eco‐evolutionary feedbacks—theoretical models and ......university, montreal, quebec,...

18
Functional Ecology. 2018;1–18. wileyonlinelibrary.com/journal/fec | 1 © 2018 The Authors. Functional Ecology © 2018 British Ecological Society Received: 29 May 2018 | Accepted: 30 October 2018 DOI: 10.1111/1365-2435.13241 ECO‐EVOLUTIONARY DYNAMICS ACROSS SCALES Eco‐evolutionary feedbacks—Theoretical models and perspectives Lynn Govaert 1,2,3* | Emanuel A. Fronhofer 4* | Sébastien Lion 5 | Christophe Eizaguirre 6 | Dries Bonte 7 | Martijn Egas 8 | Andrew P. Hendry 9 | Ayana De Brito Martins 10 | Carlos J. Melián 10 | Joost A. M. Raeymaekers 11 | Irja I. Ratikainen 12,13 | Bernt‐Erik Saether 12 | Jennifer A. Schweitzer 14 | Blake Matthews 2 1 Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium; 2 Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; 3 Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland; 4 ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France; 5 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France; 6 Queen Mary University of London, London, UK; 7 Department of Biology, Ghent University, Ghent, Belgium; 8 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; 9 Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada; 10 Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; 11 Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; 12 Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway; 13 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK and 14 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee * These authors contributed equally to this work. Correspondence Emanuel A. Fronhofer Email: [email protected] Handling Editor: Charles Fox Abstract 1. Theoretical models pertaining to feedbacks between ecological and evolutionary processes are prevalent in multiple biological fields. An integrative overview is currently lacking, due to little crosstalk between the fields and the use of different methodological approaches. 2. Here, we review a wide range of models of eco-evolutionary feedbacks and high- light their underlying assumptions. We discuss models where feedbacks occur both within and between hierarchical levels of ecosystems, including populations, com- munities and abiotic environments, and consider feedbacks across spatial scales. 3. Identifying the commonalities among feedback models, and the underlying as- sumptions, helps us better understand the mechanistic basis of eco-evolutionary feedbacks. Eco-evolutionary feedbacks can be readily modelled by coupling de- mographic and evolutionary formalisms. We provide an overview of these ap- proaches and suggest future integrative modelling avenues. 4. Our overview highlights that eco-evolutionary feedbacks have been incorporated in theoretical work for nearly a century. Yet, this work does not always include the notion of rapid evolution or concurrent ecological and evolutionary time scales. We show the importance of density- and frequency-dependent selection for feedbacks, as well as the importance of dispersal as a central linking trait between ecology and evolution in a spatial context. KEYWORDS demography, eco-evolutionary dynamics, ecology, feedback, modelling, rapid evolution, theory

Upload: others

Post on 15-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

Functional Ecology. 2018;1–18. wileyonlinelibrary.com/journal/fec  | 1© 2018 The Authors. Functional Ecology © 2018 British Ecological Society

Received:29May2018  |  Accepted:30October2018DOI:10.1111/1365-2435.13241

E C O ‐ E V O L U T I O N A R Y D Y N A M I C S A C R O S S S C A L E S

Eco‐evolutionary feedbacks—Theoretical models and perspectives

Lynn Govaert1,2,3* | Emanuel A. Fronhofer4*  | Sébastien Lion5 | Christophe Eizaguirre6 | Dries Bonte7  | Martijn Egas8 | Andrew P. Hendry9  | Ayana De Brito Martins10 | Carlos J. Melián10 | Joost A. M. Raeymaekers11 | Irja I. Ratikainen12,13 | Bernt‐Erik Saether12 | Jennifer A. Schweitzer14 | Blake Matthews2

1LaboratoryofAquaticEcology,EvolutionandConservation,KULeuven,Leuven,Belgium;2DepartmentofAquaticEcology,Eawag:SwissFederalInstituteofAquaticScienceandTechnology,Dübendorf,Switzerland;3DepartmentofEvolutionaryBiologyandEnvironmentalStudies,UniversityofZurich,Zürich,Switzerland;4ISEM,CNRS,IRD,EPHE,UniversitédeMontpellier,Montpellier,France;5Centred'EcologieFonctionnelleetEvolutive,CNRS,IRD,EPHE,UniversitédeMontpellier,Montpellier,France;6QueenMaryUniversityofLondon,London,UK;7DepartmentofBiology,GhentUniversity,Ghent,Belgium;8InstituteforBiodiversityandEcosystemDynamics,UniversityofAmsterdam,Amsterdam,TheNetherlands;9RedpathMuseumandDepartmentofBiology,McGillUniversity,Montreal,Quebec,Canada;10FishEcologyandEvolutionDepartment,CenterforEcology,EvolutionandBiogeochemistry,Eawag:SwissFederalInstituteofAquaticScienceandTechnology,Dübendorf,Switzerland;11FacultyofBiosciencesandAquaculture,NordUniversity,Bodø,Norway;12DepartmentofBiology,CentreforBiodiversityDynamics,NorwegianUniversityofScienceandTechnology,Trondheim,Norway;13InstituteofBiodiversity,AnimalHealthandComparativeMedicine,UniversityofGlasgow,Glasgow,UKand14DepartmentofEcologyandEvolutionaryBiology,UniversityofTennessee,Knoxville,Tennessee

*Theseauthorscontributedequallytothiswork.

CorrespondenceEmanuelA.FronhoferEmail:[email protected]

HandlingEditor:CharlesFox

Abstract1. Theoreticalmodelspertainingtofeedbacksbetweenecologicalandevolutionaryprocesses areprevalent inmultiplebiological fields.An integrativeoverview iscurrentlylacking,duetolittlecrosstalkbetweenthefieldsandtheuseofdifferentmethodologicalapproaches.

2. Here,wereviewawiderangeofmodelsofeco-evolutionaryfeedbacksandhigh-lighttheirunderlyingassumptions.Wediscussmodelswherefeedbacksoccurbothwithinandbetweenhierarchicallevelsofecosystems,includingpopulations,com-munitiesandabioticenvironments,andconsiderfeedbacksacrossspatialscales.

3. Identifying the commonalities among feedbackmodels, and the underlying as-sumptions,helpsusbetterunderstandthemechanisticbasisofeco-evolutionaryfeedbacks.Eco-evolutionaryfeedbackscanbereadilymodelledbycouplingde-mographic and evolutionary formalisms.We provide an overview of these ap-proachesandsuggestfutureintegrativemodellingavenues.

4. Ouroverviewhighlightsthateco-evolutionaryfeedbackshavebeenincorporatedintheoreticalworkfornearlyacentury.Yet,thisworkdoesnotalwaysincludethenotionofrapidevolutionorconcurrentecologicalandevolutionarytimescales.We show the importance of density- and frequency-dependent selection forfeedbacks,aswellastheimportanceofdispersalasacentrallinkingtraitbetweenecologyandevolutioninaspatialcontext.

K E Y W O R D S

demography,eco-evolutionarydynamics,ecology,feedback,modelling,rapidevolution,theory

Page 2: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

2  |    Functional Ecology GOVAERT ET Al.

1  | INTRODUC TION

Feedbacksarerelevanttomanybiologicalsystemsandarecentraltoecologyandevolutionarybiology(Robertson,1991).Whileecologyaims tounderstand the interactionsbetween individualsand theirenvironment,evolutionreferstochangesinallelefrequenciesovertime.Inthepast,bothfieldshave,toalargeextent,beenstudiedinisolation.Evolutionaryecology(e.g.Roughgarden,1979)isanotableexception,where links between ecology and evolution are key toempiricalandtheoreticalresearch.

One of the pioneering studies on feedbacks between ecologyandevolutiondatesbacktoPimentel’sworkon“geneticfeedback”(Pimentel,1961).Inthisfeedback,frequenciesanddensitiesofdif-ferent genotypes in ahostpopulation shift theoverall populationdensity.Thischange indensitymodifiesselectiononthehostandconsequentlyshiftsgenotypefrequencies.Anotherearlyfeedbackconceptofgreatimportanceisdensity-dependentselection(Chitty,1967)wherethestrengthofselectionchangesduetochangingpop-ulation densities and vice versa (crowding; see also Clarke, 1972;Travis,Leips,&Rodd,2013).

Inrecentyears,therecognitionthatevolutioncanberapidandoccur on similar time scales as ecology (Hairston, Ellner, Geber,Yoshida,&Fox,2005;Hendry&Kinnison,1999)haspromptedre-search at the interfacebetween the twodisciplines (often termed“eco-evolutionary dynamics”; Hendry, 2017) and renewed theinterest in feedbacks between ecological and evolutionary pro-cesses[“eco-evolutionaryfeedbacks”(EEF);seeFigure1a;Ferrière,Dieckmann,&Couvet,2004;Pelletier,Garant,&Hendry,2009;Post&Palkovacs, 2009]. Eco-evolutionary feedbacks involve situationswhereanecologicalpropertyinfluencesevolutionarychange,whichthenfeedsbacktoanecologicalproperty,orviceversa.Classicalem-piricalexamplesincludethatpredation(ecologicalproperty)canleadto selection on defence traits in prey (evolutionary change)whichinturnfeedsbackonpredator–preydynamicsandshiftsthephaseof predator–preyoscillations (feedbackonecological property; re-viewedinHiltunen,Hairston,Hooker,Jones,&Ellner,2014).

Contemporary theory aboutEEFsbuildsonmanyof the samefundamentalideasestablishedbyPimentel(1961)andChitty(1967),andfeedbacksremaincentraltothedevelopmentoftheoryinevo-lutionary ecology (for recent overview see Lion, 2018; McPeek,2017).Suchfeedbackshavebeenfoundtogeneratespatialvariationinbioticinteractions(geographicmosaicofcoevolution;Thompson,2005),impactpopulationregulationandcommunitydynamics(e.g.,Abrams &Matsuda, 1997; Patel, Cortez, & Schreiber, 2018), andlead to species coexistence via stabilizingmechanisms (Kremer &Klausmeier, 2017), to name but a few examples. Besides theoret-icalwork, empirical and especially experimental tests of eco-evo-lutionary dynamics and feedbacks have increased recently (e.g.,Becks,Ellner,Jones,&Hairston,2010,2012;Brunner,Anaya-Rojas,Matthews,&Eizaguirre,2017;Schoener,2011;Turcotte,Reznick,&Hare,2011;Yoshida,Jones,Ellner,Fussmann,&Hairston,2003),andhavestronglycontributedtoourunderstandingonEEFs.

TheincreasingevidenceontheimportanceofEEFshasresultedin a series of existing literature reviews (e.g. Bailey& Schweitzer,2016;Fussmann,Loreau,&Abrams,2007;Hendry,2017;Pelletieretal.,2009;Post&Palkovacs,2009;Shefferson&Salguero-Gómez,2015; Van Nuland etal., 2016). These reviews, however, havebeenratherattheintersectionofempiricalandtheoreticalstudies(Fussmannetal.,2007),focusonparticularsystems(e.g.,plant–soilfeedbacks Bailey & Schweitzer, 2016; terHorst & Zee, 2016; VanNuland etal., 2016) or very broadly discuss eco-evolutionary dy-namics (e.g. Hendry, 2017). None of these overviews include thetheoretical literature in its full diversity, neither do they explicitlycomparedifferentmodellingframeworksforstudyingEEFs.

Here, we provide an overview of theoretical work that in-cludesEEFs(foracomprehensiveoverviewofempiricalworkseeHendry,2017)asanattempttoprovideaconceptualunificationthatfurthersourgeneralunderstandingofeco-evolutionaryfeed-back theory. While this review is focused on theoretical work,theinsightslearntarevaluablefortestingpredictionsempirically.Currently,therelevanttheoryvariesinmethodologicalapproaches(e.g., quantitative genetics and adaptivedynamics) andbetweenthematic subdisciplines (e.g., evolutionary rescue or suicide andnicheconstruction)withmostlysubtle,andattimessemantic,dis-tinctionsbetweenthem(Matthewsetal.,2014).Inanattempttobridgetheseboundaries,weorganizeournonexhaustiveoverviewaroundtwoaxesofbiologicalcomplexity:community(fromsingletomulti-speciesmodels)andspatialcomplexity(fromnonspatialtospatiallyexplicitmodels).Ourreviewfocusesspecificallyonfeed-backsanddiscussesEEFs inatheoreticalcontextacrossabroad

F I G U R E 1  Eco-evolutionaryfeedbacks(EEF).(a)Genericrepresentationoffeedbacksbetweenecology(greybox)andevolution(greenbox)implyingthattheeffectofanecologicalproperty(e.g.,demography)canbetracedtoevolutionarychange(e.g.,shiftinallelefrequencies;eco-to-evo)andbackagaintoanecologicalproperty(evo-to-eco)orviceversa.(b)Examplesofdemographic(ecological)andevolutionarymodellingformalismsthatcanbecoupledtoanalyseEEFs.Ofcourse,ODEsandIBMscanbeusedtomodelevolution,but,strictlyspeaking,theywillmakeuseofsomeoftheevolutionarymodellingframeworks,likeQGorgeneticalgorithms(GA),todoso.Theboxtypesandcolourswillbeusedthroughoutthetexttoimplyecologicalorevolutionaryaspects,respectively.Foradetailedexplanationofabbreviations,seeBox1

Ecology Evolution

species distributions,demography

interactions, etc.

distribution oftraits and/or

alleles

(a) Generic eco-evolutionary feedback patterns

Ecology Evolution

ODEs, difference equations,

matrix models,IPMs, IBMs, etc.

QG, game theory, AD, genetic algorithms

(b) Examples of modelling formalisms

Page 3: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  3Functional EcologyGOVAERT ET Al.

scaleofbiological levelswithastrongmethodologicalfocus.WesummarizeavailableformalismsusedtostudyEEFstheoretically,highlight their underlying assumptions and give an overview ofexisting theoreticalwork tohighlight researchgaps.WeuseoursynthesistoexpandthegenericfeedbackloopshowninFigure1aand to suggest a more mechanistic representation. Lastly, wemakesuggestionsforfuturedirectionsandwaystoovercomethebarriersthathavesofarpreventedsynthesisoftheoryinthisfield.

2  | FORMALISMS USED FOR MODELLING EEFS

Theoreticiansuseavarietyofdemographicmodelstostudythein-terplaybetweenecologyandevolution,includingclassicalordinarydifferentialequationmodels(ODEs,e.g.,Lotka–Volterraequations,for explanations and abbreviations of recurring terms see Box1),

structuredmodels(matrixmodels,physiologicallystructuredpopu-lationmodels,integralprojectionmodels)orstochasticagent-basedmodels.Byintroducinggeneticvariation(viastandinggeneticvari-ation and/ormutations) inoneor several populations, themodelscancaptureEEFs (Figure1b).Becausesuchmodelsarenotalwaysanalyticallytractable,variousformalisms,suchasadaptivedynamics(AD)andquantitativegenetics(QG),havebeendevelopedtofurtherour understanding of EEFs. Typically, these approaches takeEEFsintoaccount throughsimplifyingassumptionsonthetimescaleofecologicalandevolutionaryprocessesandonthemutationregime(reviewedinLion,2018).

