ecen 622 tamu active rc filters lecture 2 active rc filters 2017.pdf• second-order filter, using...

86
ACTIVE RC FILTERS By Edgar Sánchez-Sinencio 1 1. Basic Building Blocks First-Order Filters Second-Order Filters, using multiple VCVS Second-Order Filter, using one VCVS ( Op Amp) State-Variable Biquad 2. Non-Ideal Active RC Filters Using VCVS ( Op Amp) vs. VCCS ( transconductance Amp) Second-Order Non-idealities Fully Differential Versions Fully Balanced, Fully Symmetric Balance Circuits 3. Introduction to Matlab and Simulink for filter Design and filter approximation techniques ECEN 622 TAMU

Upload: others

Post on 07-Feb-2021

6 views

Category:

Documents


1 download

TRANSCRIPT

  • ACTIVE RC FILTERS

    By Edgar Sánchez-Sinencio 1

    1. Basic Building Blocks

    • First-Order Filters

    • Second-Order Filters, using multiple VCVS

    • Second-Order Filter, using one VCVS ( Op Amp)

    • State-Variable Biquad

    2. Non-Ideal Active – RC Filters

    • Using VCVS ( Op Amp) vs. VCCS ( transconductance Amp)

    • Second-Order Non-idealities

    • Fully Differential Versions

    • Fully Balanced, Fully Symmetric Balance Circuits

    3. Introduction to Matlab and Simulink for filter Design and

    filter approximation techniques

    ECEN 622 TAMU

  • 622 (ESS) A1

    ACTIVE - RC FILTERS

    The basic building block is illustrated below

    1

    2

    1

    2

    i

    o

    Z

    Z1

    A

    11

    Z

    Z

    sV

    sVsH

    cases particularconsider Next we

    Z

    ZsH

    then, A that assume usLet

    1

    2

    rentiator Diffe CRssH

    Integrator CsR

    1sH

    2

    21

    Vi

    Z1 Z2

    A Vo

    Vi

    R1C2

    Vo

    Vi

    R2C1

    Vo

    By Edgar Sánchez-Sinencio 2

  • 3

    Z1or

    ZF = Z2

    Can be:

    EXAMPLE: Let

    FF

    FF

    11

    11

    CsR1

    RZ,

    CsR1

    RZ

    Assuming ideal op amp A . Then using (1)

    pzn

    FF

    111F

    1

    011

    s1

    s1K

    )CsR1(

    CsR1RR

    V

    VH

    (4)

    1H

    1

    F

    R

    R

    z p

    zp 1

    F

    R

    R

    F

    1

    C

    C

    p z

    zp

    R

    sC

    1

    R

    C

    R C

    sC

    sRC1

    C

    R sRC1

    R

    By Edgar Sánchez-Sinencio

  • 4

    Particular cases are easily derived from (3) and (4)

    Integrator: F1 R,0C

    1FFF1

    F1

    RsC

    1

    CsR

    1

    R

    RH

    Differentiator ; 0C,R F1

    1F111

    F1 CsRCsR

    R

    RH

    Low-Pass: 0C1

    FF

    1

    F

    1CsR1

    R

    R

    H

    High-Pass: 1R

    FF

    11

    1

    F1

    CsR1

    CsR

    R

    RH

    By Edgar Sánchez-Sinencio

  • 5

    One pole and one zero

    What are the key differences between Eqs. (4) and (5)?

    (5) CsR1

    CsR1

    C

    C

    CsR1

    sC

    sC

    CsR1

    V

    V

    11

    FF

    F

    1

    11

    1

    F

    FF

    i

    o

    Exercise 1. Obtain the transfer function of the following circuit.

    A Vo

    R1 RF1 RF2

    CF

    Vi

    C1

    ViR1 RF CFC1

    By Edgar Sánchez-Sinencio

  • 6

    Second-Order Filters Based on a Two-Integrator Loop.

    • We can design a second-order filter by cascading two inverters. i.e.

    )6(

    1RCRCsRCRCs

    R

    R

    R

    R

    RsC1RsC1

    R

    R

    R

    R

    v

    V

    2F2F1F1F2F2F1F1F2

    2

    2F

    1

    1F

    2F2F1F1F

    2

    2F

    1

    1F

    i

    o

    What are the locations of the poles?

    2F2F1F1F

    2F2F1F1F2

    2F2F1F1F2F2F1F1Fp

    RCRC2

    RCRC4RCRCRCRCs

    2,1

    ViR1

    RF1 RF2

    CF2CF1

    R2 Vo

    By Edgar Sánchez-Sinencio

  • 7

    To have complex poles it requires that

    ?0RCRC2RCRC 2F2F1F1F2

    2F2F2

    1F1F

    Which it is impossible to satisfy. Therefore, cascading two first-order filter yield a

    second-order filter with only real poles.

    The general form of the second order two-integrator loop has the following topology.

    (7a)

    Z

    Z

    Z

    Z1

    Z

    Z

    Z

    Z

    H

    2

    2F

    1

    1F

    2

    2F

    3

    1F

    -1

    Vi

    Vo

    Z3 ZF1

    Z2

    ZF2

    Z1

    By Edgar Sánchez-Sinencio

  • 8

    Note the similarity of Eq. (7a) with (2). Also observe that A “-1” needs to be inserted

    before or after the second inverter to yield a negative feedback loop.

    Let us consider the following filter where

    2F2F

    2F2F

    1F1F221133

    RsC1

    RZ,

    sC

    1Z,RZ,RZ,RZ

    Thus Eq. (7a) yields:

    2o

    o2

    21o

    22F11F2F2F

    2

    22F31F

    2F2F

    22F

    11F

    2F2F

    22F

    31F

    sQ

    sRCRC

    1

    RC

    ss

    RCRC

    1

    H

    RsC1

    RR

    RsC

    11

    RsC1

    RR

    RsC

    1

    H

    By Edgar Sánchez-Sinencio

  • 9

    By injecting in different current summing nodes a general biquad filter can be obtained.

    22F11F2F2F

    2

    3113211F222F31F

    3

    o

    2F2F

    22F

    11F

    2F2F

    12F

    2F3

    2F2F

    2

    2F2

    2F2F

    RR

    31F3

    o

    RCRC

    1

    RC

    ss

    KRsCVKRsCVRCRC

    1V

    V

    RsC1

    RR

    RsC

    11

    RsC1

    VR

    RK

    RsC1

    R

    RK

    RsC1RsC

    1V

    V

    22F

    R1CF1 r

    r

    RF2

    CF2

    Vo

    R2

    R3VLP=V3

    VBP=V2

    -VBP=V1

    r/K2

    RF2/K3

    Vo2Vo1

    By Edgar Sánchez-Sinencio

  • 10

    Exercise 2. Obtain the expressions of Vo1 and Vo2.

