Fluorescent Lamp

Page 24: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

L1 SW

CPU

DSP

ABB

RF

PROTOCOLSTACK

L1 DBB HARDWARE

MMI (Man- Machine Interface)

ApplicationTasks

DATA I/OLCD,

Camera,Etc

Anatomy of a Handset

24

Digital Baseband

PM IC

ADC

DAC

LNA

PADuplexor/Switch

Filter

Filter

VCO Application Processor

NOR or NAND Flash

SRAM or SDRAM

Page 25: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

25

Anatomy of a Handset: Another View

Hardware

Cellular Radio Interface

Tools Agent Framework Physical Layer FrameworkSystem Framework

MANPositioning Broadcast PAN LANHW Accelerator& Device Interface

Application ProtocolFramework

Cellular Protocol Stack:Multimode Protocol

Multimedia Device Framework

IP System

File System Data Format

Media Codec

Applications Framework

Database (UI, Phonebook, Security, Java, Browser, Messaging, Multimedia playing)

Modem Applications Abstraction Layer Multimode Protocol Service IF

2G 3G

TransportService

Multimedia Engine

Media Devices

PlatformDevices

RFPMDisplayAVcodec

RTO

S

Traffic Manager

2G/3G/4G RF

4G

Page 26: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

DSP CPU

Regulators

Block Diagram of a Cellular Phone (Feature Phone)

~ ÷

BatteryChargingControl

PowerSupply

ADCDAC

AudioCodec

BottomConnector

SIM card

Mixed-Signal

BB

Memory

CintrolInterfacesLogic SRAM

Flash

Keyboard

LCDBacklight

LCD

Infra Red

Vibra

Microphone

Earpiece

HandsfreeSYNTH

PA

RF1900

1800

900

900

1800/1900

26

Page 27: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

POWER,W

3

2

6

20042002

Gross Power Consumption Exceeds Thermal Dissipation Capability of Mobile Device

4

1

5

2006

COOLING REQUIRED

100cc plastic monoblock

100cc metal monoblock

100cc plastic clamshell,open

Cellular RF Cellular RF

Miscellaneous

Cellular BBCellular BB

Local Connectivity

Local Connectivity

Local Connectivity

Display+backlight

Display+backlight

Display+backlight

Camera

Camera

Cellular RF

Audio

Audio

Audio

Apps Engine

Apps Engine

Mass Memory

Mass Memory

Power conversion

Power conversion

Power conversion

Cellular BB

Large plastic communicator,open

Small metal communicator,open

Page 28: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Inside Smartphone: Apple iPhone4

28

Infineon 3G Baseband

Dialog Power Management

A4 Application Processor

Page 29: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Inside Smartphone: Apple iPhone4

29

Power Amp. for UMTS band 5,8

Skyworks

WiFi/BT module

BT/WiFi Combo chip

Broadcom

RF SwitchMurata

Quad-band LNAInfineon

A-GPSBroadcom

Power Amp. for UMTS band 1,2

TriQuint

GSM/EDGE frontend module

Skyworks

HSPA/UMTS/EDGE baseband modem

Infineon

HSPA/UMTS/EDGE RF Transceiver

Infineon

128MB NOR + 128MB mobile DDR

Numonyx

Power ManagementDialog Semiconductor

3-axis Digital compassAkin Semiconductor

3-axis AccelerometerSTMicro

16GB NAND FlashSamsung

Audio processorCirrus Logic

3-axis GyroscopeSTMicro

Video amp.Maxim

Touchscreencontroller

Texas Instruments

LCD

Touchscreen

Application ProcessorApple A4

Apple/Samsung

4Gbit mDDR SDRAMSamsung

Primary Camera module

Secondary Camera module

Docking connectorEarphone Jack

Page 30: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Nvidia Tegra2 Multi-Core SoC

n 8 Dedicated Processors

n Highest CPU Performance - (ARM Cortex-A9@1GHz ´2)