Models usingAD rely on a separation of time scales betweenecologicalandevolutionarydynamics.Specifically,thesemodelsas-sume thatmutations are so rare that the ecological community isalwaysonitsattractor,sothattheevolutionarydynamicstaketheformofatemporalsequenceofallelesubstitutions (i.e.,mutation-limitedevolution).Thesuccessofamutantalleleisthenmeasured

BOX 1 Explanation of terms and abbreviations

Adaptive dynamics (AD):ADisamathematicalformalismthatprovidesadynamicalextensionofclassicaloptimizationapproachesandevolutionarygametheorytoincludedensityandfrequencydependence(Diekmann,2004;Waxman&Gavrilets,2005).Thismakeseco-evolutionaryfeedbackscentraltoAD.Dispersal:Dispersalisthemovementofindividualsawayfromtheirparentswithpotentialconsequencesforgeneflow(Clobertetal.,2012).Eco‐evolutionary feedback (EEF):Areciprocalinteractionbetweenanecologicalandevolutionaryprocesses(seeFigure1a).Theecologicalpropertyinfluencedbyevolutionarychangeneednotbethesameecologicalpropertythatledtotheevolutionarychange(narrowandbroadsensefeedbackssensuHendry,2017).Evolutionary rescue (ER) and suicide (ES):ERistheideathatapopulationcanavoidextinctionthroughrapidadaptation(Gonzalezetal.,2013).Bycontrast,ESistheprocessbywhichevolutiondrivesapopulationbeyonditsviabilityregion,eventuallycausingextinction(Ferriere,2000).Evolutionary game theory:Abranchofmathematicsthatstudiestheinteractionsbetweenindividualsinwhichthestrategyexertedbyanindividualhasapay-off thatdependsonboth the individual’s strategyandthestrategiesof theother individuals involved (McGill&Brown,2007).Genetic algorithm (GA):Atypeofoptimizationalgorithmusingtechniquesfromevolutionarybiology(i.e.,mutation,inheritance,selectionandrecombination)tofindanoptimizedsolutiontoaproblem(e.g.,Fraser,1957).Individual‐based model (IBM):IBM(alsoagent-basedmodel,ABMs)arebottom-upmodelsinwhicha(meta)populationor(meta)communityismodelledasanumberofdiscreteinteractingindividuals,inwhicheachindividualischaracterizedbyasetofstatevariables(location,physiologicalorbehaviouraltraits).Theinteractionsbetweenindividualsresultin(meta)populationand(meta)communityor(meta)foodwebdynamics(DeAngelis&Mooij,2005;Grimm,1999).Integral projection model (IPM):IPMsdescribethedynamicsofapopulationbyprojectingitssizeortraitdistributionthroughtimeusingakerneldistribution that connects individual-levelvital rates suchas survival, reproductionanddevelopment topopulation-levelpro-cesses.IPMscanbecoupledwithADorQGapproaches(Rees&Ellner,2016).Lotka‐Volterra model (LV):TheLVmodel(namedafterAlfredLotkaandVitoVolterra)consistsofODEsdescribingpredatorandpreydy-namics.Modificationsofthebasicmodelinclude,forexample,theRosenzweig-MacArthurmodel.Matrix population model:Formalizesthelifecycleofapopulationinamatrixusingeitherdiscretelifestages(classicalmatrixpopulationmodels;Caswell,2006)oracontinuoustraitsuchasbodysize(see“integralprojectionmodel”above).Metapopulation and metacommunity:Ametapopulationsensu lato isaspatiallystructuredpopulation,connectedbydispersal (Hanski,1999;Harrison&Hastings,1996).Similarly,ametacommunityisaspatiallystructuredcommunity,connectedbydispersal(Leiboldetal.,2004).Quantitative genetics (QG):QGstudiesthegeneticbasisofphenotypicvariation,withafocusonthedynamicsofcontinuoustraitdistribu-tions(Lynch&Walsh,1998).

Page 4: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

4  |    Functional Ecology GOVAERT ET Al.

byitsinvasionfitness(Geritz,Kisdi,Meszena,&Metz,1998;Metz,Nisbet,&Geritz,1992).Theseparationoftimescalesbetweenecol-ogy and evolution, however, does notmean that there is no EEF.The feedback ismaterialized by the fact that the invasion fitnessofamutantalleledependsontheecologicalconditionscreatedbythe residentcommunity. In fact, theconceptofa “feedback loop”between ecology and evolution has been central in the develop-mentofAD(Ferrière&Legendre,2012).Nevertheless,thefocusonecologicalattractorsmaybea limitation.RecentworkbyChesson(2017)suggeststhatthereplacementofecologicalattractorswithtime-dependent environmental functions towhich the populationconvergesmayrepresentawayforward.

Quantitativegeneticsmodels,bycontrast,startfromadifferentperspectiveandexplicitlyconsiderevolutionresultingfromexistinggeneticvariation.Foragivenquantitativetrait,thesemodelstrackthedynamicsofdifferentmomentsofthetraitdistributionsthatarecentraltoeco-evolutionarydynamics(mean,variance,etc.;Chevin,Cotto,&Ashander,2017).Often,additionalassumptionshavetobemade,toallowforsimplifications.ManyQGmodelsassumethatthetraitdistributionisGaussianandtightlyclusteredaroundthemean(smallvarianceorweakselectionapproximation).Inthatcase,itbe-comespossibletoapproximatetheecologicaldynamicsofthefocalpopulationasifall individualshadthemeantraitvalue,andtoun-derstand thechange inmean trait in relation toa selectiongradi-ent,where the selectiongradient itselfdependson theecologicaldynamics(e.g.,Abrams&Matsuda,1997;Lion,2018;Luo&Koelle,2013).Thisallowsthecouplingofecologyandevolution,similarlytoAD,withthedifferencethatecologicaldynamicsdonothavetobeatequilibrium(noseparationoftimescales;seeLande,2007;Lande,Engen,&Saether,2009,fortheimpactofenvironmentalvariation).Therefore, QG models can focus on short-term dynamics, whichmakes them potentially more applicable to experiments or fieldstudieswhererapidevolutionisakeyprocess.

Onthedemographic (ecological)side,ODEs,matrixpopulationmodels(e.g.,integralprojectionmodels—IPMs)andindividual-basedmodels (IBMs) have been used to study population dynamics, buthavealsobeenusedtostudysimultaneouschangeinecological(e.g.,populationsize)andevolutionaryparameters(e.g.,strengthofselec-tion),withoutexplicitlyusingthetermEEF(seee.g.,Caswell,2006).However, ODEs and matrix population models can be combinedwith AD and QG approaches to investigate EEFs (Rees & Ellner,2016). Individual-basedmodelsmay rely on genetic algorithms tocaptureevolutionarydynamics(Fraser,1957).Inaddition,IBMslendthemselvesveryeasilytotheincorporationofcomplexitiessuchasstochasticity, spatial structure and kin competition (e.g. Poethke,Pfenning,&Hovestadt, 2007),which are often difficult to handleusinganalyticalmodels.

Whileallof theseapproachescanbeused toanswera similarquestion,thereareoftenbarrierstointegration,orstemming,forex-ample,fromthespecificvocabularyofthefield.Nevertheless,therehasbeensomerecentprogresstowardssynthesis(Abrams,Harada,&Matsuda,1993;Day,2005;Day&Gandon,2007;Lion,2018).Forexample,ithasbeenshownthatasadditivegeneticvarianceinQG

models becomes very small, resultswill converge to those of ADmodels,whichprovidesadirectlinkbetweenthesetwomethodol-ogies (e.g.,Kremer&Klausmeier,2013).Asanotherexample,Lion(2018)suggestedconsideringtheorganism–environmentfeedbackascentral toeco-evolutionarymodels. In this formalism, theenvi-ronmentalvectorcapturesbothfocalpopulationdensities,aswellasexternalvariablessuchasabioticenvironments,andresources.

Beyondthescopeofthisreviewarecomplexadaptivesystemsmodels such as Bruggeman and Kooijman (2007) or Leibold andNorberg (2004), to name but two examples. These models allowfordynamicssimilartotraitevolutionandsimultaneouslyconsiderlargenumbersofspecieswithphenotypesfinelyspacedalongoneormoretraitaxes.WenextprovideageneraloverviewonmodelsincludingEEFsandtheirresultsstartingfrompopulationstocommu-nitiestoendwithecosystemsandfoodwebs.

3  | EEFS WITHIN POPUL ATIONS

ManytheoreticalstudieshaveanalysedEEFswithinasinglepopu-lation in a temporal or spatial setting. In single-species nonspatialsettings, EEFs areusually consideredbetween changes inpopula-tionsizeandchangesinheritabletraits.Inaspatialsetting,EEFscanoccurbetweenlocalpopulationsizeandlocaltraitvalues,butalsoamongpatchesbetweenregional(meta)populationsizeandlocalorregionaltraitvalues.Inaddition,landscapestructure(topology,con-nectivity)mightinfluencelocalEEFs,butalsoinducefeedbacksonaregionalscale.Thisisbecausedispersal(demography)andgeneflow(populationgenetics)areintrinsicallylinked.

3.1 | Feedbacks in single populations

Feedbacksovertimecanbeintrinsictothepopulation,whenitoc-cursbetweenpopulationdensityandtraitvalues,orextrinsic,whenitoccursbetweentheavailabilityofresourcesandtraitvalues.Forexample, a quantitative trait subject to density-dependent or fre-quency-dependentselection (eco-to-evo)can influencepopulationgrowth rate (evo-to-eco; Engen, Lande, & Sӕther, 2013; Lande,2007;Travisetal., 2013).Density-or frequency-dependent selec-tionimpliesthatanindividual’sfitnessisnotonlydeterminedbyitstraitvalue,butalsobythepopulationdensityorbytheproportionofcertaingenotypes (Clarke,1972;Travisetal.,2013). Inthecaseofdensity-dependentselection,changingpopulationdensitiesshifttheselectionpressurefavouringdifferentgenotypesbecauseofdif-ferentialcompetitiveability. In turn,changingcompetitiveabilitiescreate varying ecological conditions leading to changes in density(Engenetal.,2013;Lande,2007;MacArthur,1962).

Lively (2012) used a one-locus two-allele genetic system (QGwith two types) to illustrate a feedback betweenpopulation den-sity and allele frequency change assuming density-dependent se-lection (Figure2a). Similarly, Lande (2007) and Engen etal. (2013)usedQGmodelslinkingtheevolutionofaquantitativetraittopop-ulationgrowth,strengthofdensitydependenceandenvironmental

Page 5: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  5Functional EcologyGOVAERT ET Al.

stochasticity.Theseauthorsfoundthatinaconstantenvironment,evolutionwillmaximizemean fitness andmean relative fitness inthepopulationwhichmaychangewhenpopulationsizes fluctuate(Sӕther&Engen,2015).Technically, theevolutionary responseofthe population due to a changing environment in thesemodels isdescribed using the phenotypic selection differential (accountingforindividualsurvivalandfecundity,butnotinheritance)orintermsoftheselectiongradient(Landeetal.,2009;Leon&Charlesworth,1978).

Theassumptionoffrequency-dependentselectionisparticularlyrelevantinthecontextofsexualselectionandmatechoice(Alonzo&Sinervo,2001).Evolutionarygametheorycanbeusedtomodelapopulationconsistingoffemaleandmalemorphswherefemalematepreferencedependsonthetotalpopulationsize(density-dependentselection),butalsoonfemalemorphfrequency(frequency-depen-dentselection;Figure2b).ThisleadstoanEEFbetweenpopulationsizeandmorphfrequenciesviadensity-andfrequency-dependentselection(eco-to-evo)andviafitnessdifferencesinthemorphs(evo-to-eco;reviewedinSmallegange,Rhebergen,VanGorkum,Vink,&Egas, 2018). Very similarmechanisms have been discussed in thecontext of the evolution of cooperation (e.g., Gokhale & Hauert,2016;Lehtonen&Kokko,2012).Forexample,ecologicalconditions,suchasresourcelimitationandvariability,mayselectfortheevolu-tionofcooperation (eco-to-evo),whichcanthenfeedbackonde-mography leadingto increasedpopulationsizes (“supersaturation,”

Fronhofer, Liebig,Mitesser, & Poethke, 2018; Fronhofer, Pasurka,Mitesser,&Poethke,2011).

Finally, a classical EEF over time is often termed evolutionaryrescue(ER,seeBox1;Gomulkiewicz&Holt,1995;Gonzalez,Ronce,Ferriere,&Hochberg,2013;Lynch,1993).Evolutionaryrescuemod-els haveeither used aQGapproach, focusingon thepopulation’scapacitytotrackgraduallychangingoptimaintime(Burger&Lynch,1995;Lande&Shannon,1996)orspace(Pease,Lande,&Bull,1989;Polechová, Barton, & Marion, 2009; Uecker, Otto, & Hermisson,2014) or a singlemutation approach inwhich a population is ex-posed toa suddensevereenvironmental change (Gomulkiewicz&Holt,1995;Orr&Unckless,2014;Uecker,2017).Interestingly,whileERleadstopopulationpersistence,adaptiveevolutionmightalsore-sultinevolutionarytrappingorsuicide(ES,Ferriere,2000;Parvinen&Dieckmann,2013).Inthelatter,traitchangedrasticallydegradespopulation viability leading to extinction (Engen & Sӕther, 2017;Ferrière&Legendre,2012)becauseselectionactingattheindivid-ualleveldoesnotnecessarilyoptimizepopulation-levelproperties.WhethertheresultisERorES,thesemodelsdemonstratethatEEFscanbeofapplied relevance toconservation, forexample. In sum-mary,feedbacksovertimeareusuallymediatedbyintrinsically(den-sity-/frequency-dependentselection)orextrinsically(environment)changingselectionpressures.Theconsequencesofthesefeedbacksmaybepositive (e.g., increaseddensitiesandsurvival)ornegative(ES)atthepopulationlevel.

3.2 | Feedbacks in spatially structured populations

SpatialmodelsallowforEEFsbetweenlocaldemographyormetap-opulationconditionsandanevolvingtrait.Thefeedbackcanbemod-ifiedbyexternalpropertiessuchaspatchdynamics(colonizationandextinctionrates;Hanski&Mononen,2011)or landscapestructure(Fronhofer&Altermatt,2017;Kubisch,Winter,&Fronhofer,2016).Inmodelswithdiscretehabitatpatches,dispersal isacentral traitconnecting local patches and can have important effects on bothecological (Clobert,Baguette,Benton,&Bullock,2012)andevolu-tionary(e.g.,canlimitorfavourlocaladaptation;Lenormand,2002;Nosil, Funk,&Ortitz-Barrientos, 2009; Räsänen&Hendry, 2008)processes.Theevolutionofdispersal likely is themost frequentlystudiedexampleofanEEFinfragmentedlandscapes(Legrandetal.,2017).