    More general biquad expressions and topologies can be obtained by adding a summer.

    o301o20in10oT VKVKVKV

    Exercise 3. Draw an active-RC topology of the block diagram show above.

    Exercise 4 a) For only obtain Vo and Vo1 when instead of the resistor RF2/K3 a

    capacitor K4 CF2 is used. b) For only obtain Vo1 when the resistor R3 is replaced

    by a capacitor KHPCF1.

    0V1

    0V3

    S

    Vin

    Vo1

    Vo

    -K10

    -K20

    -K30

    By Edgar Sánchez-Sinencio

  • 11

    By using also the positive input of the op amp other useful filters can be obtained.

    V2

    V1

    Z1 Z2

    ZR

    ZC

    1

    2

    1

    22

    CR

    R1

    1

    2

    o

    Z

    Z1

    A

    11

    Z

    Z1V

    ZZ

    ZV

    Z

    Z

    V

    Example. Phase shifter Z2=R2=R1, Z1=R1, ZR=R 21C VV withA and sC

    1Z

    sRC1

    sRC1

    sRC1

    sRC2sRC12

    sRC1

    sRC1

    V

    V

    1

    o

    By Edgar Sánchez-Sinencio

  • 12

    Sallen and Key Bandpass Filter

    K

    Vi

    VoC1

    R2

    C2R1

    R3

    K is a non-inverting amplifier

    Using Nodal Analysis

    (3) V

    (2) 0

    2

    122 V-

    (1) 11

    2o

    21

    1322

    31211

    KV

    RsCVsC

    R

    V

    R

    VVsC

    RRCCsV io

    21231

    31

    132

    3

    1

    3

    22

    2

    11

    11

    CCRRR

    RR

    CR

    s

    R

    R

    R

    RK

    CRs

    CR

    sK

    sV

    sVsH

    i

    o

    By Edgar Sánchez-Sinencio

  • 13

    A particular case is for R1=R2 =R3=R, C1=C2=C

    Then

    Q

    24K and

    2RC

    Q and givena for or

    K4

    2Q;

    RC

    2

    o

    o

    2

    2o

    Exercise 5. Prove the transfer function is a BP filter of the following circuit

    212122121212

    11

    i

    o

    CCRR1K

    1s

    CR

    1

    CRR

    RR

    1K

    1s

    CR

    s

    1K

    K

    sV

    sVsH

    -K

    Vi

    R1 C2 C1

    Vo

    R2

    By Edgar Sánchez-Sinencio

  • A4In the past before IC fabrication, active filters implementation preferred one op amp

    structure. One very popular type is the Sallen and Key unity gain implementations.

    QRC

    CQC

    CC

    RRR

    sQ

    s

    sH

    o

    oo

    oLP

    21

    4 22

    1

    21

    22

    2

    One also popular topology is the Rauch Filter

    22113211

    2

    1322

    CRCR

    1

    R

    1

    R

    1

    R

    1

    C

    ss

    CRCR

    1

    sH

    LP Rauch Filer

    LP Sallen - Key

    ViVo

    R2 R1

    C1

    C2

    1

    ViVo

    C2

    C1

    R3

    R1

    R2

    By Edgar Sánchez-Sinencio 14

  • 15

    Another technique for analysis and design based on state-variable uses building blocks.

    CIRCUIT REPRESENTATION

    V1

    V2

    R2

    R1C1

    Vo1

    S 1/sV1

    V2

    22CR

    1

    11CR

    1

    Vo1

    Note: V1 and V2 can take

    any value including Vo.

    S

    V1

    V2

    V3

    V4

    V5

    K4

    Vo2

    -K1

    -K2

    K3

    K5

    V1

    V2

    V3

    V4

    V5

    R1

    R2

    R3

    R4

    RF

    Vo2

    R5

    By Edgar Sánchez-Sinencio

  • 16

    Let us apply to a two-integrator loop plus Mason’s Rule.

    For Second-topology

    S 1/s 1/s1oV

    inV 3oV

    -Ko1-1

    -KQ

    Ko2

    2oV

    -K1

    BP KKsKs

    sVK

    s

    KK

    s

    K1

    Vs

    K

    V

    HPKKsKs

    VsK

    s

    KK

    s

    K1

    VKV

    2o1oQ2

    in1

    22o1oQ

    in1

    o2

    2o1oQ2

    in2

    1

    22o1oQ

    in11o

    By Edgar Sánchez-Sinencio

  • 17

    Next we show that we can go from an Active-RC representation into a

    block diagram or vice versa.

    KHN Biquad Filter

    V1

    R4

    R1

    R5 R6 R7

    R2

    C1 C2

    VHP VBP VLP

    S 1/s 1/sVi

    3

    5

    R

    R

    -R5/R4

    VLPVHP VBP

    16CR

    1

    27CR

    1

    Q43

    5

    21

    1 KR||R

    R1

    RR

    R

    By Edgar Sánchez-Sinencio

  • 18

    2716

    45

    16

    Q2

    2

    3

    5

    22716

    45

    16

    Q

    3

    5

    i

    HP

    CRCR

    RRs

    CR

    Ks

    sR

    R

    sCRCR

    RR

    s

    1

    CR

    K1

    R

    R

    V

    V

    By Edgar Sánchez-Sinencio

  • ACTIVE RC FILTERS

    By Edgar Sánchez-Sinencio 19

    1. Basic Building Blocks

    • First-Order Filters

    • Second-Order Filters, using multiple VCVS

    • Second-Order Filter, using one VCVS ( Op Amp)

    • State-Variable Biquad

    2. Non-Ideal Active – RC Filters

    • Using VCVS ( Op Amp) vs. VCCS ( transconductance Amp)

    • Second-Order Non-idealities

    • Fully Differential Versions

    • Fully Balanced, Fully Symmetric Balance Circuits

    3. Introduction to Matlab and Simulink for filter Design and

    filter approximation techniques

    ECEN 622 TAMU

  • ELEN 622 (ESS)

    Op Amp Non-Idealities

    A

    iV1Z 2Z

    A

    V0

    oV

    21

    1

    1

    2

    1

    2

    1

    2

    where

    11

    11

    ZZ

    Z

    A

    Z

    Z

    A

    Z

    Z

    A

    Z

    Z

    sH

    Integrator

    Case 1 sAs

    GB;

    sCZ;RZ

    2

    211

    1

    11

    1

    1

    1

    GBRC;

    GBssRCGB

    RCs

    GB

    sRCsH

    o

    GBtanjH;

    RCjGB

    RCjH

    90

    2

    1 12

    Non-Ideal Active-RC Integrators

    By Edgar Sánchez-Sinencio 20

  • o.