n HD 1080p Video

n GeForce® Graphics

n Ultra Low Power

30

Page 31: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Nvidia Tegra 4i

31

New Quad core ARM Cortext-A9 R4

@2.3GHz

Integrated i500 HSPA/LTE Modem

“4 plus 1” Companion Core

ULP GeForce 60 GPU cores

§ Computational photography architecture§ Image signal processor§ Video engine

Page 32: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Less Energy

Cortex-A8 65 nm

Cortex-A8 65 nm

Relat

ive C

ompa

rison

Cortex-A8 45 nm

Cortex-A8 45 nm

2x Cortex-A9 40 nm

2x Cortex-A9 40 nm

4x Cortex-A932 nm

4x Cortex-A932 nm

2x Cortex-A152x Cortex-A7

28nm

2x Cortex-A152x Cortex-A7

28nm

2x Cortex-A57 2x Cortex-A53

20nm

2x Cortex-A57 2x Cortex-A53

20nm

More Performance

big.LITTLE Effect

Peak Performance

Energy

ARM big.LITTLE Architecture for Low Power

32

Page 33: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Samsung Exynos 5410 Octa - for Galaxy S4

33

Page 34: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Galaxy S4 Teardown

34

lQualcomm WCD9310 audio codec

lQualcomm MDM9215M 4G GSM/UMTS/LTE modem

lARM Holdings MBG965H

lQualcomm PM8917 power management

lBroadcom BCM4335 Single-Chip 5G Wi-Fi MAC/Baseband/Radio

lSamsung K3QF2F200E 2 GB LPDDR3 RAM + Snapdragon 600 APQ8064T 1.9 GHz Quad-Core CPU lurks below)

lToshiba THGBM5G7A4JBA4W 16 GB eMMC(eMMC integrates a NAND flash memory and a controller chip in a single package)

Page 35: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Galaxy S4 Teardown

35

lQualcomm WTR1605L seven-band 4G LTE RF transceiver

lBroadcom 20794S1A standalone NFC chip

lSilicon Image 8240BO MHL 2.0 transmitter

lMaxim MAX77803 microcontroller

lSWA GNF09

lQualcomm PM8821 power management IC

lSkyworks 77619 power amplifier module for quad-band GSM/EDGE

Page 36: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

A 20nm Scenario (High-end Processor)

n This means:n A 2cm2 processor consumes 10 kWn A bound of 100W requires only 1% to be active ] dark silicon

36

Assume VDD = 1.2V§ FO4 delay < 5 ps§ Assuming no architectural changes, digital circuits could be run at 30 GHz§ Leading to power density of 20 kW/cm2 (??)

Reduce VDD to 0.6 V§ FO4 delay » 10 ps§ The frequency is lowered to 10 GHz§ Power density reduces to 5 kW/cm2 (still way too high)

Ref: S. Borkar (Intel)

Page 37: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

The “Dark Silicon” Problem

37Source: Rob Aitken (ARM)

Page 38: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

How Much Energy in the Air?

38

Page 39: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

39

Cutting Edge SoC Design looks like the Rocket Science

Payload: Pure Functional

Implementation efforts

DFT: Design ForTestability

DFP: Design For(Low) Power

DFM: Design For

Manufacturability

DFV: Design ForVerification

Overhead

Page 40: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Signal Integrity

Signal Integrity

Power Power Power Power

Integration

Observation #1: Design Challenges

n Technology shrink leads to critical design challenges

Signal Integrity

Signal Integrity

Signal Integrity

Integration Integration Integration

DFM DFM DFM

RDR RDR

Advanced Lithography

Tech

nolo

gy G

eom

etry

Desi

gn C

ompl

exity

2004 2006 2008 2010 2012

90nm

65nm

40nm28nm 20nm

40

Page 41: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Observation #2: Design Complexity

n Complexity outpaces Design Productivity

[ Source: SEMATECH ]

41

Page 42: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

42

Observation #3: Power Densities

n Power densities affects packaging, cooling, reliability, speed, …

400480088080

8085

8086

286 386486

Pentium®P6

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Powe

r Den

sity (

W/cm

2 )

Hot Plate

NuclearReactor

RocketNozzle

Sun’sSurface

Source: Borkar, De Intelâ

Page 43: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Observation #4: Battery Technology Limitation

n Less than 10% technology improvement is expected for battery for next 10 years

Source: Dataquest43

Page 44: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Observation #5: Leakage Power

n Leakage may ruin Moore’s Law ( it is worse than expected ), threatening the success of CMOS by ITRS