In a spatial model without dispersal evolution, GomulkiewiczandHolt(1995)showthatERcanbestronglyhamperedbystochas-ticity, for example, as a consequence of low population sizes (seeGomulkiewicz,Holt,&Barfield,1999;foranotherexampleofspatialER). Interestingly, theprobability of rescue canbe a nonmonotonicfunctionofmigrationrates(Ueckeretal.,2014).Ifdispersalisallowedtoevolve(Ronce,2007),itmaybemodelledasadiscretetraitwithdis-persingandresidentgenotypes(e.g.,Hanski&Mononen,2011),asaquantitativetrait(Hanski,2011),orevenasanevolvingreactionnorm(Poethke &Hovestadt, 2002; Travis &Dytham, 1999; for an over-viewonthegeneticsofdispersalandhowdispersal is incorporatedintomodels,seeSaastamoinenetal.,2018).Forexample,combining

F I G U R E 2  Examplesofstudiesinwhichfeedbacksoccurinasingle-speciesnonspatialsetting.(a)InLandeetal.(2009)andLively(2012)population,densitydeterminestheselectionpressure,resultinginevolutionofsomequantitativetrait(Landeetal.,2009)orshiftsindiscretegenotypefrequencies(Lively,2012).(b)InAlonzoandSinervo(2001)notonlypopulationdensitybutalsothefrequencyofmorphsdeterminematechoice,whichinturndeterminestheoutcomeofmorphfrequenciesinthenextgenerationinfluencingthetraitofmatechoiceagain

PoMorph frequency

Mate choice

Population density

Trait evolutionGenotype frequencies

Density-dependent selection

Competition/defense (trade-o�)

(a)

(b)

Pay-off matrix(rock-paper-siccor)

Density- andfrequency-dependent

Page 6: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

6  |    Functional Ecology GOVAERT ET Al.

stochasticpatchoccupancymodelswithdescriptionofmeanpheno-typicchangesinlocalpopulations,HanskiandMononen(2011)stud-iedanEEFbetweenpatchdynamics(colonizationandextinction)andthefrequencyofadispersergenotype(fordetailsseeFigure3a).

In spatial models, EEFs can link processes at different spatialscales.Forinstance,Poethke,Dytham,andHovestadt(2011)showthat theselective increase inpatchsize, forexample,asaconser-vationmeasure,canselectagainstdispersal(eco-to-evo)whichde-creasesre-colonizationprobabilitiesandcanleadtoES(evo-to-eco).Evolution can also rescue populations from extinction which willdepend on the rate of environmental change and landscape set-tings: ERmay be foundwhen environmental changes are not toofast (Schiffers,Bourne,Lavergne,Thuiller,&Travis,2013),but thecontraryhasalsobeenfound(Boeye,Travis,Stoks,&Bonte,2013).Similarly, in a range expansion context, Burton, Pillips, and Travis(2010)andFronhoferandAltermatt(2015)showedthattheecolog-icalprocessofarangeexpansioncanselectforincreaseddispersalatrangefronts(Travis&Dytham,2002)andmayfeedbackonthedistributionofpopulationdensitiesacrosstherangevialife-historytrade-offs.The importanceof landscape structure forEEFs is laidout inFronhoferandAltermatt (2017) (Figure3b).Taken together,spatialmodelsmayconsider local adaptation toabiotic conditionsasaheritabletraitandfixdispersalormayconsiderdispersalasanevolvingtrait.Altogether,thestudiesshowthatdispersalisanexcel-lentcandidatetolinkecology(demographyfromasinglepopulationormetapopulation)andevolution,makingdispersalcentraltoEEFs.

4  | EEFS INVOLVING T WO SPECIES

Inmulti-speciessystems,EEFscanbemediatedbyintra-andinter-specific densities that affect fitness and trait distributions (Travisetal.,2013).Inthefollowing,weconsiderfourmajorcategoriesoftwo-species interactions: interspecific competition, predator–prey,parasite–hostandmutualisticinteractions.

4.1 | Interspecific competition

Interspecific competition is a reciprocal interaction for a sharedlimiting resource (Dhondt,1989), suchas food. In this interaction,the competing species canevolvedifferent niches inorder to co-exist (Abrams,1986;Brown&Wilson,1956;Taper&Case,1992).Many studies have shown that competition-induced selection canresultinadaptivedivergencethroughecologicalcharacterdisplace-ment (Brown&Wilson,1956;Schluter,2000;Slatkin,1980;Taper&Case, 1992).However, other studies have shown that competi-tion could also lead to functional convergenceof the competitors(Abrams,1990; terHorst,Miller,&Powell,2010). In thesemodels,EEFsmay occur because competing species exert selection pres-sures that result in trait evolution (eco-to-evo) that might alterselection pressures on both species (evo-to-eco; e.g., Vasseur,Amarasekare,Rudolf,&Levine,2011;Figure4a).TheearliermodelsofcharacterdisplacementassumefixedvarianceandoftenassumeGaussianshapesforthespecies’characterdistribution(e.g.,Slatkin,1980).Recently,SasakiandDieckmann(2011)suggestedtheoligo-morphicapproximationasawaytodescribetheQGofanasexuallyreproducingpopulationthatconsistsofmultiplemorphs.SasakiandDieckmann(2011)thenusedthisapproachtogainamoredetailedunderstandingon thedynamicsofevolutionarybranching ina re-sourcecompetitionmodelandshowed,amongotheraspects,howtoobtainthresholdconditionsforevolutionarybranchingandhowmutationsaffecttheseconditions.

Models on interspecific competition include, for example,DieckmannandDoebeli(1999).ThisstudyusedanIBM,inwhichtheevolving trait determines the carrying capacity (competition), andinwhich individualssurviveanddieviadensityandfrequencyde-pendencegivingrisetoafeedbackbetweendensityandtraitevolu-tion,resultinginspeciationviaevolutionarybranching.Theauthorsshowedthatevolutionofassortativematingcanleadtoreproductiveisolation,resultinginincreaseddiversityandthatnonrandommatingisaprerequisiteforevolutionarybranching(seealsoThibert-Plante&Hendry,2009).Inasimilarmodel,Aguilée,Claessen,andLambert(2013)foundthatlandscapestructurehighlyinfluencestheoutcomeofdiversityresultingfromunderlyingdynamicsofcompetitionandassortativemating.ThelatterstudyusedanIBMassumingdensity-dependentresourcecompetitionandstrongercompetitionbetweenindividualswithsimilartraitvalues, inducingfrequency-dependentselectionandconsideredtraitslinkedtoresourceutilizationandtomatechoice.Last,amodelbyterHorstetal.(2010)foundthatevo-lutionary convergence could occur in amulti-speciesmodelwhenless resources thanspecieswerepresentandwhenthe intra-and

F I G U R E 3  Examplesofstudieswithspatialfeedbacks.(a)StudybyHanski(2011)andHanskiandMononen(2011)wherepatchdynamicsdrivenbycolonizationandextinctionmightinfluencedisperserfrequency(Hanski&Mononen,2011)orshiftsmeandispersalrate(Hanski,2011),whichinturninfluencespatchdynamics.(b)StudybyFronhoferandAltermatt(2017)inwhichlandscapetopologyinfluencesdispersalevolution,whichinturninfluencescolonizationprobabilitiesandmetapopulationdynamics(occupancy,turnover,geneticstructure,globalextinctionrisk)

(a)

(b)

Page 7: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  7Functional EcologyGOVAERT ET Al.

interspecific competition coefficients were equal. In this model,the rate of competitive exclusion slows down as species becomemoresimilartooneanother(evo-to-eco),givingspeciesmoretimetoevolve(eco-to-evo).Insummary,prominentexamplesofEEFsintwo-speciescompetitivesystems focusoncharacterdisplacementandpotentiallyspeciation.WhileanalyticalmodelsusingODEandtheADframeworkarewellestablished(seee.g.,Kisdi,1999),studiesontwo-speciesinteractionsoftenmakeuseofIBMscombinedwithGAtoincludearelativelyhighlevelofbiologicalcomplexity.

4.2 | Predator–prey interactions

In a predator–prey interaction, one species acts as a preda-tor feeding on the other species serving as prey. EEFs in

predator–preysystemsimplythatpredatordensitiesmayinducetraitevolution,forexample,inpreydefence(eco-to-evo)result-ing inconsequentshifts inpreyandpredatordensities (evo-to-eco;Figure4b).Manystudieshavefoundthatrapidevolutioninpreydefenceduetoshiftingpredatorabundancesresultsinan-tiphasecyclesratherthan1/4-lagcyclespredictedbynon-evo-lutionarymodels(Becksetal.,2010;Yoshidaetal.,2003,2007).Additionally,feedbackscanstabilizeordestabilizepredator–preydynamics depending on genetic variation and trade-off shapes(Abrams,2000;Abrams&Matsuda,1997;Cortez,2016;Cortez&Ellner,2010).

Predator–prey dynamics have been extensively studied usingmodelsoftraitevolutionoftheprey(e.g.Abrams&Matsuda,1997;Cortez,2016;McPeek,2017),thepredator(Cortez&Ellner,2010),or both (e.g. Cortez &Weitz, 2014; van Velzen & Gaedke, 2017;Figure4b). Inall three instances,EEFsweremodelledusingeitherseparate equations for the ecological and evolutionary dynamics(e.g. Abrams &Matsuda, 1997) or QG recursion equations or anapproximationofthose (vanVelzen&Gaedke,2017),usinganADapproach(Marrow,Dieckmann,&Law,1996)orbyusingmulticlonalLV equations (which are identical to “ecological selection”modelsCortez&Weitz,2014;Ellner&Becks,2011;Haafke,AbouChakra,&Becks,2016;Jones&Ellner,2007;Yamamichi,Yoshida,&Sasaki,2011).Includinglife-historytrade-offsbetweendefenceandfecun-ditymayleadtorecurrentEEFs(Huang,Traulsen,Werner,Hiltunen,&Becks,2017;Meyer,Ellner,Hairston,Jones,&Yoshida,2006).

Phenotypicplasticityhasbeenfoundtoplayanimportantrolein predator–prey EEFs and has been incorporated for exampleby Yamamichi etal. (2011),who found that plasticity in prey de-fencepromotesstablepopulationdynamicsmorethanrapidevo-lutionary responses, although plasticitywas not advantageous in

F I G U R E 4  Examplesofstudiesinwhichfeedbacksoccurintwo-speciessettings.(a)StudybyVasseuretal.(2011)inwhichthecompetitioncoefficientsdeterminingthestrengthofintra-andinterspecificcompetitionaremodelledinfunctionofanevolvabletrait(growthordefencetrait)underdensity-andfrequency-dependentcompetition.(b)GeneralfigureonpossibleEEFsinpredator–preydynamics(detailedinCortez&Weitz,2014).Generally,atrade-offbetweengrowthandpredatordefenceisassumedinthepreypopulation,andatrade-offbetweenmortalityandoffenceisassumedinthepredatorpopulation.Densityofthepredatorandpreycanbothinfluencetraitevolutioninthepredatorandpreypopulation,whichduetothepreviouslydescribedtrade-off,determinespredatorandpreydensity.(c)Generalfigureonpossiblefeedbacksinhost–parasitedynamics(seeLuo&Koelle,2013).Inamodelofvirulenceevolution,densityofsusceptiblehostsdeterminesthedegreeofvirulencewhichfeedsbacktochangethedensityofsusceptiblehosts(stripedarrow).Inamodelonhostresistance,densityoftheinfectedhostsdeterminestheevolutionofhostresistance(dashedarrow),whichinturndeterminesthedensityofbothsusceptibleandinfectedhosts.(d)Generalrepresentationofpossiblefeedbacksinmutualisticinteractions.Changesintheecologicalinteractionsbetweenspeciesdeterminetheevolutionofamutualistictrait,which,inturn,canchangetheecologicalinteractionsbetweenspecies

Density- and frequency-dependent

Density- and frequency-dependent birth and death rates

(a)Densityspecies 1

Trait

Density species 2

coefficients

Densitypredator

Predator trait

Density prey

Prey trait

(b)

(c)

hosts

VirulenceHost resistance

Growth/defensetrade-off

Survival/offensetrade-off

Density infected hosts

(d)

Densityspecies 1

Density species 2

Page 8: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

8  |    Functional Ecology GOVAERT ET Al.

stableenvironments.Theevolutionofplasticityhasbeenstudiedby Fischer etal. (2014), who extended an LVmodel allowing forvariationinplasticityamongmultiplegenotypesofprey.Theinclu-sion of such variation inmodels improved their ability to explainpredator–prey dynamics.Overall, predator—prey EEFs are a clas-sicalexampleof feedbacks involvingphaseshiftsand impactsonstability.TheseeffectsareclassicallymodelledwithODEs.Recentwork highlights the importance of incorporating both effects ofgenetic diversity and phenotypic plasticity to explain communitydynamics(Kovach-Orr&Fussmann,2013;Yamamichietal.,2011).

4.3 | Host–parasite interactions

In a host–parasite interaction, one of the species lives at the ex-penseoftheotherspecies.Similartopredators,parasitescan im-posestrongselectionpressuresontheirhosts,forexampleresultingin theevolutionofdefences that can in turn impose selectiononparasite traits. This process can lead to complex co-evolutionarydynamics inspatialandnonspatialsettings.Host–parasite interac-tions areoften characterizedbyoverlapping time scalesbetweenepidemiologicalandevolutionaryprocessesowingtotherapidevo-lution of those systems. Yet, evenwhen evolution is slower thanthespreadofdisease,selectioninhost–parasitesystemsischarac-terizedbystrongdensity-dependentfeedbacks,wherechanges indensitiesaffectselectionpressuresontransmission,virulenceandotherparasitetraits(eco-to-evo),andtheresultingtraitchangesinturnaltertheecologicaldynamics(evo-to-eco;Luo&Koelle,2013;Figure4c).

The studyofvirulenceevolution inparasites andpathogens isakeytopicinthetheoreticalliteratureinvolvingEEFs.TheseminalworkofAndersonandMay(1982)showedthatpathogenevolutionis shaped by the epidemiological dynamics of infectious diseasesthrough the density of susceptible hosts. Since then, a large lit-eraturehasbeendevoted tounderstanding theeffectofEEFsontheevolutionofparasitevirulenceandhost resistance (e.g.Boots& Haraguchi, 1999; Dieckmann,Metz, Sabelis, & Sigmund, 2002;Frickel, Sieber, &Becks, 2016; Lenski&May, 1994; Lion&Metz,2018; Van Baalen, 1998).Mostmodels of host–parasite EEFs useclassicalepidemiologicalmodels(compartmentmodelsthatincludesusceptible,infectedandpotentiallyrecoveredindividuals;SIRmod-els)todescribethechangesindensityorfrequencyofsusceptibleandinfectedhosts.TheseepidemiologicalmodelsarethencoupledwithAD (Dieckmannetal.,2002;Lion&Metz,2018)orQG (e.g.,Day&Gandon,2007;Day&Proulx,2004)approaches.

InthewakeofAndersonandMay(1982)’sseminalwork,manystudieshavefocusedontheevolutionofpathogentraits,undertheassumptionthathostevolutionismuchslowerandcanbeneglected.ThishasledtoagoodunderstandingofhowEEFsaffectpathogenevolution.Akey insight is that,even if thehost isassumednot toevolve,thetimescalesbetweenecologyandevolutionmayeitherbedecoupled[e.g.,thepathogenevolveswhilethepopulationisatanendemicequilibrium,seee.g.,Dieckmannetal.(2002);LionandMetz(2018)forareviewofADapproaches]oroverlap(e.g.,when

thepathogenevolvesduringanepidemic,seee.g.,Day&Gandon,2007;Day&Proulx,2004foraQGformalism).Whatgovernsthedifferenceintimescalesbetweenepidemiologyandpathogenevo-lutionwillthenbetheamountofstandinggeneticvariationorthemutationrate.