    GB;

    jAtan

    GBtan

    75

    10

    1i.e.

    1 o11

    Mo

    o

    oo

    o

    GB

    j

    GB

    jH

    1

    1

    11

    2

    2

    error 5

    10 i.e.

    1

    11

    2

    2

    2

    2

    0

    %~

    .GB

    GB

    GB

    M

    o

    o

    M

    By Edgar Sánchez-Sinencio 21

  • It follows that the ideal -6 dB/octave roll-off expected from an ideal integrator

    changes to -12 dB/octave at the frequency of the parasitic pole given by

    CRs tp

    1

    which may be approximated by,

    CRs tt

    1 for

    dB

    A

    o

    0

    -6 dB/octave

    1/AoC

    R

    1/CR

    -12 dB/octave

    t

    22By Edgar Sánchez-Sinencio

  • In general

    jXR

    jT

    1

    then we define the integrator Q-factor by

    jAQ

    R

    XQ

    tI

    I

    GBQ tL

    23By Edgar Sánchez-Sinencio

  • Making an analogy of QL of an inductor

    L

    oL

    R

    LQ

    RLL

    Lossy Part

    For an integrator one can obtain

    jAGB

    GBGB

    RC

    RCQI

    112

    Miller Integrator

    C

    Rvi

    voSGB

    By Edgar Sánchez-Sinencio 24

  • How can we compensate this degradation of performance?

    a)

    CGBRC

    1

    jAQI

    C

    R

    RCvi vo

    s

    GBsA

    If we make

    Ideally we obtain

    RCsVsV

    i

    o 1

    This integrator yields a positiveC

    R

    R1

    R2

    A1

    A2

    vivo

    By Edgar Sánchez-Sinencio 25

  • ACTIVE – RC INTEGRATOR: Pole Shift and Predistortion

    622 (ESS)

    26

    (1b)

    1sRCsA

    1sRC

    1

    V

    V

    (1a) sRC

    1

    sRC

    11

    sA

    11

    sRC

    1

    V

    V

    i

    o

    i

    o

    )s(A

    +

    -Vo

    Vi

    R C

    A(s)

    ; where Ao is the DC gain and 3dB the dominant pole in

    open loop.

    Then (1b) becomes

    (2)

    RCsAs

    RC

    A

    RCRC

    1Ass

    RC

    A

    V

    V

    dB3dB3o

    2

    dB3o

    dB3dB3dB3o

    2

    dB3o

    i

    o

    Let GB=Ao3dB

    G. Daryanani, “Principles of Active Network Synthesis and Design,” John Wiley and Sons, 1976.

    dB3

    dB3o

    s

    A)s(ALet

    By Edgar Sánchez-Sinencio

  • 27

    The roots of the denominator are

    (3a)

    RCGB

    41

    2

    GB

    2

    GBP

    2/1

    2dB3

    2,1

    Using the approximation 1–X)1/2≅ 1 −X/2 for X

  • 28

    The Bode Plot Looks Like

    By Edgar Sánchez-Sinencio

  • 29

    PREDISTORTION; FREQUENCY COMPENSATION

    In order to relax the bandwidth op amp requirement one can use a RC or CC on

    the Miller Integrator. That is

    B. Wu and Y. Chiu, “A 40nm CMOS Derivative-Free IF Active-RC BPF with Programmable Bandwidth and Center Frequency Achieving Over 30dBm IIP3”,

    IEEE JSSC, Vol. 50, No. 8, pp 1772-1784, August 2015.

    GB

    1R Cor

    GB

    1C R Use CC

    Equivalent

    Vi

    RC

    R

    C

    VoA(s)

    Vi

    R RC C

    Vo

    ViR

    C

    Vo

    Vi R

    C

    Vo

    CC

    CC

    By Edgar Sánchez-Sinencio

  • 30

    Vi

    Vi

    Z1

    Z1 Z2

    ZF

    A

    Zo ZL

    ZL

    Vo

    Vo

    Gm

    Using VCVS vs. VCIS in Active-RC Filters

    The motivation is to use OTA (VCIS) instead of more power hungry Op Amp (VCVS)

    1

    2

    i

    o

    L1

    21

    1m

    2m

    m

    L1

    21

    1

    2m

    1

    2

    i

    o

    1

    F

    i

    o

    1

    F

    1

    F

    i

    o

    oo

    Z

    Z

    V

    V

    ZZ

    ZZ

    Z

    1g

    Z

    1g

    g

    ZZ

    ZZ

    Z

    1

    1

    Zg

    11

    Z

    Z

    V

    V

    Z

    Z

    V

    V

    then,A If

    Z

    Z1

    A

    11

    Z

    Z

    V

    V

    0ZRFor

    By Edgar Sánchez-Sinencio

  • Using VCVS

    𝑉𝑖 − 𝑉𝑥𝑍1

    +𝑉𝑜 − 𝑉𝑥𝑍𝐹

    = 0

    𝑉𝑜 = −𝐴𝑉𝑥

    Vx

    Signal flow graph:

    VxVi Vo−𝐴

    𝑉𝑥 = 𝑉𝑖𝑍𝐹

    𝑍1 + 𝑍𝐹+ 𝑉𝑜

    𝑍1𝑍1 + 𝑍𝐹

    β

    𝑍𝐹𝑍1 + 𝑍𝐹

    𝑍1𝑍1 + 𝑍𝐹

    Using Mason’s rule:

    𝑉𝑜𝑉𝑖=

    −𝐴𝑍𝐹

    𝑍1 + 𝑍𝐹

    1 + 𝐴𝑍1

    𝑍1 + 𝑍𝐹

    =−𝑍𝐹/𝑍1

    1 +1𝐴

    1 +𝑍𝐹𝑍1

    Thus as 𝐴 → ∞ the gain becomes −𝑍𝐹/𝑍1

    By Edgar Sánchez-Sinencio 31

  • Using VCCS

    𝑉𝑖 − 𝑉𝑥𝑍1

    +𝑉𝑜 − 𝑉𝑥𝑍2

    = 0

    𝑉𝑜 − 𝑉𝑥𝑍2

    +𝑉𝑜𝑍𝐿

    = −𝐺𝑚𝑉𝑥

    Vx

    Signal flow graph:

    VxVi Vo

    1 − 𝐺𝑚𝑍21 + 𝑍2/𝑍𝐿

    𝑉𝑥 = 𝑉𝑖𝑍2

    𝑍1 + 𝑍2+ 𝑉𝑜

    𝑍1𝑍1 + 𝑍2

    β

    𝑍2𝑍1 + 𝑍2

    𝑍1𝑍1 + 𝑍2

    Using Mason’s rule:

    𝑉𝑜𝑉𝑖=

    𝑍2𝑍1 + 𝑍2

    1 − 𝐺𝑚𝑍21 + 𝑍2/𝑍𝐿

    1 −1 − 𝐺𝑚𝑍21 + 𝑍2/𝑍𝐿

    𝑍1𝑍1 + 𝑍2

    =−𝑍2/𝑍1

    1 +1

    𝐺𝑚𝑍2 − 11 +

    𝑍2𝑍1

    1 +𝑍2𝑍𝐿

    What conditions do we need to impose on𝐺𝑚 for proper operation?

    𝑉𝑜 =1 − 𝐺𝑚𝑍21 + 𝑍2/𝑍𝐿

    𝑉𝑥

    By Edgar Sánchez-Sinencio 32

  • Using VCCS: Acceptable 𝐺𝑚 Range

    Vx

    Signal flow graph:

    VxVi Vo

    1 − 𝐺𝑚𝑍21 + 𝑍2/𝑍𝐿

    𝑍2𝑍1 + 𝑍2

    𝑍1𝑍1 + 𝑍2

    𝑉𝑜𝑉𝑖=

    −𝑍2/𝑍1

    1 +1

    𝐺𝑚𝑍2 − 11 +

    𝑍2𝑍1

    1 +𝑍2𝑍𝐿

    Note from the signal flow graph that having a negative feedback loop requires 𝐺𝑚𝑍2 > 1

    For the gain to approach the ideal gain of −𝑍2/𝑍1, we need

    𝐺𝑚𝑍2 − 1 ≫ 1 +𝑍2

    𝑍11 +

    𝑍2

    𝑍𝐿𝐺𝑚𝑍2 ≫ 1 + 1 +

    𝑍2

    𝑍11 +

    𝑍2

    𝑍𝐿

    Thus, guaranteeing this second condition automatically guarantees the negative feedback condition

    By Edgar Sánchez-Sinencio 33

  • Using VCCS: Practical Considerations

    Vx

    In practice, 𝑍𝐿 = 𝑅𝑜|| 𝑍𝐿𝑜𝑎𝑑 where 𝑅𝑜 is the OTA’s output resistance and 𝑍𝐿𝑜𝑎𝑑 is the external load impedance

    𝐺𝑚𝑍2 ≫ 1 + 1 +𝑍2𝑍1

    1 +𝑍2𝑍𝐿

    One should note that 𝐺𝑚 and 𝑅𝑜 are not independent since increasing current to increase 𝐺𝑚 will reduce 𝑅𝑜.To a first order, one can consider 𝐴 = 𝐺𝑚𝑅𝑜 to be constant.

    Finally, in cascaded filter designs, the load of one stage is the input resistor of the next one. We can thus assume 𝑍𝐿𝑜𝑎𝑑 = 𝑍1 as a realistic condition (𝑍𝐿𝑜𝑎𝑑 = ∞ places a looser constraint on 𝐺𝑚)

    Substituting for 𝑍𝐿 as described above yields the following constraint on 𝐺𝑚:

    𝐺𝑚 ≫1

    𝑍1

    2 1 + 𝑍1/𝑍2 + 𝑍2/𝑍1

    1 −1𝐴1 + 𝑍2/𝑍1

    By Edgar Sánchez-Sinencio 34

  • Numerical Example

    • Ideal VCVS and VCCS components from Cadence were used to simulate the above circuits.

    • Two configurations were tested:1. Unity gain inverting amplifier (𝑍2 = 𝑍1 = 𝑅)2. Lossy integrator with corner frequency 1 MHz (𝑍2 = 𝑅||𝐶)

    • To have a fair comparison, the value of 𝐴 was fixed to 30 for both the VCVS and VCCS implementations (thus the VCCS had 𝑅𝑜 = 30/𝐺𝑚). This is a typical value for the voltage gain of a single stage amplifier.

    • In all tests, 𝑅 = 100𝑘Ω, the output resistance of the VCVS is set to 1 𝑘Ω and a load capacitance is added to the output of the amplifier to give an output pole at 10 MHz.

    • With these numbers, the constraint on 𝐺𝑚 is 𝐺𝑚 ≫ 54 𝜇𝑆

    • The value of 𝐺𝑚was swept from 30 𝜇𝑆 to 600 𝜇𝑆 and the simulation results are shown in the following slides.

    By Edgar Sánchez-Sinencio 35

  • Simulation Results: Inverting Amplifier

    VCVS Response

    Increasing 𝐺𝑚

    VCVS Response

    Increasing 𝐺𝑚

    By Edgar Sánchez-Sinencio 36

  • Simulation Results: Lossy Integrator

    VCVS Response

    Increasing 𝐺𝑚

    VCVS Response

    Increasing 𝐺𝑚

    By Edgar Sánchez-Sinencio 37

  • Conclusions

    • It is possible to use VCCS (OTA) instead of VCVS (Opamp) in active-RC filters in order to avoid using costly buffer stages.

    • Proper performance requirements place a lower limit on the transconductance of the OTA used.

    • Using a transconductance of 10-15x the minimum requirement yields a comparable performance to a design employing an Opampimplementation.

    By Edgar Sánchez-Sinencio 38

  • It can be shown that for equal s

    GBsA , the Tow-Thomas filter has the following

    deviations

    GB

    k

    GBQ;GB

    Q

    GBQQQ

    o

    o

    o

    oooo

    oo

    oa

    2

    2

    and

    414

    or

    41

    1

    Vi

    QR R

    R/k

    A1A2

    A3R

    VBP

    CCC1C2

    VL

    r

    r

    -VL

    C

    rr

    VBP -VL

    Improved integrator version with positive QI

    2

    2

    1

    22

    11

    GB

    kQ

    GB

    GBkQQ

    ooo

    o

    oa

    Improved version by replacing noninverting integrator:

    By Edgar Sánchez-Sinencio 39

  • Single Ended

    Fully-Differential Version

    How to generate Fully-Differential Filters based on Single-Ended

    Version?