[ ISLPED 04, Ray Bryan ]

44

Page 45: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

45

Observation #6: Chip I/O Bottleneck

Year 2002 2005 2008 2011 2014

Logic trans/chip (M) 60 235 925 3,650 14,400

Signal pins/chip 1024 1024 1280 1408 1472

Simultaneously Switching Noise

[ Source: SEQUENCE ]

1

10

100

1000

10000

1999 2002 2005 2008 2011 2014

Year

Logi

c tra

ns/S

igna

l pin

s

Page 46: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Observation #7: Interconnect Challenge

n Impact of interconnect has to be considered in early design stagen Helps faster convergence – tight correlation with the backendn Produces more efficient designs – lower area, powern Design flow becomes more predictablen Improves performance – higher frequency

Source: Synopsys (2012)

Process 130 to 90 nm 65, 45, 32 nm 28, 20, 14 nm

Wire length

(m/cm2)1,019 2,222 3,143

Important new

effectsRoute topology

Layer awareness,Coupling

capacitance

Resistive shielding,Much less

resistance on higher metal

layers

2005 2010 2012

46

Page 47: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

47

Observation #8: Lithography Limitation

Source: Sematech (2013)

Page 48: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

48

Observation #9: Process Variation

130nm

30%

5X

0.9

1.0

1.1

1.2

1.3

1.4

1 2 3 4 5

Normalized Leakage (Isb)

Nor

mal

ized

Freq

uenc

y

Source: Borkar, De Intelâ

Page 49: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

49

Observation #10: Cost of Chip Development

Source: Xilinx, IBS(2011)

Page 50: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

50

Moor

e’s L

aw:

Mini

atur

izatio

n

Base

line C

MOS:

CPU

, Mem

ory,

Logi

c

130nm

90nm

65nm

45nm

32nm

22nm

Beyond CMOS

More than Moore: Diversification

Analog/RF Passives HV Power SensorsActuators Biochips

InformationProcessing

Digital contentSystem-on-Chip

(SoC)

Interacting with people and environmentNon-digital content System-in-Package

(SiP)

Observation #11: CMOS Limitation

Source: ITRS 2011

16nm

Page 51: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

51

Observation # 12: Design Methodology Change

Traditional Chip Design

[ Source: Virage â]

• OMAP2420: • Five Power Domains(MCU Core, DSP Core, Graphic Accelerator, Peripheral, Alive logic)• 40x Leakage Power Savings

[Source: Stork (TI), DAC 2006 ]

Mobile Chip Design

Page 52: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

52

Observation # 13: Noise Isolation

n Digital switching noise propagates through the substrate

[Source: TI, Stork, DAC 2006 ]

Page 53: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Power Profile Optimization

Dynamic Power Profile

Optimized Dynamic Power Profile

Static Power Profile

Optimized Static Power Profile

System Workload

53

Page 54: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Classification of Low Power Techniques

Voltage Scaling Instruction-Level Optimization

Control-Data-Flow Transformation Dynamic Power Management

Approximate Signal Processing Memory Optimization

Hardware-Software Partitioning Parallelism/Pipelining

Don’t-care OptimizationPath Balancing Factorization

Technology Decomposition/Mapping Encoding Retiming

Gated Clocks Pre-computation

Transistor/Interconnect Sizing Transistor Reordering

Threshold Voltage Scaling

TechniquesMethods Overheads

ReducingActivity

ReducingCapacitance

Scaling Supply V

Scaling Threshold V

Area

Speed

Noise

Negligible

System Level Architecture Level Logic Level Circuit/Device LevelNote:

54

Page 55: ECE5461: Low Power SoC Designcontents.kocw.net/KOCW/document/2014/sungkyunkwan/hanta... · 2016-09-09 · Course Information nObjectives nThis course covers all major aspects of low-power

Summary: Reducing Power @ All Design Levels

n Algorithmic level

n Compiler level

n Architecture level

n Organization level

n Circuit level

n Silicon level

n Important concepts:n Lower Vdd and freq. (even if

errors occur) / dynamically adapt Vdd and freq.

n Reduce circuitn Exploit localityn Reduce switching activity,

glitches, etc.

55

P = α × f × C × Vdd2

E = ò P dt ÞE / cycle = α × C× Vdd

2