More generally, coevolution between hosts and parasiteswith overlapping generation times has been studied (Best etal.,2010;Eizaguirre,Lenz,Traulsen,&Milinski,2009;Nuismer,Otto,&Blanquart,2008),inparticularinthelocaladaptationliterature(Nuismeretal.,2008),butoftenundertherestrictiveassumptionoffixeddemography,whichsetsstronglimitstothetypesofEEFsthat are possible. In contrast, other studies of coevolution havedemonstratedhowthedimensionoftheenvironmentplaysacrit-icalroleingoverningevolutionarybranchinganddiversificationinboththehostandthepathogen(Bestetal.,2010).However, thestudy of EEFs in co-evolutionary host—parasite system remainsunderdeveloped.Interestingly,thosesystemsappeartobepartic-ularly amenable to experiments and should allow researchers tofurther tease apart theunderlyingeffectsofEEFs.For example,Brunneretal.(2017)demonstratedthatthesolepresenceofafishparasite inanexperimentalecosystemalterstheabioticenviron-mentofthehostintermsofnutrientcontentordissolvedoxygen.Thesealteredenvironmentswereshowntoimposeselectiononasubsequentgenerationofhosts,henceevidencingthatmacropar-asitescanmediateeco-evolutionaryfeedbacksbetweenfishandtheirenvironment.

Host–parasite interactions have also played a crucial roletowardsunderstandingspatialEEFs (e.g.,Boots&Sasaki,1999;Boots, Hudson, & Sasaki, 2004; reviewed in Lion & Gandon,2015). These studies have often modelled space as a regularnetworkofsites, inwhicheachsite iseitheremptyorcontainsa single host individual, which can be either susceptible or in-fected.Suchmodelscaneasilybeanalysedusing IBMs,butan-alytical insight is alsopossible to someextent, usingeitherADorQG(Lion&Gandon,2016).Duetotheinherentcomplexityofspatial models, however, we only have a partial understandingofhowthe feedbackbetweenspatialepidemiologicaldynamicsandtheevolutionofhostandparasitetraitsunfoldsinmorere-alistic host—parasite interactions (but see Nuismer, Thompson,& Gomulkiewicz, 2000, 2003). In summary, the host—parasiteliteraturehasa longtraditionofstudyingEEFs.Methodologicalapproaches differ depending on the level of complexity, fromsimpleODEstoIBMs.

4.4 | Mutualistic interactions

Amutualisticinteractionimpliesthattheinteractionisbeneficialforbothpartnersinvolved(e.g.,plant–pollinatororhost–symbiontinter-action).EEFsinthecontextofmutualismsareexpectedtostronglyimpacttheco-evolutionaryprocessbetweenmutualistsandexploit-ers(eco-to-evo)whichinturnshapestheecologicaldynamicsofthesystem (evo-to-eco; Figure4d; Doebeli & Knowlton, 1998; Jones,Ferriere,&Bronstein,2009).

Page 9: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  9Functional EcologyGOVAERT ET Al.

Eco-evolutionaryfeedbackswerefoundtoplayan importantroleindeterminingphenotypicandpopulationoutcomesinanADmodelonthecoevolutionofmutualistsandexploiterswhenlong-termcoexistenceofthespecieswaspossible(Jonesetal.,2009).In themodel by Jones etal. (2009), birth rates of themutualistandexploiterwereassumedtoevolveanddetermine thenatureof the mutualistic interaction. Ferrière, Bronstein, Rinaldi, Law,andGauduchon (2002) constructed amathematicalmodel com-biningsimpleLotka–Volterraequationsdescribing theecologicalmutualisticinteractionsbetweenthetwospecies,withdifferentialequationsdescribing theevolutionarydynamicsof themutualis-tictraits.Theseevolutionarydynamicsfollowthefitnessgradientshapedbytheunderlyingecologicaldynamics(eco-to-evo),whichinturndeterminethebenefitofthemutualistic interaction(evo-to-eco;Figure4d).

Fewerstudieshaveinvestigatedtheeffectofspatialheterogene-ityonmutualisticinteractions,butthosethathaveshowthatspatialheterogeneitycanleadtolong-termpersistenceofmutualism(e.g.,Doebeli&Knowlton,1998).Overall,mutualistic interactions inaneco-evolutionarycontexthavebeen studied less compared to theotherthreespeciesinteractiontypesdiscussedearlier.Nevertheless,studieshave shown thatEEFsmayplay an important role for thistypeofinteraction.

5  | EEFS IN A COMMUNIT Y AND ECOSYSTEM CONTE X T

The increasing interest in more complex ecological settings hasresultedinarapidgrowthofmodelsfocusingoncommunitiesandecosystemsthatcouldsimultaneouslyincorporateevolutionarydy-namics(Brännströmetal.,2012).Suchmodelsextendpreviousworkto include niche construction, plant–soil feedbacks, multi-speciescommunitiesandfoodwebs.

5.1 | Feedbacks between organisms and abiotic environments

Eco-evolutionary feedbacks with the environment have beenstudied in the context of niche construction (Kylafis & Loreau,2011; Lehmann, 2008; Odling-Smee, Odling-Smee, Laland,Feldman,&Feldman,2003),asinplant–soilfeedbacks,forexam-ple (Schweitzer etal., 2014;Wareetal., 2018;Figure5a).Gametheoryhasbeenusedtoinvestigateselectiononnicheconstruct-ingphenotypes(Lehmann,2008)wherethefeedbackariseswhenindividualsaffecttheirenvironmentbyreproducing(evo-to-eco),hencealteringtheselectionpressureonthepopulation (eco-to-evo). In plant–soil systems, plantsmight adaptively regulate soilfertility, resulting in positive, self-sustaining nutrient feedbacksthat influenceevolution.Forexample, increasingthedirectben-efitofsoilnutrientconditioningtoplantshasbeenpredictedtoincrease selection for higher values of soil conditioning traits(Kylafis & Loreau, 2008). Implicit in this model is a genetically

based plant trait that links plants with their soils. Subsequentmodelshave shown that thesegeneticallybasedplant–soil linkscan result in EEFs depending on thematchwith the soil gradi-entandthegeneticvariationpresentintheenvironment—alteringplanttrait(Schweitzeretal.,2014).

F I G U R E 5  Examplesofstudiesinwhichfeedbacksoccurbetweenabioticandbioticcomponentsorinamulti-speciessetting.(a)GeneralfigureofEEFsinnicheconstruction(Kylafis&Loreau,2011;Lehmann,2008)andplant–soilfeedbacks(Schweitzeretal.,2014).Innicheconstruction,theabioticenvironmentdeterminestheevolutionofatraitthatmodifiesthisabioticenvironment.Similarly,inaplant–soilsystem,aplanttraitcanmodifythesoil,whichdrivesevolutionofplanttraits.(b)StudybyMartínetal.(2016)inwhichtraitvaluesandspatiallocationsofspeciesdeterminecompetition,changinglocalselectionpressures,resultinginshiftinglocalandglobaltraitdistributionsandcommunitydiversity.(c)StudybyItoandIkegami(2006),inwhicheachspecieshasaseparatepreyandpredatorstrategywhichresultsinclustersoftrophicspeciesarisingfromchanginginteractionsbetweenspecies,whichinturncontinuouslychangetheposition,shapeandsizeofoccupiedareasinphenotypicspaceandchangetrophicinteractionsresultinginfurtherphenotypicevolutionandeventuallyevolutionarybranchingandtheemergenceoffoodwebstructure

(b)Community diversity

Trait species i

Physicain space

Environ(a)

Soil (community) property

Plant trait

(c)

Prey, predator strategy

Evo branching

Food web structure

Page 10: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

10  |    Functional Ecology GOVAERT ET Al.

In plant–soil systems, evolutionary change in plant traits caninfluence ecological dynamics of soilmicrobes (evo-to-eco)whichinturncanchangeselectionpressuresonplanttraits (eco-to-evo).ThiscanbeinvestigatedusingIBMs(Schweitzeretal.,2014)orbyusinganextendedversionofclassicalresourcecompetitionmodels(Eppinga,Kaproth,Collins,&Molofsky,2011).Inthisspecificmodel,thedecompositionoflitterreleasesnutrientsthatcanbetakenupby the plants influencing competitive ability of the plant (eco-to-evo),resultingindifferentplantgenotypesthatmightgrowbetter.Thechangeinthegeneticcompositionoftheplantpopulationcaninturninfluencethelitterpool(evo-to-eco).

In analogy to negative niche construction (Odling-Smee etal.,2003), the spatial structureof localnegative feedbackscan resultinchangesinlocaldiversity(e.g.,Loeuille&Leibold,2014).Theen-vironmentbecomeslesssuitableforthespeciesoccupyingit(evo-to-eco),whichinducesachangeinselectionpressureonthespeciesto evolve towards amorematching trait–environment value (eco-to-evo).Overall,plant–soilinteractionsaregoodexamplesofnicheconstructionwherebyEEFscanbothbemodelledandobservedinnature.Themethodsemployedrangefromformalmathematicalap-proachestoIBMs.

5.2 | Feedbacks within communities

Theoretical studies on EEFs in multi-species communities can in-crease our understanding of biodiversity (Patel etal., 2018). Eco-evolutionary analyses have led to new insights into coexistencetheory, themaintenance of diversity, aswell as the structure andstability of communities (Kremer & Klausmeier, 2017; Patel etal.,2018). Moreover, studies have found that evolution might main-tain (Martín,Hidalgo,deCasas,&Muñoz,2016), increase (e.g. viaspeciation or ER Dieckmann & Doebeli, 1999; Gomulkiewicz &Holt, 1995; Rosenzweig, 1978) or decrease (Gyllenberg, Parvinen,&Dieckmann,2002;Kremer&Klausmeier,2013;Norberg,Urban,Vellend,Klausmeier,&Loeuille,2012)phenotypic,speciesandfunc-tionaldiversity.

Forexample,Martínetal. (2016) show thatEEFscanmaintainphenotypicdiversity.Theauthorscombineniche-basedapproacheswithneutraltheoryinaspatiallystructuredIBMwhereeachindivid-ualhasalocationinspaceandisconstrainedbyaspecifictrade-offbetweenresourceexploitationandcompetition.Similarindividualsexperience higher competition resulting in frequency-dependentselection.Competitiononly takesplacebetweenneighbouring in-dividuals,changing localselectionpressures,whichresults in localevolutionary shifts in phenotypic traits (eco-to-evo) that shift theglobal phenotypic trait distribution and influence species differ-entiation and thus community diversity (evo-to-eco; Figure5b).Bycontrast,Norbergetal. (2012)foundthattheeco-evolutionaryprocessesinducedbyclimatechangecontinuedtogeneratespeciesextinctions longafter the climatehad stabilizedand thus resultedinfurtherdiversityloss.Theseauthorsusedaspatiallyexpliciteco-evolutionarymodelbasedonpartialdifferentialequationstopredictspecies responses to climate change in amulti-species context in

whichtheyallowedgeneticvariationanddispersal to jointly influ-enceecological (competitionandspeciessorting)andevolutionary(adaptation)processes.Thefindingsofbothstudiesdiscussedabovecaneasilybeunderstoodinthelightofmoderncoexistencetheory(reviewedinChesson,2000)astheyrelatetostabilizing(concentrat-ing intraspecific interaction by dispersal limitation) and equalizingmechanisms(sorting).Insummary,EEFsincommunitiesemerge,be-causespecies’traitsmayaffectthecommunityand,viceversa,thecommunitycontextmayaffecttraitevolution(terHorstetal.,2018).Interestingly,fitnessmaynotonlydependondensities,butalsoontotalcommunitybiomass,totalproductivityorevenonspeciesrich-ness.Consequencesofevolutionary changecanbeunderstood inthelightofmoderncoexistencetheory.

5.3 | Feedbacks in food webs

Evolutionarydynamicshavebeensuggestedtodeterminefoodwebstructure(Rossberg,Matsuda,Amemiya,&Itoh,2006).Hence,therehasbeenanupsurgeinstudiesincludingevolutionarydynamicsintofoodwebmodels, by allowing a recurrent addition of new speciesormorphsintothefoodweb,basedonthetheoryofself-organizedcriticality (Allhoff&Drossel, 2013; Bak, Tang,&Wiesenfeld, 1987;Bolchoun,Drossel,&Allhoff,2017;Caldarelli,Higgs,&McKane,1998;Drossel,Higgs,&McKane,2001;Rossbergetal.,2006).Theseevolu-tionaryfoodwebmodelsoftendependonatraitthatshapesthebioticinteractionswhichdeterminethefoodwebstructure.Foodwebstruc-tureselectsthespeciesthatremaininthesystem(eco-to-evo),whichinturnaltersthephenotypictraitdistributioninthesystemonwhichmutationscanoccurtocreatenewspeciesormorphs.Theadditionofanewspeciesormorphchangesthepresentspeciesinteractions(evo-to-eco),hencechangingthefoodwebstructure(Bolchounetal.,2017).Thisinterplaybetweenpopulationdynamicsandmorphevolu-tiondeterminestheEEFandshapesthestructureof thefoodweb.SimilartotheADframework,itisassumedthatecologicaldynamicsoccurfastandreach(quasi)equilibrium,whileevolutionarydynamicsoccuronamuchslowertimescale(Allhoff&Drossel,2013;Guill&Drossel, 2008). Studies including both ecological and evolutionaryprocessesinfoodwebmodelsshowthatthiscanleadtonewinsightsintofoodwebdynamicsasopposedtomodelsthatonlyincludefixedecologicaldynamics(Bolchounetal.,2017).

Moststudiesonfoodwebmodelsfocusonspeciation–extinc-tiondynamicswithspeciesbeingtheunitofthemodel,whilefewerstudies have investigated how the evolution of traits results infoodwebformation(Ito&Ikegami,2006;Takahashi,Brännström,Mazzucco,Yamauchi,&Dieckmann,2013).Both Itoand Ikegami(2006)andTakahashietal. (2013)havemodelledthebuildupofafoodwebthroughevolutionarydynamicsbyattributingtoeachindividual or phenotype a prey and predator trait (resource orvulnerability, respectively,utilizationorforaging). Individualsareassumedtoreproduceasexually,andoffspringmaydifferslightlybecauseofsmallrandommutations.ItoandIkegami(2006)showthatisolatedphenotypicclustersofspeciesandtheemergenceofhigher trophic levelsariseduetochanging interactionsbetween

Page 11: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  11Functional EcologyGOVAERT ET Al.

species(eco-to-evo),whichinturncontinuouslychangestheposi-tion,shapeandsizeofoccupiedareasinphenotypicspace.Thesechanges,inturn,altertrophicinteractions(evo-to-eco)resultinginfurtherphenotypicevolutionandeventuallyevolutionarybranch-ing (Figure5c).Takahashietal. (2013)usedan IBMtoshowthatinitial phenotypic divergence in the foraging trait relaxes inter-ferencecompetition(eco-to-evo),whichresultsintheemergenceofspeciesclusters.Theresultingchanges inspecies interactions(trophic levels; evo-to-eco)mediate further divergence in forag-ing traits and predator vulnerability (eco-to-evo). A study by deAndreazzi,Guimarães,andMelián(2018)explicitlyevaluatedtheeffects of network structure on eco-evolutionary dynamics forlong-term ecological network stability, by using different antag-onisticspeciesnetworks in theirsimulations.Populationdynam-icsweremodelledtodependonthephenotypictrait,whilemeantraitevolutiondependedontheenvironmentandtheantagonisticspecies interactions. The authors showed that EEFs resulted inspecific patternsof specializationwhich led to increases in spe-ciesmeanabundancesand todecreases in temporalvariation inabundances.