    CRsV

    V

    i

    o 1

    +

    -

    iVR

    oV

    C

    +

    -iV

    oV

    R C

    +

    -

    iVR

    oV

    C

    +

    -

    -

    +R

    C

    R

    iV

    iV

    oVoV

    C

    By Edgar Sánchez-Sinencio 40

  • Particular Case. Assume no is Available.vi-

    Symmetric conditions

    Read fully balanced - fully

    symmetric circuits from 607.

    XQ RRRRR

    11111

    2303

    +

    -

    -

    ++

    -

    C

    C

    R

    R R

    RoViV

    oV

    iV

    -

    ++

    --

    +

    R2

    R3

    R01

    RQ

    RX

    R03

    R02

    C1 C

    2

    VBPV

    HPV

    LP

    iV

    State -Variable

    Filter

    +

    -

    iV

    oV

    R

    R-

    iV

    C

    C

    oV

    iV

    -+

    By Edgar Sánchez-Sinencio 41

  • KHN State Variable Two-Integrator Filter

    Use Mason’s Rule:

    Next we consider the fully-differential version of the KHN filter.

    ,1

    20202

    CRK

    ,03

    303

    R

    RK

    QQ

    R

    RK 3

    101

    01

    1

    CRK

    2

    332

    R

    RK

    030201012

    020132

    2

    03020101

    2020132

    1KKKsKKs

    KKK

    s

    KKK

    s

    KK

    sKKK

    V

    V

    QQi

    LP

    03K

    32K

    QK

    01K+

    BPViV s

    1

    02K

    LPV

    s1

    HPV

    By Edgar Sánchez-Sinencio 42

  • KHN Fully-Differential Version

    -+-+ +

    --+

    +

    -+-

    XR 03R

    3R QR

    01R

    1C

    1C3R

    2R

    2R

    QR

    03R

    XR

    02R

    02R

    2C

    2C

    iV

    iV

    LPV

    LPV

    By Edgar Sánchez-Sinencio 43

  • How can we take advantage of improved combination of ± QI in fully differential versions?

    QRR

    R/k

    A1

    C1+

    -A2

    +

    -

    C2R

    RR/k C1

    QRR

    C2

    inV

    inV

    oV

    oV

    QRR

    R/k

    A1

    C1+

    -A2

    +

    -

    C2R

    RR/k C1

    QRR

    C2

    inV

    inV

    oV

    oV

    SAME!

    By Edgar Sánchez-Sinencio 44

  • 622 (ESS)

    Effects of Non-Ideal Op Amps on the Tow-Thomas Biquad

    )3,2,1i(A When i

    2121

    21221

    32o

    2121

    2121o2

    AA

    1

    A

    1

    A

    11

    AQA

    1

    QA

    1

    AA

    2

    A

    21

    1

    AA

    1

    A

    1

    A

    11

    AA

    1Q3

    A

    Q1

    A

    1Q21

    QsssD

    are finite, the denominator becomes of the transfer function yields:

    R

    ( )

    ( )

    ( )

    ( )

    ( )

    ( )A1=∞

    A2=∞A3=∞

    Vi

    R/K

    QR

    C

    R

    VBPVLP

    -VLP

    C r

    r

    45By Edgar Sánchez-Sinencio

  • 3,2,1i,s

    GBALet ii

    Furthermore assume the range of interest .1Q,1GB

    and A

    GB

    i

    o

    oi

    i

    Then D(s) becomes:

    3

    o

    2

    o

    1

    o

    o

    2oa

    a

    oa2

    2o

    2

    oo2

    2

    o

    1

    o3

    3

    o

    2

    o

    1

    o

    o

    GB2

    GBGB

    ss

    QssD

    sGB

    1Q

    sGBGB

    21sGB

    2GBGB

    1)s(D

    Thus

    GB2

    3

    GB2

    1

    GB

    then,1 Q and 1for

    or

    1

    o

    2

    o

    1

    o

    a

    o

    ooa

    ooa

    GB2GB1GB

    46By Edgar Sánchez-Sinencio

  • o

    o

    ooa

    oa

    321

    3

    o

    2

    o

    1

    o

    a

    4

    GBQ

    or

    1GBQ4

    filter stablea for that Note

    1GB

    Q4for ,GB

    Q41QQ

    GBQ41

    QQ

    GBGBGB equalFor

    GB2

    GBGBQ1

    1

    Q

    Q

    47By Edgar Sánchez-Sinencio

  • ECEN 622 (ESS)

    TAMUKEY FILTER PARAMETERS IN ACTIVE-RC FILTERS

    • Dynamic Range

    • Signal-To-Noise Ratio

    • Total Output Noise

    • Noise Power Spectral Density

    • Total Area

    Resistor and Capacitors can be expressed as:

    resistor R of terminals theinput to thefrom function transfer theis fH Where

    1 r

    fH

    R2

    V

    R2

    HVfP

    dsinput yiel sinusoidala for ndissipatiopower resistor The

    ues.filter val normalized theare c and r where

    CcC,RrR

    i

    2i

    2i

    2ii

    R

    Reference. L. oth et all, “General Results for Resistive Noise in Active RC and MOSFET-C Filters”, IEEE Trans on Circuits

    and Systems II, Vol. 42, No. 12, pp. 785-793, December 1995.

    48By Edgar Sánchez-Sinencio

  • Focusing on the noise resistor, the power spectral density is given by

    (2) fHrkTR4fHkTR4fS2

    o2

    oR

    The definition of fH o is pictorially shown below:

    Thus, the total output noise (mean squared value) due to the resistors become

    In practice the upper limit of the integration is limited to a useful practical value.

    o RR

    dffSN

    +

    -Vi

    VR

    +

    -

    fHV o

    49By Edgar Sánchez-Sinencio

  • The signal-to-ratio for a given Vi and frequency f is given by

    2cc12c

    1

    BP

    BP

    2c

    c2

    c

    BP

    2

    R

    f2

    maxi

    max,R

    max,RRf

    R

    2i

    fjffQjf

    jffQfH

    yieldssH above thenotation following theUsing

    sQ

    s

    sQ

    sH

    examplefiler order BP-seconda consider usLet

    (4) N2

    fHmaxVDR

    Then resistors. thein ndissipatiopower specified maximum theis P where

    PfPmax

    and

    (3) N2

    fHVSNR

    50By Edgar Sánchez-Sinencio

  • 12

    icR Qaa

    R

    VfP

    For the biquad shown below

    and

    a

    a/Q1

    C

    kT2NR

    OBPR VaNa limited by linearity and by resistor power dissipation which is

    proportional to (a)2.

    R

    CC

    RQR/a

    QR/a 1/a

    VOBP

    -1Vi

    51By Edgar Sánchez-Sinencio

  • Fully Differential Fully Balanced Circuits

    What is the problem with single-input / single-output?

    A

    o

    o

    FZ1Z

    iVnV oV

    o

    A

    0

    A

    VVV

    ZZ

    ZVV

    on1

    F1

    1on

    )VV(Z

    Z1V

    VVVFor

    icmid1

    Fo

    icmidi

    No elimination of

    common-mode signal.

    How to solve this problem?

    o

    FZ1Z

    oVo

    1Z

    o

    2V

    1V

    FZ

    )VV(Z

    ZV 21

    1

    Fo

    No common-mode output.

    2

    )VV()VV(VVVFor 2121icmidi

    52By Edgar Sánchez-Sinencio

  • How to obtain a fully differential circuit?

    We will discuss two potential approaches

    Approach 1

    2PV

    FR

    o2V o

    1R

    1R 1oV

    FR

    o1V o

    1R

    1R 2oV

    FR

    2nV

    2P1P VV

    1PV1nV

    Remark:More robust to reject

    common-mode signals

    Approach 2

    FR

    o

    1V o

    1R

    )VV(R

    R

    )VV(R

    RV

    211

    F

    121

    F1o

    1PV

    1nV

    FR

    o

    o

    2V o

    o

    )VV(R

    RV 12

    1

    F2o

    2PV

    2nV

    FR

    o

    o

    )VVVV(R

    RVV 1221

    1

    F2o1o

    )VV(R

    R2V 21

    1

    FoD

    conditions 1P1n2P2n VV;VV

    Remark: sensitive to CM signals

    FR

    53By Edgar Sánchez-Sinencio

  • First-Order FB Low Pass with Op Amp

    *

    .subckt opamp non inv out

    rin non inv 100K

    egain 1 0 (non, inv) 200K

    ropen 1 2 2K

    copen 2 0 15.9155u

    eout 3 0 (2, 0) 1

    rout 3 out 50

    .ends

    *vin 3 31 ac 1.0

    vin 31 0 ac 1.0

    x1 4 1 2 opamp

    x2 4 11 22 opamp

    R1 3 1 1K

    R11 3 4 1K

    R1B 31 4 1K

    R1BB 31 11 1K

    RF1 2 1 1K

    RF1B 22 11 1K

    RF11 4 0 1K

    RF11B 4 0 1K

    C1 2 1 0.159155u

    C1B 22 11 0.159155u

    C1A 4 0 0.159155u

    C11B 4 0 0.159155u

    rdummy 3 31 1

    .ac dec 10 10Hz 10KHz

    .probe

    .end

    1C

    1FR

    oiV

    o

    1R

    11R11FR

    A1C

    B11C

    o

    iVo

    B1R

    BB1R

    B1C

    B1FR

    oV

    B11FR

    oV

    22

    1131

    4

    23 1

    54By Edgar Sánchez-Sinencio

  • Fully Balanced T-T Active-RC Implementation

    1C

    2C

    1oRR

    R

    2oR

    o oV

    QR

    o

    iV

    o

    R

    KR

    KR 1oRQR

    2oR

    1C

    QR

    2oR

    1C

    R

    R

    2C

    2C

    1oR

    R

    o

    o

    iV

    o R

    KR

    KR

    oV

    1oR1C

    QR

    R

    2C

    2oR

    55By Edgar Sánchez-Sinencio

  • Introduction to Matlab and

    Simulink For Filter Design

    622 Active Filters

    By Edgar Sánchez-Sinencio

    Texas A&M University

    56By Edgar Sánchez-Sinencio

  • Example 1: Ideal Integrator

    57

    R = 1K C = 0.159mF

    By Edgar Sánchez-Sinencio

  • Bode Plot: Ideal Integrator (Matlab)

    s=tf(‘s’);

    R=1e3; %Resistor Value

    C=0.159e-3; %Capacitor Value

    hs=1/(R*C*s); %hs= Vo(s)/Vi(s)

    figure(1)

    bode(hs) %Create Bode Plot

    grid minor %Add grid to plot

    H= gcr; %change X-axis

    units

    h.AxesGrid.Xunits = ‘Hz’; %Set units to

    Hz

    pole(hs); %calculates hs poles

    zero(hs); %calculates hs zeros

    58

    -20

    -10

    0

    10

    20

    30

    Magnitu

    de (

    dB

    )

    10-1

    100

    101

    -91

    -90.5

    -90

    -89.5

    -89

    Phase (

    deg)

    Bode Diagram

    Frequency (Hz)

    By Edgar Sánchez-Sinencio

  • 59

    2) Go to: Tools => Control Design=> Linear Analysis 3) Then press: Linearize model

    1) Create Model using Gain, Integrator, and In/Out blocks

    Bode Plot: Ideal Integrator (Simulink)

    By Edgar Sánchez-Sinencio

  • Tow-Thomas Biquad (Simulink)

    60By Edgar Sánchez-Sinencio

  • Output Waveform (Scope)

    61By Edgar Sánchez-Sinencio

  • Integrator Non-ideal amplifier

    62

    clear clcs=tf('s'); R=1; %Resistor ValueC=0.159e-3; %Capacitor Valuehs1=-1/(R*C*s); %hs= Vo(s)/Vi(s)figure(1) bodemag(hs1)hold onf=1e3;for i=1:5;GBW=2*pi*f;A=GBW/s;Beta=R/(R+1/(s*C));hs2=-1/(R*C*s)*1/(1+1/(A*Beta));hold onbodemag(hs2,{2*pi*1,2*pi*1e5}) f=10*f;endgrid minor %Add grid to ploth= gcr; %change X-axis unitsh.AxesGrid.Xunits = 'Hz'; %Set units to Hzlegend('ideal', 'GBW=1kHz','GBW=10kHz', 'GBW=100kHz','GBW=1MHz', 'GBW=10MHz',1)

    100

    101

    102

    103

    104

    105

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    Magnitu

    de (

    dB

    )