The effects of spatial dynamics on foodweb structure havealso been studied. For example, Loeuille and Leibold (2008),combined a simple foodweb structure (specialist and generalistherbivorespeciesfeedingontwoplantswhichinturnfeedonnu-trientresources),witha12-patchmetacommunitytoevaluatetheinteractionsbetweenevolutionaryadaptationandcommunityas-semblydynamicsasafunctionofdispersal.Thetwoplantspecieshadquantitativeandqualitativedefencetraitsthatwereheritable,uponoccurrenceofsmallmutationsbetweeneachtimesteps.Theauthors found that theoccurrenceofdispersalbetweenpatchesledtotheevolutionofdistinctmorphsoftheplantspecies(eco-to-evo),whichinfluencedthetrophicandfoodwebstructureinlocalpatches(evo-to-eco).

Overall,whileevolutionaryfoodwebmodelshaveallelementspresent forEEFstooccur,anexplicitanalysisof thesefeedbacksremains rare.This isprobablydue to themainassumptionof theseparationoftimescalesofecologyandevolution,withmutationbeingconsideredequivalenttospeciation(Takahashietal.,2013),and traits remaining constantwithin species. Exceptions exist ofcourse,suchasthefoodwebmodelusedbyLoeuilleandLeibold(2008). However, especially meta-food web models are scarce(Urbanetal., 2008). Evolutionary foodwebmodelshavepromis-ing features thatmay result inabetterunderstandingofEEFs inmore complex (natural) scenarios and likely representoneof thecurrent major challenges in eco-evolutionary modelling (Meliánetal.,2018).

6  | SYNTHESIS AND CONCLUSIONS

Throughoutthisoverview,wefoundthatEEFshavebeenincorpo-ratedintotheoreticalmodelsacrossawiderangeofdifferentlevelsof biological organization. The relevanceof theEEFmaynotonly

dependonthebiologicalsystem,butalsoonthespecifictraitsused:Differenteffectsmaybefounddependingonwhetherthetraitisin-fluencedbytheecologicalpropertyornot(e.g.,density-dependentversusdensity-independenttraits).Notsurprisingly,includingEEFsintheoreticalmodelssignificantlychangesourviewofwell-knownpatternsemergingfrompureecologicalorpureevolutionarymodels(e.g.,Dieckmann&Metz,2006;Poethkeetal.,2011).Morespecifi-cally,wehaveidentifiedmodelsthatincludeEEFs,whoseunderly-ingformalismsfallintoafewcategories(Figure1b).Inprinciple,anymodellingframeworkthatcouplesecologicaldynamics (e.g.,ODEsandIBMs)withanevolutionarymodel(e.g.,QG,ADorGA)canbeuseful for studying feedbacks. Studiesmodelling intertwinedeco-logicalandevolutionarydynamicsmostoftendifferintheirassump-tionofthetimescaleatwhichecologicalandevolutionaryprocessesoccur.Studiesassumingcontemporaryecologicalandevolutionarydynamicsoften coupleODEswithQGoruse IBMs,while studiesassumingevolutiontooccurwhenecologicaldynamicsareatequi-librium couple demographic models with AD to make analogousassumptions.

6.1 | Conclusions to date

BasedonournonexhaustiveoverviewoftheoreticalworkonEEFs,afewgeneralconclusionsemerge:First,EEFmodelsexplicitlyincludeecologicaldynamics in theanalysesofevolutionaryprocessesandviceversa.Density-dependentselectionandfrequency-dependentselection are often key ingredients for EEFs. Inmany cases, den-sitydependency and frequencydependency, aswell as ecologicalstochasticity, are not a priori assumptions, but emerge from eco-logicalsettingsandtraitcorrelations,forexample.Second,EEFsarenotnewtoevolutionaryecologytheory—theyaredeeplyrootedinthetheoryofmanysubdisciplines.Forinstance,thepredator–preyandhost–parasite literature, speciation literatureandevolutionarybranching, character displacement, andmetapopulationmodellingornicheconstructiontheorynaturallyincorporateEEFs.Strikingly,while the fieldof (meta)communityecology is rathernew (Leiboldetal.,2004),EEFsseemtohavebeenincludedin(meta)communityecologyvery rapidly, culminating in the recognition that thebasicdriversofevolutionandcommunityecologyareanalogous(Vellend,2010). Third, in a spatial setting, dispersal is a primary candidateforsuccessfuleco-evolutionary linkages,becausedispersal isbothan ecological process impacting densities and, at the same time,mediatesevolutionviageneflow. Inaddition, it is itselfsubject toevolution (Ronce, 2007). Movement can be similarly important(Hillaert,Vandegehuchte,Hovestadt,&Bonte,2018).Fourth,EEFsdonotnecessarilyrequirerapidorcontemporaryevolution(Post&Palkovacs,2009).Ofcourse,contemporaryevolutionhassparkedalotof interest inEEFs (Hendry,2017),butfeedbacksarealsopos-sibleoverlongertimescales(e.g.,asshowninADmodels).Fifth,ourshort overview of the eco-evolutionary modelling toolbox clearlyhighlightsthatthemaincharacterofaneco-evolutionarymodel isthecombinationofdemographicandevolutionarymodels, regard-lessoftheconcreteformalism.

Page 12: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

12  |    Functional Ecology GOVAERT ET Al.

Becausedifferentformalismsoriginatefromdifferentfields,theyoftenrelyondifferingassumptions.Forinstance,thetimescalesonwhichprocessesoccurandthesourcesofgeneticvariationareim-portantconsiderationsofthedifferentmodellingformalisms(Lande,2007;Sӕther&Engen,2015).Thishasmadesomeformalismsmorefocussedonanalysingevolutionaryendpointandlong-termdynam-ics (AD),while others have focused on short-term dynamics fromonegenerationtothenext(QG).However,inbothformalisms,incor-poratingEEFsisfeasible.Theseparationoftimescalesalsomeansthattheformofthefeedbackmaychangewhenwemovefromonedynamicalregimetotheother,whichhasbeenwellstudiedinhost–parasitemodels(Day&Gandon,2007;Gandon&Day,2009;Lenski&May,1994;Lion,2018).However,most interestprobably lies inpredicting themid-termdynamics of anEEF system.To approachthisproperly,animportantissueforfuturetheoreticalworkwillbetodevelopmechanisticmodelsforthedynamicsofphenotypicandgenotypic variation in populations evolving at this mid-term timescaleof tens tohundredsofgenerations (seeFigure6 foran indi-vidual-basedperspective). Thiswould reveal for instancewhetherEEFs are time-dependent andhow common they are expected tobe.However,tocouplethesemodelstonaturalsystems,oneneedstomeasureheritabilityandgenetic(co)variancesoftraitswhichcanbechallenging.

Our review also underlines the pervasive nature of EEFs. Itseemsatbestdifficulttodesignamodelthatincludesecologyandevolutionwithout anEEF (see alsoHendry, 2017; chapter 1 for adiscussion).However,itispossiblethatsometraitshavelittleeffecton the ecological dynamics, or that some ecological variableswillhavelittleeffectontheevolutionarydynamics.Forinstance,inadis-crete-timemodel,ifabsolutefitnessisproportionaltoafunctionofdensity,sayWi(t)=bi f(Nt),thenrelativefitnesswillnotdependonNt,sowecansaythatEEFsdonotmatterforevolutioninthisspecificcase.Inmodelswhereanoptimizationprincipleholds(sensuMetz,Mylius,&Diekmann,2008),wealsohaveverysimpleecologicalandevolutionary dynamics: The focal trait average steadily increases

andresourcedensitydecreasesuntilamaximum(resp.minimum)isreached.SuchsimplisticEEFshavebeentermedfrequencyindepen-denceinthebroadsensebyMetzandGeritz(2016).Overall,recentmodelshavebecomemoreelaborate.However,increasedcomplex-ityandrealismoftentradesoffwithtractability.Asaconsequence,thesestudiesmustprovideadditionalteststhateitherinvolvemod-elswherethepresumedfeedbackisabsentorprovideasimplifiedanalyticalmodel(e.g.,Branco,Egas,Elser,&Huisman,2018;Kubischetal.,2016,forexamplesinvolvingIBMs).

6.2 | The way forward

Thechallengetodayconsistsinpursuingnew,moreintegrativeandmechanisticmodellingavenueswhichhavethepotentialtoincludedifferent aspects of realism, such as genotype–phenotype map-ping,plasticityaswellaspopulationandspatialstructure(Figure6)andpredictsmid-termdynamicsofEEFsasoutlinedabove.Currenttheory has greatly increasedour understanding of EEFs (McPeek,2017), but these feedbacks have been primarily explored withinhierarchical levels of ecosystem organization, be they spatial ortemporalhierarchies,andhaveoften involvedonlysingleorafewindependentlyevolvingtraits.Whilethepresenceofahierarchicalorganizationofecosystemsiswellestablished(Meliánetal.,2018),itisanongoingchallengetoidentifytherelevanthierarchicallevelsandtheirinterdependenciestounderstandEEFs.

Currently,theleadinggraphicalmodeladoptsanimplicithierar-chywithfeedbacksbetweenlevelsfromgenes,totraits,topopula-tions, to communities and toecosystemprocesses (Hendry,2017;see also Figure1a for a simplification).Making such a conceptualmodelmoremechanistic requires understanding how interactionsat one scale (gene regulatory networks or complex traits) affectprocessesatdifferentscales(trait-dependentspeciesinteractions).OnesuchmodellingattemptbyMeliánetal.(2018)linksecologicalandevolutionarynetworksinameta-ecosystemmodel,takingintoaccountdemography, traitevolution,geneflowandtheecological

F I G U R E 6  MechanisticunderpinningsofEEFs.Ecologicaldynamics(left)aredrivenbyindividual-levelproperties(birth,death,dispersal).Interactionsbetweenindividualsofthesameordifferentspecies(bioticinteractions)impacttheseproperties,whichmayleadtodensitydependence,forexample.Individualsinteractwiththeabioticenvironmentandviceversa.Importantly,theseecologicalsettingswillimpactselection,driftandmigration(eco-to-evo).Evolutionisgovernedbytheinteractionbetweentheseprocesses,geneticconstraintsandmutations.Theresultingphenotypeissubsequentlydeterminedbythegenotype–phenotypemap.Ultimately,thephenotypewillimpactecology(evo-to-eco)bychangingbirths,death,dispersalandtheabioticenvironment.Plasticity(dashedlines)maymodulatethephenotypeand,hence,thedualeffectsoftheorganismonbioticandabioticenvironments

Genetic changeand map to phenotype

Abiotic environment

Selection, drift,

gene flow

Phenotype

Mutation

Birth, death, dispersal

Bioticinteractions

Plasticity

otypeotypeIndividual i

Page 13: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  13Functional EcologyGOVAERT ET Al.

dynamicsofnaturalselection.Suchprocess-basedmodelscanyieldnewinsightsintothemechanisticbasisofEEFsinmorecomplexnat-uralscenarios.Someofthemost importantprocessesaresumma-rizedinFigure6whichexpandstheconceptualmodelpresentedinFigure1atoamoremechanisticlevel.Withthisrepresentation,wepropose that feedbacksarebestconceptualizedasemerging fromindividual-levelinteractions(seealsoRueffler,Egas,&Metz,2006),withdispersalandinteractionswiththeabioticenvironmentleadingtotheemergenceoftherelevanthierarchicalcomplexity.

Besides theoretical advances, connecting theory to controlledlaboratoryor field experimentsmore tightlywill allow for the ex-perimentalassessmentoftheoreticalpredictionsaboutfeedbacks.For example, using rotifer–algae chemostats, Yoshida etal. (2003)experimentally tested predictions of a theoretical predator–preymodel thatallowed forpreyevolution.Thisexperimentconfirmedtheantiphaseoscillationspredictedfromtheorywhenpreyevolvesdefencestrategies.Whilesuchprominentexamplesoftheintegra-tionoftheoryandempiricaldataonEEFsexist (seeamongothersalso, Becks etal., 2012; Bonte&Bafort, 2018;DeMeester etal.,2018;Fischeretal.,2014;Fronhofer&Altermatt,2015;Huangetal.,2017; Litchman, Klausmeier, & Yoshiyama, 2009; Metcalf etal.,2008;Thomas,Kremer,Klausmeier,&Litchman,2012;VanNuland,Ware,Bailey,&Schweitzer,2018)breadthof the theoreticalworkhighlightedhere,thecouplingofempiricaldatafromnaturalandex-perimentalsettings,withtheoreticalmodels,needstobedeepened.Thisgapbetween theoryandempiricalworkmay, inpart,beduetodifferencesintechnicaljargonthatimpedeeffectivecommunica-tionbetweentheoreticiansandempiricistsaswellasmodellingspe-cializationsamongtheoreticianswhichimpedesynthesisoratleastslowdown progress. Isolation among subdisciplines and methodsleadstoconfusion,reducedinferenceandwillnotadvancethefield.Inthelattercase,effortssuchasthoseofQueller(2017)andLion(2018)atunifyingtheoreticalfieldsareurgentlyneeded.ToadvancetheoryonEEFs,weheresuggestthattakingamechanisticapproachfocusedon individual-level traits (Rueffleretal.,2006)asoutlinedin Figure6 can be productive for developing novel and synthetictheory.Keyingredientstosuchanindividual-levelapproacharethedescriptionoffocalorganismsintermsofindividualproperties(age,ecologically important traits, life-history parameters) and linkingthesetodemographicprocesses(seealsoTravisetal.,2014).Mostimportantly,scientistsneedtolearntoappreciatethestrengthsoftheirrespectiveapproaches,betheytheoretical,experimentallab-oratory-basedorcomparative,andnotfocusontheweaknessestodiscardpossibleavenuesofcollaborationandprogress.

Clearly, bridging between theory and empirical data is moredifficultwhenstudyingecologyandevolutioninthewild(Hendry,2018) and ecological pleiotropy may even cancel out EEFs(DeLong,2017).However,theoreticalmodelsarethebestavenuetoformulatehypothesesandgeneratetestablepredictionswhichstrengthen inference.Wesuggest thata three-wayapproach, in-tegrating theory, laboratory-based experiments and comparativedata from natural communities will enhance our understandingonhowprevalentEEFsare innature.Thisknowledgewillalsobe

criticalforcommunicatingtheimportanceofEEFstopolicymakers.Inthiscontext,itiscentraltoknowhowfeedbacksaffectbiodiver-sitydynamics,whether theevolutionof resistancemaybe fasterwithorwithoutfeedbacks,orwhetherpopulationsizecanbebet-ter controlledbymodifying certain componentsof feedbacks, toname but a few examples. Understanding the dynamical conse-quencesofEEFismoreimportantthaneverinarapidlychangingworld.

ACKNOWLEDG EMENTS

Theauthorswouldliketothanktheeditorsofthespecialissueforbringingustogetherandtwoanonymousrefereesforveryhelpfulcomments. This is publication ISEM-2018-232 of the Institut desSciencesdel’Evolution—Montpellier.

AUTHORS' CONTRIBUTIONS

L.G., E.A.F. and B.M. conceived the study and drafted themanu-script.L.G.andE.A.F.ledthestudy.Allauthorsperformedliteraturesearchandanalysisandcontributedtorevisions.

DATA ACCE SSIBILIT Y

Allpapersusedforthisreviewarecitedinthetext.

ORCID

Emanuel A. Fronhofer http://orcid.org/0000-0002-2219-784X

Dries Bonte http://orcid.org/0000-0002-3320-7505

Andrew P. Hendry http://orcid.org/0000-0002-4807-6667

R E FE R E N C E S

Abrams, P. A. (1986). Character displacement and niche shiftanalyzed using consumer-resource models of competi-tion. Theoretical Population Biology, 29, 107–160. https://doi.org/10.1016/0040-5809(86)90007-9

Abrams,P.A.(1990).Ecologicalvs.evolutionaryconsequencesofcom-petition.Oikos,57,147–151.

Abrams,P.A.(2000).Theevolutionofpredator-preyinteractions:Theoryand evidence. Annual Review of Ecology Evolution and Systematics,31,79–105.https://doi.org/10.1146/annurev.ecolsys.31.1.79

Abrams,P.A.,Harada,Y.,&Matsuda,H.(1993).Ontherelationshipbe-tweenquantitativegeneticandESSmodels.Evolution,47,982–985.https://doi.org/10.1111/j.1558-5646.1993.tb01254.x

Abrams, P. A., & Matsuda, H. (1997). Prey adaptation as a causeof Predator-Prey cycles. Evolution, 51, 1742–1750. https://doi.org/10.1111/j.1558-5646.1997.tb05098.x

Aguilée, R., Claessen, D., & Lambert, A. (2013). Adaptive radiationdrivenbytheinterplayofeco-evolutionaryandlandscapedynamics.Evolution,67,1291–1306.

Allhoff,K.T.,&Drossel,B.(2013).Whendoevolutionaryfoodwebmod-elsgeneratecomplexnetworks?Journal of Theoretical Biology,334,122–129.https://doi.org/10.1016/j.jtbi.2013.06.008

Alonzo, S. H., & Sinervo, B. (2001). Mate choice games, context-de-pendentgoodgenes,andgeneticcyclesintheside-blotchedlizard,

Page 14: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

14  |    Functional Ecology GOVAERT ET Al.

Uta stansburiana. Behavioral Ecology and Sociobiology,49, 176–186.https://doi.org/10.1007/s002650000265

Anderson, R. M., & May, R. (1982). Coevolution of hosts and par-asites. Parasitology, 85, 411–426. https://doi.org/10.1017/S0031182000055360

Bailey,J.K.,&Schweitzer,J.A.(2016).Theriseofplant–soilfeedbackinecology andevolution.Functional Ecology,30, 1030–1031.https://doi.org/10.1111/1365-2435.12691

Bak,P.,Tang,C.,&Wiesenfeld,K. (1987).Self-organizedcriticality:Anexplanationofthe1/fnoise.Physical Review Letters,59,381.https://doi.org/10.1103/PhysRevLett.59.381

Becks,L.,Ellner,S.P.,Jones,L.E.,&Hairston,N.G.Jr(2010).Reductionofadaptivegeneticdiversityradicallyalterseco-evolutionarycom-munitydynamics.Ecology Letters,13,989–997.

Becks,L.,Ellner,S.P., Jones,L.E.,&Hairston,N.G. (2012).Thefunc-tionalgenomicsofaneco-evolutionaryfeedbackloop:Linkinggeneexpression,traitevolution,andcommunitydynamics.Ecology Letters,15,492–501.https://doi.org/10.1111/j.1461-0248.2012.01763.x

Best,A.,White,A.,Kisdi,E.,Antonovics,J.,Brockhurst,M.,&Boots,M.(2010). The evolution of host-parasite range. American Naturalist,176,63–71.https://doi.org/10.1086/653002

Boeye,J.,Travis,J.M.J.,Stoks,R.,&Bonte,D. (2013).Morerapidcli-mate change promotes evolutionary rescue through selection forincreaseddispersaldistance.Evolutionary Applications,6,353–364.https://doi.org/10.1111/eva.12004

Bolchoun, L.,Drossel,B.,&Allhoff,K.T. (2017). Spatial topologiesaf-fect local foodweb structure and diversity in evolutionarymeta-communities. Scientific Reports, 7, 1818. https://doi.org/10.1038/s41598-017-01921-y

Bonte,D.,&Bafort,Q.(2018)Theimportanceandadaptivevalueoflifehistory evolution for metapopulation dynamics. Journal of Animal Ecology.https://doi.org/10.1101/179234

Boots,M.,&Haraguchi,Y.(1999).Theevolutionofcostlyresistanceinhost-parasitesystems.American Naturalist,153,359–370.

Boots,M.,Hudson,P.,&Sasaki,A.(2004).Largeshiftsinpathogenvir-ulence relate tohost population structure.Science,303, 842–844.https://doi.org/10.1126/science.1088542

Boots,M.,&Sasaki,A. (1999). “Smallworlds”andtheevolutionofvir-ulence:Infectionoccurslocallyandatadistance.Proceedings of the Royal Society. B, Biological Sciences, 266, 1933–1938. https://doi.org/10.1098/rspb.1999.0869

Branco, P., Egas, M., Elser, J. J., & Huisman, J. (2018). Eco-evolution-arydynamicsofecologicalstoichiometry inplanktoncommunities.American Naturalist,192,E1–E20.https://doi.org/10.1086/697472

Brännström,A.,Johansson,J.,Loeuille,N.,Kristensen,N.,Troost,T.A.,Lambers, R.H.R.,&Dieckmann,U. (2012).Modelling the ecologyandevolutionofcommunities:Areviewofpastachievements,cur-rentefforts,andfuturepromises.Evolutionary Ecology Research,14,601–625.

Brown,W.L.,&Wilson,E.O.(1956).Characterdisplacement.Systematic Zoology,5,49–64.https://doi.org/10.2307/2411924

Bruggeman,J.,&Kooijman,S.A.L.M.(2007).Abiodiversity-inspiredap-proachtoaquaticecosystemmodeling.Limnology and Oceanography,52,1533–1544.https://doi.org/10.4319/lo.2007.52.4.1533

Brunner,F.S.,Anaya-Rojas,J.M.,Matthews,B.,&Eizaguirre,C.(2017).Experimental evidence that parasites drive eco-evolutionary feed-backs.Proceedings of the National Academy of Sciences of the United States of America, 114, 3678–3683. https://doi.org/10.1073/pnas.1619147114

Burger,R.,& Lynch,M. (1995). Evolution andextinction in a changingenvironment:Aquantitative-geneticanalysis.Evolution,49,151–163.https://doi.org/10.1111/j.1558-5646.1995.tb05967.x

Burton,O.J.,Pillips,B.L.,&Travis, J.M.J. (2010).Trade-offsandtheevolutionoflife-historiesduringrangeexpansion.Ecology Letters,13,1210–1220.https://doi.org/10.1111/j.1461-0248.2010.01505.x

Caldarelli,G.,Higgs,P.G.,&McKane,A. J. (1998).Modellingcoevolu-tioninmultispeciescommunities.Journal of Theoretical Biology,193,345–358.https://doi.org/10.1006/jtbi.1998.0706

Caswell,H.(2006)Matrix Population Models,(2ndedn)Oxford,UK:OxfordUniversity Press Inc. https://doi.org/10.1002/9780470057339.vam006m

Chesson, P. (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology and Systematics,31,343–366.https://doi.org/10.1146/annurev.ecolsys.31.1.343

Chesson, P. (2017). AEDT: A new concept for ecological dynamics inthe ever-changing world. PLoS Biology, 15, e2002634. https://doi.org/10.1371/journal.pbio.2002634

Chevin,L.M.,Cotto,O.,&Ashander,J.(2017).Stochasticevolutionarydemography under a fluctuating optimum phenotype. American Naturalist,190,786–802.https://doi.org/10.1086/694121

Chitty,D.(1967).Thenaturalselectionofself-regulatorybehaviourinan-imalpopulations.The Proceedings of the Ecological Society of Australia,2,51–78.

Clarke,B.(1972).Density-dependentselection.American Naturalist,106,1–13.https://doi.org/10.1086/282747

Clobert,J.,Baguette,M.,Benton,T.G.,&Bullock,J.M.(2012).Dispersal ecology and evolution.Oxford,UK:OxfordUniversityPress.https://doi.org/10.1093/acprof:oso/9780199608898.001.0001

Cortez,M.H.(2016).HowthemagnitudeofpreygeneticvariationaltersPredator-PreyEco-Evolutionarydynamics.American Naturalist,188,329–341.https://doi.org/10.1086/687393

Cortez,M.H.,&Ellner,S.P.(2010).Understandingrapidevolutioninpreda-tor-preyinteractionsusingthetheoryoffast-slowdynamicalsystems.American Naturalist,176,E109–E127.https://doi.org/10.1086/656485

Cortez,M.H.,&Weitz,J.S.(2014).Coevolutioncanreversepredator-preycycles.Proceedings of the National Academy of Sciences of the United States of America,111,7486–7491.https://doi.org/10.1073/pnas.1317693111

Day,T.(2005).Modellingtheecologicalcontextofevolutionarychange:Déjàvuorsomethingnew?InB.Beisner(Ed.),Ecological paradigms lost: Routes of theory change(pp.273–309).NewYork,NY:ElsevierAcademicPress.

Day, T., & Gandon, S. (2007). Applying population-genetic models intheoreticalevolutionaryepidemiology.Ecology Letters,10,876–888.https://doi.org/10.1111/j.1461-0248.2007.01091.x

Day,T.,&Proulx,S.R.(2004).Ageneraltheoryfortheevolutionarydy-namicsofvirulence.American Naturalist,163,E40–E63.https://doi.org/10.1086/382548

deAndreazzi,C.S.,Guimarães,P.R.,&Melián,C.J.(2018).Eco-evolution-ary feedbackspromote fluctuating selectionand long-termstabilityofantagonisticnetworks.Proceedings of the Royal Society. B, Biological Sciences,285,20172596.https://doi.org/10.1098/rspb.2017.2596

De Meester, L., Brans, K., Govaert, L., Souffreau, C., Mukherjee, S.,Korzeniowski,K.,…Urban,M.(2018)Thechallengingcomplexityofanalyzingeco-evolutionarydynamicsinnature.Functional Ecology.

DeAngelis,D.L.,&Mooij,W.M. (2005). Individual-basedmodelingofecological and evolutionary processes. Annual Review of Ecology Evolution and Systematics,36,147–168.https://doi.org/10.1146/an-nurev.ecolsys.36.102003.152644

DeLong,J.P.(2017).Ecologicalpleiotropysuppressesthedynamicfeed-backgeneratedbyarapidlychangingtrait.American Naturalist,189,592–597.https://doi.org/10.1086/691100

Dhondt,A.A.(1989).Ecologicalandevolutionaryeffectsofinterspecificcompetitionintits.The Wilson Bulletin,101,198–216.

Dieckmann,U.,&Doebeli,M.(1999).Ontheoriginofspeciesbysympat-ricspeciation.Nature,400,354–357.https://doi.org/10.1038/22521

Dieckmann, U., & Metz, J. A. J. (2006). Surprising evolutionary pre-dictions from enhanced ecological realism. Theoretical Population Biology,69,263–281.https://doi.org/10.1016/j.tpb.2005.12.001

Dieckmann,U.,Metz,J.A.J.,Sabelis,M.W.,&Sigmund,K.(Eds.)(2002).Adaptive dynamics of infectious diseases. In pursuit of virulence manage‐ment.Cambridge,UK:CambridgeUniversityPress.

Page 15: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  15Functional EcologyGOVAERT ET Al.

Diekmann, O. (2004). A beginner's guide to adaptive dynamics.Mathematical Modelling Of Population Dynamics—Banach Center Publications,63,47–86.

Doebeli,M.,&Knowlton,N.(1998).Theevolutionofinterspecificmutual-isms.Proceedings of the National Academy of Sciences of the United States of America,95,8676–8680.https://doi.org/10.1073/pnas.95.15.8676

Drossel,B.,Higgs,P.G.,&McKane,A.J.(2001).Theinfluenceofpred-ator–preypopulationdynamicson the long-termevolutionof foodwebstructure.Journal of Theoretical Biology,208,91–107.https://doi.org/10.1006/jtbi.2000.2203

Eizaguirre,C.,Lenz,T.L.,Traulsen,A.,&Milinski,M.(2009).Speciationaccelerated and stabilized by pleiotropic major histocompatibil-ity complex immunogenes. Ecology Letters, 12, 5–12. https://doi.org/10.1111/j.1461-0248.2008.01247.x

Ellner,S.,&Becks,L.(2011).Rapidpreyevolutionandthedynamicsoftwo-predatorfoodwebs.Theoretical Ecology,4,133–152.https://doi.org/10.1007/s12080-010-0096-7

Engen,S.,Lande,R.,&Sӕther,B.E.(2013).Aquantitativegeneticmodelof r and kselectioninafluctuatingpopulation.American Naturalist,181,725–736.https://doi.org/10.1086/670257

Engen,S.,&Sӕther,B.E.(2017).r and kselectioninfluctuatingpop-ulationsisdeterminedbytheevolutionarytrade-offbetweentwofitnessmeasures:Growth rate and lifetime reproductive success.Evolution,71,167–173.https://doi.org/10.1111/evo.13104

Eppinga,M.B.,Kaproth,M.A.,Collins,A.R.,&Molofsky,J.(2011).Litterfeedbacks,evolutionarychangeandexoticplantinvasion.Journal of Ecology,99,503–514.

Ferriere,R.(2000).Adaptive responses to environmental threats: Evolutionary suicide, insurance, and rescue. (Options Spring 2000), (pp. 12–16).Laxenburg,Austria:InternationalInstituteforAppliedSystemsAnalysis.

Ferrière,R.,Bronstein,J.L.,Rinaldi,S.,Law,R.,&Gauduchon,M.(2002).Cheating and the evolutionary stability ofmutualisms.Proceedings of the Royal Society. B, Biological Sciences,269,773–780.https://doi.org/10.1098/rspb.2001.1900

Ferrière, R., Dieckmann, U., & Couvet, D. (2004). Evolutionary conser‐vation biology,Vol.4.Cambridge,UK:CambridgeUniversityPress.https://doi.org/10.1017/CBO9780511542022

Ferrière,R.,&Legendre,S.(2012).Eco-evolutionaryfeedbacks,adaptivedynamicsandevolutionaryrescuetheory.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368,20120081.https://doi.org/10.1098/rstb.2012.0081

Fischer,B.B.,Kwiatkowski,M.,Ackermann,M.,Krismer,J.,Roffler,S.,Suter,M.J.F.,…Matthews,B. (2014).Phenotypicplasticity influ-ences the eco-evolutionary dynamics of a predator-prey system.Ecology,95,3080–3092.https://doi.org/10.1890/14-0116.1

Fraser,A.S. (1957).Simulationofgeneticsystemsbyautomaticdigitalcomputers. Australian Journal of Biological Sciences, 10, 484–491.https://doi.org/10.1071/BI9570484

Frickel,J.,Sieber,M.,&Becks,L.(2016).Eco-evolutionarydynamicsinacoevolvinghost-virussystem.Ecology Letters,19,450–459.https://doi.org/10.1111/ele.12580

Fronhofer, E. A., & Altermatt, F. (2015). Eco-evolutionary feedbacksduring experimental range expansions. Nature Communications, 6,6844.https://doi.org/10.1038/ncomms7844

Fronhofer,E.A.,&Altermatt,F.(2017).Classicalmetapopulationdynam-icsandeco-evolutionaryfeedbacksindendriticnetworks.Ecography,40,1455–1466.https://doi.org/10.1111/ecog.02761

Fronhofer,E.A.,Liebig,J.,Mitesser,O.,&Poethke,H.J.(2018)Eusocialityoutcompetesegalitarianandsolitarystrategieswhenresourcesarelimitedandreproductioniscostly.Ecology and Evolution,https://doi.org/10.1002/ece3.4737

Fronhofer, E. A., Pasurka, H., Mitesser, O., & Poethke, H. J. (2011).Scarce resources, risk-sensitivity and egalitarian resource sharing.Evolutionary Ecology Research,13,253–267.