    Bode Diagram

    Frequency (Hz)

    ideal

    GBW=1kHz

    GBW=10kHz

    GBW=100kHz

    GBW=1MHz

    GBW=10MHz

    By Edgar Sánchez-Sinencio

  • Filter Approximation: Low-Pass Butterworth

    63

    The squared magnitude of a low-pass butterworth filter is given by:

    By Edgar Sánchez-Sinencio

  • Pole-zero plot

    64

    Pole-Zero Map

    Real Axis

    Imagin

    ary

    Axis

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    10.080.170.280.380.50.64

    0.8

    0.94

    0.080.170.280.380.50.64

    0.8

    0.94

    0.2

    0.4

    0.6

    0.8

    1

    0.2

    0.4

    0.6

    0.8

    1

    By Edgar Sánchez-Sinencio

  • Bode Plot

    65

    -120

    -100

    -80

    -60

    -40

    -20

    0M

    agnitu

    de (

    dB

    )

    10-2

    10-1

    100

    101

    102

    -270

    -180

    -90

    0

    Phase (

    deg)

    Bode Diagram

    Frequency (rad/sec)

    By Edgar Sánchez-Sinencio

  • Low-pass Chebyshev Filter

    • Use the Matlab cheb1ap function to design a second order

    Type I Chebyshev low-pass filter with 3dB ripple in the pass

    band

    w=0:0.05:400; % Define range to plot

    [z,p,k]=cheb1ap(2,3);

    [b,a]=zp2tf(z,p,k); % Convert zeros and poles of G(s) to polynomial form

    bode(b,a)

    grid minor;

    66By Edgar Sánchez-Sinencio

  • Low-pass Chebyshev Filter

    67

    -80

    -60

    -40

    -20

    0

    Magnitu

    de (

    dB

    )

    10-2

    10-1

    100

    101

    102

    -180

    -135

    -90

    -45

    0

    Phase (

    deg)

    Bode Diagram

    Frequency (rad/sec)

    By Edgar Sánchez-Sinencio

  • Low-pass Chebyshev Filter

    w=0:0.01:10;

    [z,p,k]=cheb1ap(2,3);

    [b,a]=zp2tf(z,p,k);

    Gs=freqs(b,a,w);

    xlabel('Frequency in rad/s');

    ylabel('Magnitude of G(s)');

    semilogx(w,abs(Gs));

    title('Type 1 Chebyshev Low-Pass Filter');

    Grid;

    68

    % Another way to write the code!

    By Edgar Sánchez-Sinencio

  • Low-pass Chebyshev Filter

    69

    10-2

    10-1

    100

    101

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Type 1 Chebyshev Low-Pass Filter

    By Edgar Sánchez-Sinencio

  • Inverse Chebyshev• Using the Matlab cheb2ap function, design a third order

    Type II Chebyshev analog filter with 3dB ripple in the stop band.

    w=0:0.01:1000;

    [z,p,k]=cheb2ap(3,3);

    [b,a]=zp2tf(z,p,k); Gs=freqs(b,a,w);

    semilogx(w,abs(Gs));

    xlabel('Frequency in rad/sec');

    ylabel('Magnitude of G(s)');

    title('Type 2 Chebyshev Low-Pass Filter, k=3, 3 dB ripple in stop band');

    grid

    70By Edgar Sánchez-Sinencio

  • Inverse Chebyshev

    71

    10-2

    10-1

    100

    101

    102

    103

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Frequency in rad/sec

    Magnitude o

    f G

    (s)

    Type 2 Chebyshev Low-Pass Filter, k=3, 3 dB ripple in stop band

    By Edgar Sánchez-Sinencio

  • Elliptic Low-Pass Filter

    • Use Matlab to design a four pole elliptic analog low-pass filterwith 0.5dB maximum ripple in the pass-band and 20dBminimum attenuation in the stop-band with cutoff frequency at200 rad/s.

    w=0: 0.05: 500;

    [z,p,k]=ellip(4, 0.5, 20, 200, 's');

    [b,a]=zp2tf(z,p,k);

    Gs=freqs(b,a,w);

    plot(w,abs(Gs))

    title('4-pole Elliptic Low Pass Filter');

    grid

    72By Edgar Sánchez-Sinencio

  • Elliptic Low-Pass Filter

    73

    0 50 100 150 200 250 300 350 400 450 5000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    14-pole Elliptic Low Pass Filter

    By Edgar Sánchez-Sinencio

  • Transformation Methods

    • Transformation methods have been developed where a low

    pass filter can be converted to another type of filter by simply

    transforming the complex variable s.

    • Matlab lp2lp, lp2hp, lp2bp, and lp2bs functions can be used to

    transform a low pass filter with normalized cutoff frequency,

    to another low-pass filter with any other specified frequency,

    or to a high pass filter, or to a band-pass filter, or to a band

    elimination filter, respectively.

    74By Edgar Sánchez-Sinencio

  • LPF with normalized cutoff frequency, to

    another LPF with any other specified frequency

    • Use the MATLAB buttap and lp2lp functions to find the transfer function of a third-order Butterworth low-pass filter with cutoff frequency fc=2kHz.

    % Design 3 pole Butterworth low-pass filter (wcn=1 rad/s)

    [z,p,k]=buttap(3);

    [b,a]=zp2tf(z,p,k); % Compute num, den coefficients of this filter (wcn=1rad/s)

    f=1000:1500/50:10000; % Define frequency range to plot

    w=2*pi*f; % Convert to rads/sec

    fc=2000; % Define actual cutoff frequency at 2 KHz

    wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec

    [bn,an]=lp2lp(b,a,wc); % Compute num, den of filter with fc = 2 kHz

    Gsn=freqs(bn,an,w); % Compute transfer function of filter with fc = 2 kHz

    semilogx(w,abs(Gsn));

    grid;

    xlabel('Radian Frequency w (rad/sec)')

    ylabel('Magnitude of Transfer Function')

    title('3-pole Butterworth low-pass filter with fc=2 kHz or wc = 12.57 kr/s')

    75By Edgar Sánchez-Sinencio

  • LPF with normalized cutoff frequency, to

    another LPF with any other specified frequency

    76

    103

    104

    105

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Radian Frequency w (rad/sec)

    Magnitude o

    f T

    ransfe

    r F

    unction

    3-pole Butterworth low-pass filter with fc=2 kHz or wc = 12.57 kr/s

    By Edgar Sánchez-Sinencio

  • • Use the MATLAB commands cheb1ap and lp2hp to find the transfer function ofa 3-pole Chebyshev high-pass analog filter with cutoff frequency fc = 5KHz.