Fussmann,G.F.,Loreau,M.,&Abrams,P.A.(2007).Eco-evolutionarydynamicsof communities andecosystems.Functional Ecology,21,465–477.https://doi.org/10.1111/j.1365-2435.2007.01275.x

Gandon, S., & Day, T. (2009). Evolutionary epidemiology and thedynamics of adaptation. Evolution, 63, 826–838. https://doi.org/10.1111/j.1558-5646.2009.00609.x

Geritz,S.A.H.,Kisdi,E.,Meszena,G.,&Metz,J.A.J.(1998).Evolutionarilysingular strategies and the adaptive growth and branching of theevolutionary tree. Evolutionary Ecology, 12, 35–57. https://doi.org/10.1023/A:1006554906681

Gokhale,C. S.,&Hauert,C. (2016). Eco-evolutionarydynamicsof so-cialdilemmas.Theoretical Population Biology,111,28–42.https://doi.org/10.1016/j.tpb.2016.05.005

Gomulkiewicz,R.,&Holt,R.D. (1995).Whendoesevolutionbynatu-ralselectionpreventextinction?Evolution,49,201–207.https://doi.org/10.1111/j.1558-5646.1995.tb05971.x

Gomulkiewicz,R.,Holt,R.D.,&Barfield,M.(1999).Theeffectsofdensitydependenceandimmigrationonlocaladaptationandnicheevolutioninablack-holesinkenvironment.Theoretical Population Biology,55,283–296.https://doi.org/10.1006/tpbi.1998.1405

Gonzalez, A., Ronce, O., Ferriere, R., & Hochberg, M. E. (2013).Evolutionaryrescue:Anemergingfocusattheintersectionbetweenecologyandevolution.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,368,20120404.

Grimm, V. (1999). Ten years of individual-based modelling in ecol-ogy: What have we learned and what could we learn in the fu-ture? Ecological Modelling, 115, 129–148. https://doi.org/10.1016/S0304-3800(98)00188-4

Guill, C., & Drossel, B. (2008). Emergence of complexity in evolvingniche-modelfoodwebs.Journal of Theoretical Biology,251,108–120.https://doi.org/10.1016/j.jtbi.2007.11.017

Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionarysuicide and evolution of dispersal in structured metapopulations.Journal of Mathematical Biology,45,79–105.https://doi.org/10.1007/s002850200151

Haafke,J.,AbouChakra,M.,&Becks,L.(2016).Eco-evolutionaryfeed-backpromotesRedQueendynamicsandselects forsex inpreda-tor populations. Evolution, 70, 641–652. https://doi.org/10.1111/evo.12885

Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., & Fox, J. A.(2005). Rapid evolution and the convergence of ecological andevolutionary time. Ecology Letters, 8, 1114–1127. https://doi.org/10.1111/j.1461-0248.2005.00812.x

Hanski,I.(1999).Metapopulation ecology.Oxford,UK:OxfordUniversityPress.

Hanski,I.A.(2011).Eco-evolutionaryspatialdynamicsintheglanvillefrit-illarybutterfly.Proceedings of the National Academy of Sciences of the United States of America,108,14397–14404.https://doi.org/10.1073/pnas.1110020108

Hanski,I.,&Mononen,T.(2011).Eco-evolutionarydynamicsofdispersalinspatiallyheterogeneousenvironments.Ecology Letters,14,1025–1034.https://doi.org/10.1111/j.1461-0248.2011.01671.x

Harrison,S.,&Hastings,A. (1996).Geneticandevolutionaryconse-quencesofmetapopulationstructure.Trends in Ecology & Evolution,11,180–183.https://doi.org/10.1016/0169-5347(96)20008-4

Hendry,A.P.(2017).Eco‐evolutionary dynamics.Princeton,NJ:PrincetonUniversityPress.https://doi.org/10.1515/9781400883080

Hendry,A.P.(2018)Acritiqueforeco-evolutionarydynamics.Functional Ecology.https://doi.org/10.1111/1365-2435.13244

Hendry,A.P.,&Kinnison,M.T.(1999).Thepaceofmodernlife:Measuringrates of contemporary microevolution. Evolution, 53, 1637–1653.https://doi.org/10.1111/j.1558-5646.1999.tb04550.x

Hillaert, J., Vandegehuchte, M. L., Hovestadt, T., & Bonte, D. (2018).Informationuseduringmovementregulateshowfragmentationand

Page 16: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

16  |    Functional Ecology GOVAERT ET Al.

lossofhabitat affectbody size.Proceedings of the Royal Society. B, Biological Sciences,285,20180953.

Hiltunen,T.,Hairston,N.G.,Hooker,G.,Jones,L.E.,&Ellner,S.P.(2014).A newly discovered role of evolution in previously published con-sumer-resource dynamics. Ecology Letters, 17, 915–923. https://doi.org/10.1111/ele.12291

Huang,W., Traulsen, A.,Werner, B., Hiltunen, T., & Becks, L. (2017).Dynamical trade-offs arise from antagonistic coevolution and de-crease intraspecific diversity. Nature Communications, 8, 2059.https://doi.org/10.1038/s41467-017-01957-8

Ito,H.C.,&Ikegami,T.(2006).Food-webformationwithrecursiveevo-lutionarybranching.Journal of Theoretical Biology,238,1–10.https://doi.org/10.1016/j.jtbi.2005.05.003

Jones, L. E., & Ellner, S. P. (2007). Effects of rapid prey evolution onpredator–preycycles.Journal of Mathematical Biology,55,541–573.https://doi.org/10.1007/s00285-007-0094-6

Jones,E.I.,Ferriere,R.,&Bronstein,J.L.(2009).Eco-evolutionarydynam-icsofmutualistsandexploiters.American Naturalist,174,780–794.

Kisdi,E.(1999).Evolutionarybranchingunderasymmetriccompetition.Journal of Theoretical Biology,19,149–162.https://doi.org/10.1006/jtbi.1998.0864

Kovach-Orr,C.,&Fussmann,G.F.(2013).Evolutionaryandplasticrescueinmultitrophicmodelcommunities.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,368,20120084.

Kremer,C.T.,&Klausmeier,C.A.(2013).Coexistenceinavariableen-vironment: Eco-evolutionary perspectives. Journal of Theoretical Biology,339,14–25.https://doi.org/10.1016/j.jtbi.2013.05.005

Kremer,C.T.,&Klausmeier,C.A. (2017). Speciespacking ineco-evo-lutionary models of seasonally fluctuating environments. Ecology Letters,20,1158–1168.https://doi.org/10.1111/ele.12813

Kubisch,A.,Winter,A.M.,&Fronhofer,E.A.(2016).Thedownwardspiral:Eco-evolutionary feedback loops lead to the emergence of `elastic’ranges.Ecography,39,261–269.https://doi.org/10.1111/ecog.01701

Kylafis, G., & Loreau, M. (2008). Ecological and evolutionary conse-quencesofnicheconstructionforitsagent.Ecology Letters,11,1072–1081.https://doi.org/10.1111/j.1461-0248.2008.01220.x

Kylafis, G., & Loreau, M. (2011). Niche construction in the lightof niche theory. Ecology Letters, 14, 82–90. https://doi.org/10.1111/j.1461-0248.2010.01551.x

Lande, R. (2007). Expected relative fitness and the adaptive topogra-phy of fluctuating selection.Evolution,61, 1835–1846. https://doi.org/10.1111/j.1558-5646.2007.00170.x

Lande,R.,Engen,S.,&Saether,B.E.(2009).Anevolutionarymaximumprinciple for density-dependent population dynamics in a fluctu-atingenvironment.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 1511–1518. https://doi.org/10.1098/rstb.2009.0017

Lande, R., & Shannon, S. (1996). The role of genetic variation in ad-aptation and population persistence in a changing environment.Evolution,50,434–437.https://doi.org/10.1111/j.1558-5646.1996.tb04504.x

Legrand,D.,Cote,J.,Fronhofer,E.A.,Holt,R.D.,Ronce,O.,Schtickzelle,N., … Clobert, J. (2017). Eco-evolutionary dynamics in fragmentedlandscapes.Ecography,40,9–25.https://doi.org/10.1111/ecog.02537

Lehmann, L. (2008). The adaptive dynamics of niche construct-ing traits in spatially subdivided populations: Evolving posthu-mous extended phenotypes. Evolution, 62, 549–566. https://doi.org/10.1111/j.1558-5646.2007.00291.x

Lehtonen,J.,&Kokko,H.(2012).Positivefeedbackandalternativestablestates in inbreeding, cooperation, sex roles andotherevolutionaryprocesses.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,367, 211–221. https://doi.org/10.1098/rstb.2011.0177

Leibold,M.A.,Holyoak,M.,Mouquet,N.,Amarasekare,P.,Chase,J.M.,Hoopes,M.F.,…Gonzalez,A.(2004).Themetacommunityconcept:

Aframeworkformulti-scalecommunityecology.Ecology Letters,7,601–613.https://doi.org/10.1111/j.1461-0248.2004.00608.x

Leibold,M.A.,&Norberg,J. (2004).Biodiversity inmetacommunities:Planktonascomplexadaptivesystems?Limnology and Oceanography,49,1278–1289.https://doi.org/10.4319/lo.2004.49.4_part_2.1278

Lenormand, T. (2002). Gene flow and the limits to natural selection.Trends in Ecology & Evolution,17,183–189.https://doi.org/10.1016/S0169-5347(02)02497-7

Lenski,R.E.,&May,R.M. (1994).Theevolutionofvirulence inparasitesand pathogens: Reconciliation between two competing hypotheses.Journal of Theoretical Biology, 169, 253–265. https://doi.org/10.1006/jtbi.1994.1146

Leon,J.A.,&Charlesworth,B.(1978).Ecologicalversionsoffisher'sfun-damentaltheoremofnaturalselection.Ecology,59,457–464.https://doi.org/10.2307/1936575

Lion, S. (2018). Theoretical approaches in evolutionary ecology:Environmental feedback as a unifying perspective. American Naturalist,191,21–44.https://doi.org/10.1086/694865

Lion,S.,&Gandon,S.(2015).Evolutionofspatiallystructuredhost–par-asiteinteractions.Journal of Evolutionary Biology,28,10–28.https://doi.org/10.1111/jeb.12551

Lion, S., & Gandon, S. (2016). Spatial evolutionary epidemiology ofspreading epidemics. Proceedings of the Royal Society. B, Biological Sciences,283,20161170.https://doi.org/10.1098/rspb.2016.1170

Lion,S.,&Metz,J.A.(2018).BeyondR0maximisation:Onpathogenevo-lutionandenvironmentaldimensions.Trends in Ecology & Evolution,33,458–473.https://doi.org/10.1016/j.tree.2018.02.004

Litchman, E., Klausmeier, C., & Yoshiyama, K. (2009). Contrasting sizeevolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America, 106,2665–2670.https://doi.org/10.1073/pnas.0810891106

Lively, C. M. (2012). Feedbacks between ecology and evolution:InteractionsbetweenΔNandΔpinalife-historymodel.Evolutionary Ecology Research,14,299–309.

Loeuille,N.,&Leibold,M.A. (2008). Ecological consequencesof evo-lutioninplantdefensesinametacommunity.Theoretical Population Biology,74,34–45.https://doi.org/10.1016/j.tpb.2008.04.004

Loeuille,N.,&Leibold,M.A.(2014).Effectsoflocalnegativefeedbacksontheevolutionofspecieswithinmetacommunities.Ecology Letters,17,563–573.https://doi.org/10.1111/ele.12258

Luo,S.,&Koelle,K.(2013).Navigatingthedeviouscourseofevolution:Theimportanceofmechanisticmodelsforidentifyingeco-evolution-arydynamicsinnature.American Naturalist,181(Suppl.1),S58–S75.https://doi.org/10.1086/669952

Lynch,M.(1993).Evolutionandextinctioninresponsetoenvironmentalchange. InP.M.Karieva, J.G.Kingsolver,&R.B.Huey (Eds.),Biotic Interactions and Global Change,(pp.234–250).Sunderland,MA:SinauerAssociatesInc.

Lynch,M.,&Walsh,B.(1998).Genetics and analysis of quantitative traits. Sunderland,MA:SinauerAssociatesInc.

MacArthur, R. H. (1962). Some generalized theorems of natural se-lection. Proceedings of the National Academy of Sciences of the United States of America,48, 1893–1897. https://doi.org/10.1073/pnas.48.11.1893

Marrow,P.,Dieckmann,U.,&Law,R.(1996).Evolutionarydynamicsofpred-ator-preysystems:Anecologicalperspective.Journal of Mathematical Biology,34,556–578.https://doi.org/10.1007/BF02409750

Martín,P.V.,Hidalgo,J.,deCasas,R.R.,&Muñoz,M.A.(2016).Eco-evo-lutionarymodel of rapid phenotypic diversification in species-richcommunities.PLoS Computational Biology,12,e1005139.https://doi.org/10.1371/journal.pcbi.1005139

Matthews,B.,DeMeester, L., Jones,C.G., Ibelings,B.W.,Bouma,T. J.,Nuutinen,V.,…Odling-Smee,J. (2014).Undernicheconstruction:Anoperationalbridgebetweenecology,evolution,andecosystemscience.Ecological Monographs,84,245–263.https://doi.org/10.1890/13-0953.1

Page 17: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

     |  17Functional EcologyGOVAERT ET Al.

McGill,B. J.,&Brown, J.S. (2007).Evolutionarygametheoryandadap-tivedynamicsofcontinuoustraits.Annual Review of Ecology Evolution and Systematics, 38, 403–435. https://doi.org/10.1146/annurev.ecolsys.36.091704.175517

McPeek, M. A. (2017). The ecological dynamics of natural selection:Traits and the coevolution of community structure. American Naturalist,189,E91–E117.https://doi.org/10.1086/691101

Melián, C. J., Matthews, B., de Andreazzi, C. S., Rodríguez, J. P.,Harmon, L. J., & Fortuna,M. A. (2018).Deciphering the interde-pendence between ecological and evolutionary networks. Trends in Ecology & Evolution, 33, 504–512. https://doi.org/10.1016/j.tree.2018.04.009

Metcalf, C., Rose, K., Childs, D., Sheppard, A., Grubb, P., & Rees, M.(2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences of the United States of America,105,10466–10470.https://doi.org/10.1073/pnas.0800777105

Metz,J.A.,&Geritz,S.A.(2016).Frequencydependence3.0:Anattemptatcodifyingtheevolutionaryecologyperspective.Journal of Mathematical Biology,72,1011–1037.https://doi.org/10.1007/s00285-015-0956-2

Metz,J.A.J.,Mylius,S.D.,&Diekmann,O.(2008).Whendoesevolutionoptimize?Evolutionary Ecology Research,10,629–654.