    % Design 3 pole Type 1 Chebyshev low-pass filter, wcn=1 rad/s

    [z,p,k]=cheb1ap(3,3);

    [b,a]=zp2tf(z,p,k); % Compute num, den coef. with wcn=1 rad/s

    f=1000:100:100000; % Define frequency range to plot

    fc=5000; % Define actual cutoff frequency at 5 KHz

    wc=2*pi*fc; % Convert desired cutoff frequency to rads/sec

    [bn,an]=lp2hp(b,a,wc); % Compute num, den of high-pass filter with fc =5KHz

    Gsn=freqs(bn,an,2*pi*f); % Compute and plot transfer function of filter with fc = 5 KHz

    semilogx(f,abs(Gsn));

    grid;

    xlabel('Frequency (Hz)');

    ylabel('Magnitude of Transfer Function')

    title('3-pole Type 1 Chebyshev high-pass filter with fc=5 KHz ')

    77

    High-Pass Filter

    By Edgar Sánchez-Sinencio

  • High-Pass Filter

    78

    103

    104

    105

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Frequency (Hz)

    Magnitude o

    f T

    ransfe

    r F

    unction

    3-pole Chebyshev high-pass filter with fc=5 KHz

    By Edgar Sánchez-Sinencio

  • Band-Pass Filter

    • Use the MATLAB functions buttap and lp2bp to find the transfer function of a 3-pole Butterworth analog band-pass filter with the pass band frequency centered at fo = 4kHz , and bandwidth BW =2KHz.

    [z,p,k]=buttap(3); % Design 3 pole Butterworth low-pass filter with wcn=1 rad/s

    [b,a]=zp2tf(z,p,k); % Compute numerator and denominator coefficients for wcn=1 rad/s

    f=100:100:100000; % Define frequency range to plot

    f0=4000; % Define centered frequency at 4 KHz

    W0=2*pi*f0; % Convert desired centered frequency to rads/s

    fbw=2000; % Define bandwidth

    Bw=2*pi*fbw; % Convert desired bandwidth to rads/s

    [bn,an]=lp2bp(b,a,W0,Bw); % Compute num, den of band-pass filter

    % Compute and plot the magnitude of the transfer function of the band-pass filter

    Gsn=freqs(bn,an,2*pi*f);

    semilogx(f,abs(Gsn));

    grid;

    xlabel('Frequency f (Hz)');

    ylabel('Magnitude of Transfer Function');

    title('3-pole Butterworth band-pass filter with f0 = 4 KHz, BW = 2KHz')

    79By Edgar Sánchez-Sinencio

  • Band-Pass Filter

    80

    102

    103

    104

    105

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Frequency f (Hz)

    Magnitude o

    f T

    ransfe

    r F

    unction

    3-pole Butterworth band-pass filter with f0 = 4 KHz, BW = 2KHz

    By Edgar Sánchez-Sinencio

  • Band-Elimination (band-stop) Filter

    • Use the MATLAB functions buttap and lp2bs to find the transfer function of a 3-pole Butterworth band-elimination (band-stop) filter with the stop band frequency centered at fo = 5 kHz , and bandwidth BW = 2kHz.

    [z,p,k]=buttap(3); % Design 3-pole Butterworth low-pass filter, wcn = 1 r/s

    [b,a]=zp2tf(z,p,k); % Compute num, den coefficients of this filter, wcn=1 r/s

    f=100:100:100000; % Define frequency range to plot

    f0=5000; % Define centered frequency at 5 kHz

    W0=2*pi*f0; % Convert centered frequency to r/s

    fbw=2000; % Define bandwidth

    Bw=2*pi*fbw; % Convert bandwidth to r/s

    % Compute numerator and denominator coefficients of desired band stop filter

    [bn,an]=lp2bs(b,a,W0,Bw);

    % Compute and plot magnitude of the transfer function of the band stop filter

    Gsn=freqs(bn,an,2*pi*f);

    semilogx(f,abs(Gsn));

    grid;

    xlabel('Frequency in Hz'); ylabel('Magnitude of Transfer Function');

    title('3-pole Butterworth band-elimination filter with f0=5 KHz, BW = 2 KHz')

    81By Edgar Sánchez-Sinencio

  • Band-Elimination (band-stop) Filter

    82

    102

    103

    104

    105

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Frequency in Hz

    Magnitude o

    f T

    ransfe

    r F

    unction

    3-pole Butterworth band-elimination filter with f0=5 KHz, BW = 2 KHz

    By Edgar Sánchez-Sinencio

  • How to find the minimum order to meet

    the filter specifications ?

    The following functions in Matlab can help you to find the

    minimum order required to meet the filter specifications:

    • Buttord for butterworth

    • Cheb1ord for chebyshev

    • Ellipord for elliptic

    • Cheb2ord for inverse chebyshev

    83By Edgar Sánchez-Sinencio

  • Calculating the order and cutoff frequency

    of a inverse chebyshev filter

    • Design a 4MHz Inverse Chebyshev approximation with Ap gain at passband corner.

    The stop band is 5.75MHz with -50dB gain at stop band.

    clear all;

    Fp = 4e6; Wp=2*pi*Fp;

    Fs=1.4375*Fp; Ws=2*pi*Fs;

    Fplot = 20*Fs;

    f = 1e6:Fplot/2e3:Fplot ;

    w = 2*pi*f;

    Ap = 1;

    As = 50;

    % Cheb2ord helps you find the order and wn (n and Wn) that

    %you can pass to cheby2 command.

    [n, Wn] = cheb2ord(Wp, Ws, Ap, As, 's');

    [z, p, k] = cheby2(n, As, Wn, 'low', 's');

    [num, den] = cheby2(n, As, Wn, 'low', 's');

    bode(num, den)

    84By Edgar Sánchez-Sinencio

  • Bode Plot

    85

    -200

    -150

    -100

    -50

    0

    Magnitu

    de (

    dB

    )

    105

    106

    107

    108

    109

    1010

    540

    720

    900

    1080

    1260

    Phase (

    deg)

    Bode Diagram

    Frequency (rad/sec)

    By Edgar Sánchez-Sinencio

  • References

    [1] S. T. Karris, “Signals and Systems with Matlab

    Computing and Simulink Modeling,” Fifth Edition.

    Orchard Publications

    [2] Matlab Help Files

    86By Edgar Sánchez-Sinencio