Metz,J.A.J.,Nisbet,R.M.,&Geritz,S.A.H.(1992).Howshouldwedefine“fitness”forgeneralecologicalscenarios?.Trends in Ecology & Evolution,7,198–202.https://doi.org/10.1016/0169-5347(92)90073-K

Meyer,J.R.,Ellner,S.P.,Hairston,N.G.,Jones,L.E.,&Yoshida,T.(2006).Preyevolutiononthetimescaleofpredator–preydynamicsrevealedbyallele-specificquantitativepcr.Proceedings of the National Academy of Sciences of the United States of America,103,10690–10695.https://doi.org/10.1073/pnas.0600434103

Norberg,J.,Urban,M.C.,Vellend,M.,Klausmeier,C.A.,&Loeuille,N.(2012).Eco-evolutionary responses of biodiversity to climate change.Nature Climate Change,2,747–751.https://doi.org/10.1038/nclimate1588

Nosil,P.,Funk,D.J.,&Ortitz-Barrientos,D.(2009).Divergentselectionandheterogeneousgenomicdivergence.Molecular Ecology,18,375–402.https://doi.org/10.1111/j.1365-294X.2008.03946.x

Nuismer,S.L.,Otto,S.P.,&Blanquart,F.(2008).Whendohost–parasitein-teractionsdrivetheevolutionofnon-randommating?Ecology Letters,11,937–946.https://doi.org/10.1111/j.1461-0248.2008.01207.x

Nuismer, S. L., Thompson, J. N., & Gomulkiewicz, R. (2000).Coevolutionaryclinesacrossselectionmosaics.Evolution,54,1102–1115.https://doi.org/10.1111/j.0014-3820.2000.tb00546.x

Nuismer,S.L.,Thompson,J.N.,&Gomulkiewicz,R.(2003).Coevolutionbetweenhostsandparasiteswithpartiallyoverlappinggeographicranges. Journal of Evolutionary Biology, 16, 1337–1345. https://doi.org/10.1046/j.1420-9101.2003.00609.x

Odling-Smee, F. J.,Odling-Smee,H., Laland,K.N., Feldman,M.W.,&Feldman,F.(2003).Niche construction: The neglected process in evolu‐tion,Vol.37.Princeton,NJ:PrincetonUniversityPress.

Orr,H.A.,&Unckless,R.L.(2014).Thepopulationgeneticsofevolution-ary rescue. PLoS Genetics, 10, e1004551. https://doi.org/10.1371/journal.pgen.1004551

Parvinen,K.,&Dieckmann,U. (2013).Self-extinctionthroughoptimiz-ing selection. Journal of Theoretical Biology, 333, 1–9. https://doi.org/10.1016/j.jtbi.2013.03.025

Patel,S.,Cortez,M.H.,&Schreiber,S.J.(2018).Partitioningtheeffectsof eco-evolutionary feedbacks on community stability. American Naturalist,191,381–394.https://doi.org/10.1086/695834

Pease,C.M.,Lande,R.,&Bull,J.(1989).Amodelofpopulationgrowth,dispersal and evolution in a changing environment. Ecology, 70,1657–1664.https://doi.org/10.2307/1938100

Pelletier, F.,Garant,D.,&Hendry,A. (2009). Eco-evolutionary dynamics.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,364,1483–1489.https://doi.org/10.1098/rstb.2009.0027

Pimentel, D. (1961). Animal population regulation by the geneticFeed-Backmechanism.American Naturalist, 95, 65–79. https://doi.org/10.1086/282160

Poethke,H. J.,Dytham,C.,&Hovestadt, T. (2011). Ametapopulationparadox: Partial improvement of habitat may reduce metapopu-lation persistence. American Naturalist, 177, 792–799. https://doi.org/10.1086/659995

Poethke,H.J.,&Hovestadt,T.(2002).Evolutionofdensity-andpatch-size-dependentdispersalrates.Proceedings of the Royal Society. B, Biological Sciences,269,637–645.https://doi.org/10.1098/rspb.2001.1936

Poethke,H.J.,Pfenning,B.,&Hovestadt,T.(2007).Therelativecontri-butionofindividualandkinselectiontotheevolutionofdensity-de-pendentdispersalrates.Evolutionary Ecology Research,9,41–50.

Polechová,J.,Barton,N.,&Marion,G.(2009).Species’range:Adaptationinspaceandtime.American Naturalist,174,E186–E204.https://doi.org/10.1086/605958

Post, D.M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks incommunityandecosystemecology: Interactionsbetweentheeco-logical theatreandtheevolutionaryplay.Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,364,1629–1640.https://doi.org/10.1098/rstb.2009.0012

Queller, D. C. (2017). Fundamental theorems of evolution. American Naturalist,189,345–353.https://doi.org/10.1086/690937

Räsänen,K.,&Hendry,A.P.(2008).Disentanglinginteractionsbetweenadap-tivedivergenceandgeneflowwhenecologydrivesdiversification.Ecology Letters,11,624–636.https://doi.org/10.1111/j.1461-0248.2008.01176.x

Rees, M., & Ellner, S. P. (2016). Evolving integral projection mod-els: Evolutionary demography meets eco-evolutionary dynam-ics. Methods in Ecology and Evolution, 7, 157–170. https://doi.org/10.1111/2041-210X.12487

Robertson, D. S. (1991). Feedback theory and darwinian evolution.Journal of Theoretical Biology,152,469–484.https://doi.org/10.1016/S0022-5193(05)80393-5

Ronce,O.(2007).Howdoesitfeeltobelikearollingstone?Tenques-tions about dispersal evolution.Annual Review of Ecology Evolution and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611

Rosenzweig, M. L. (1978). Competitive speciation. Biological Journal of the Linnean Society, 10, 275–289. https://doi.org/10.1111/j.1095-8312.1978.tb00016.x

Rossberg,A.G.,Matsuda,H.,Amemiya,T.,&Itoh,K.(2006).Foodwebs:Expertsconsumingfamiliesofexperts.Journal of Theoretical Biology,241,552–563.https://doi.org/10.1016/j.jtbi.2005.12.021

Roughgarden, J. (1979). Theory of population genetics and evolutionary ecology: An introduction.NewYork,NY:MacmillanPublishingCo.,Inc.

Rueffler,C.,Egas,M.,&Metz, J.A.J. (2006).Evolutionarypredictionsshouldbebasedon individual-leveltraits.American Naturalist,168,E148–E162.https://doi.org/10.1086/508618

Saastamoinen,M.,Bocedi,G.,Cote,J.,Legrand,D.,Guillaume,F.,Wheat,C.W.,…delMarDelgado,M.(2018).Geneticsofdispersal.Biological Reviews,93,574–599.https://doi.org/10.1111/brv.12356

Sasaki, A., & Dieckmann, U. (2011). Oligomorphic dynamics for an-alyzing the quantitative genetics of adaptive speciation. Journal of Mathematical Biology, 63, 601–635. https://doi.org/10.1007/s00285-010-0380-6

Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller,W., & Travis, J. M.(2013). Limited evolutionary rescueof locally adaptedpopulationsfacingclimatechange.Philosophical Transactions of the Royal Society. Biological Sciences,368,20120083.

Schluter,D.(2000).Ecologicalcharacterdisplacementinadaptiveradiation.American Naturalist,156,S4–S16.https://doi.org/10.1086/303412

Schoener,T.W.(2011).Thenewestsynthesis:Understandingtheinter-playofevolutionaryandecologicaldynamics.Science,331,426–429.https://doi.org/10.1126/science.1193954

Page 18: Eco‐evolutionary feedbacks—Theoretical models and ......University, Montreal, Quebec, Canada;10Fish Ecology and Evolution Department, Center for Ecology, Evolution and Biogeochemistry,

18  |    Functional Ecology GOVAERT ET Al.

Schweitzer,J.A.,Juric,I.,Voorde,T.F.,Clay,K.,Putten,W.H.,&Bailey,J.K.(2014).Arethereevolutionaryconsequencesofplant–soilfeed-backsalongsoilgradients?Functional Ecology,28,55–64.https://doi.org/10.1111/1365-2435.12201

Shefferson, R. P., & Salguero-Gómez, R. (2015). Eco-evolutionary dy-namics in plants: Interactive processes at overlapping time-scalesandtheirimplications.Journal of Ecology,103,789–797.https://doi.org/10.1111/1365-2745.12432

Slatkin,M.(1980).Ecologicalcharacterdisplacement.Ecology,61,163–177.https://doi.org/10.2307/1937166

Smallegange, I., Rhebergen, F., Van Gorkum, T., Vink, D., & Egas, M.(2018)Aroundandaroundwego:Understandingeco-evolutionarydynamics by studying polymorphisms and closed feedback loops.Functional Ecology.

Sӕther,B.E.,&Engen,S. (2015).Theconceptof fitness influctuatingenvironments.Trends in Ecology & Evolution,30,273–281.https://doi.org/10.1016/j.tree.2015.03.007

Takahashi,D.,Brännström,Å.,Mazzucco,R.,Yamauchi,A.,&Dieckmann,U. (2013). Abrupt community transitions and cyclic evolutionarydynamics incomplexfoodwebs.Journal of Theoretical Biology,337,181–189.https://doi.org/10.1016/j.jtbi.2013.08.003

Taper,M.L.,&Case,T.J.(1992).Modelsofcharacterdisplacementandthe theoretical robustnessof taxoncycles.Evolution,46,317–333.https://doi.org/10.1111/j.1558-5646.1992.tb02040.x

terHorst,C.,Miller, T.,&Powell, E. (2010).Whencan competition forresources lead to ecological equivalence? Evolutionary Ecology Research,12,843–854.

terHorst,C.P.,&Zee,P.C.(2016).Eco-evolutionarydynamicsinplant–soil feedbacks. Functional Ecology, 30, 1062–1072. https://doi.org/10.1111/1365-2435.12671

terHorst,C.P.,Zee,P.C.,Heath,K.D.,Miller,T.E.,Pastore,A.I.,Patel,S.,…Walsh,M.R. (2018).Evolution ina community context:Traitresponsestomultiplespeciesinteractions.American Naturalist,191,368–380.https://doi.org/10.1086/695835

Thibert-Plante,X.,&Hendry,A.(2009).Fivequestionsonecologicalspecia-tionaddressedwithindividual-basedsimulations.Journal of Evolutionary Biology, 22, 109–123. https://doi.org/10.1111/j.1420-9101.2008. 01627.x

Thomas,M.K.,Kremer,C.T.,Klausmeier,C.A.,&Litchman,E. (2012).A global pattern of thermal adaptation in marine phytoplankton.Science,338,1083–1085.

Thompson,J.N.(2005).The geographic mosaic of coevolution.Chicago,IL:UniversityofChicagoPress.

Travis,J.M.J.,&Dytham,C.(1999).Habitatpersistence,habitatavailabilityandtheevolutionofdispersal.Proceedings of the Royal Society. B, Biological Sciences,266,723–728.https://doi.org/10.1098/rspb.1999.0696

Travis,J.M.J.,&Dytham,C.(2002).Dispersalevolutionduringinvasions.Evolutionary Ecology Research,4,1119–1129.

Travis,J.,Leips,J.,&Rodd,F.H.(2013).Evolutioninpopulationparam-eters: Density-dependent selection or density-dependent fitness?American Naturalist,181,S9–S20.https://doi.org/10.1086/669970

Travis, J.,Reznick,D.,Bassar,R.D., López-Sepulcre,A., Ferriere,R.,&Coulson, T. (2014). Do eco-evo feedbacks help us understand na-ture? Answers from studies of the Trinidadian guppy.Advances in Ecological Research,50,1–40.

Turcotte,M.M.,Reznick,D.N.,&Hare,J.D.(2011).Theimpactofrapidevolutiononpopulationdynamics inthewild:Experimentaltestofeco-evolutionarydynamics.Ecology Letters,14,1084–1092.https://doi.org/10.1111/j.1461-0248.2011.01676.x

Uecker, H. (2017). Evolutionary rescue in randomly mating, selfing, andclonal populations. Evolution, 71, 845–858. https://doi.org/10.1111/evo.13191

Uecker,H.,Otto, S. P., &Hermisson, J. (2014). Evolutionary rescue instructuredpopulations.American Naturalist,183,E17–E35.https://doi.org/10.1086/673914

Urban,M.,Leibold,M.,Amarasekare,P.,Demeester,L.,Gomulkiewicz,R.,Hochberg,M.,…Norberg,J.(2008).Theevolutionaryecologyofmetacommunities.Trends in Ecology & Evolution,23,311–317.https://doi.org/10.1016/j.tree.2008.02.007

Van Baalen,M. (1998). Coevolution of recovery ability and virulence.Proceedings of the Royal Society. B, Biological Sciences,265,317–325.https://doi.org/10.1098/rspb.1998.0298

VanNuland,M.E.,Ware, I.M.,Bailey,J.K.,&Schweitzer,J.A. (2018).Geographicvariationinplantevolutionaryresponsestosoilfertilityismediatedbysoilmicrobialcommunities:Fillingtheeco-evolution-aryfeedbackknowledgegap.Functional Ecology.

VanNuland,M. E.,Wooliver, R. C., Pfennigwerth, A. A., Read, Q. D.,Ware,I.M.,Mueller,L.,…Bailey,J.K.(2016).Plant–soilfeedbacks:Connectingecosystemecologyandevolution.Functional Ecology,30,1032–1042.https://doi.org/10.1111/1365-2435.12690

Vasseur,D.A.,Amarasekare,P.,Rudolf,V.H.W.,&Levine,J.M.(2011).Eco-Evolutionary dynamics enable coexistence via neighbor-de-pendentselection.American Naturalist,178,E96–E109.https://doi.org/10.1086/662161

Vellend,M.(2010).Conceptualsynthesisincommunityecology.The Quarterly Review of Biology,85,183–206.https://doi.org/10.1086/652373

van Velzen, E., & Gaedke, U. (2017). Disentangling eco-evolution-ary dynamics of predator-prey coevolution: The case of anti-phase cycles. Scientific Reports,7, 17125. https://doi.org/10.1038/s41598-017-17019-4

Ware,I.,Fitzpatrick,C.,Johnson,M.,Palkovacs,E.,Kinnison,M.,Mueller,L.,…Bailey,J.(2018).Ecosystemeffectsofevolution:Asynthesisofeco-evolutionary feedbacksacross terrestrialandaquatic systems.Functional Ecology.

Waxman,D.,&Gavrilets, S. (2005). 20questions on adaptive dynam-ics. Journal of Evolutionary Biology, 18, 1139–1154. https://doi.org/10.1111/(ISSN)1420-9101

Yamamichi,M.,Yoshida,T.,&Sasaki,A.(2011).Comparingtheeffectsofrapidevolutionandphenotypicplasticityonpredator-preydynamics.American Naturalist,178,287–304.https://doi.org/10.1086/661241

Yoshida, T., Ellner, S. P., Jones, L. E., Bohannan, B. J., Lenski, R. E., &Hairston,N.G.Jr (2007).Crypticpopulationdynamics:Rapidevo-lutionmaskstrophicinteractions.PLoS Biology,5,e235.https://doi.org/10.1371/journal.pbio.0050235

Yoshida,T., Jones,L.E.,Ellner,S.P.,Fussmann,G.F.,&Hairston,N.G.(2003).Rapidevolutiondrivesecologicaldynamicsinapredator–preysystem.Nature,424,303–306.https://doi.org/10.1038/nature01767

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:GovaertL,FronhoferEA,LionS,etal.Eco-evolutionaryfeedbacks—Theoreticalmodelsandperspectives.Funct Ecol. 2018;00:1–18. https://doi.org/10.1111/1365-2435.13241