edge coloring: not so simple on multigraphs? · edge colorings and matchings edge coloring...

29
Edge coloring: not so simple on multigraphs? Marthe Bonamy May 10, 2012 Marthe Bonamy Edge coloring: not so simple on multigraphs?

Upload: others

Post on 16-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring: not so simple on multigraphs?

Marthe Bonamy

May 10, 2012

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 2: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

χ′: Minimum number of colors to ensure that

a b⇒ a 6= b.

∆: Maximum degree of the graph.

∆ ≤ χ′ ≤ 2∆− 1.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 3: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

χ′: Minimum number of colors to ensure that

a b⇒ a 6= b.

∆: Maximum degree of the graph.

∆ ≤ χ′ ≤ 2∆− 1.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 4: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

χ′: Minimum number of colors to ensure that

a b⇒ a 6= b.

∆: Maximum degree of the graph.

∆ ≤ χ′ ≤ 2∆− 1.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 5: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

χ′: Minimum number of colors to ensure that

a b⇒ a 6= b.

∆: Maximum degree of the graph.

∆ ≤ χ′

≤ 2∆− 1.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 6: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge coloring

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

χ′: Minimum number of colors to ensure that

a b⇒ a 6= b.

∆: Maximum degree of the graph.

∆ ≤ χ′ ≤ 2∆− 1.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 7: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Simple graphs

Theorem (Vizing ’64)

For any simple graph G, ∆(G) ≤ χ′(G ) ≤ ∆(G) +1.

Theorem (Konig ’16, Sanders Zhao ’01)

For any simple graph G, if G is bipartite, or G is planar with∆(G) ≥ 7, then χ′(G ) = ∆(G).

Theorem (Erdos Wilson ’77)

Almost every simple graph G verifies χ′(G ) = ∆(G).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 8: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Simple graphs

Theorem (Vizing ’64)

For any simple graph G, ∆(G) ≤ χ′(G ) ≤ ∆(G) +1.

Theorem (Konig ’16, Sanders Zhao ’01)

For any simple graph G, if G is bipartite, or G is planar with∆(G) ≥ 7, then χ′(G ) = ∆(G).

Theorem (Erdos Wilson ’77)

Almost every simple graph G verifies χ′(G ) = ∆(G).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 9: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Simple graphs

Theorem (Vizing ’64)

For any simple graph G, ∆(G) ≤ χ′(G ) ≤ ∆(G) +1.

Theorem (Holyer ’81)

It is NP-complete to compute χ′ on simple graphs.

Theorem (Misra Gries ’92 (Inspired from the proof of Vizing’stheorem))

For any simple graph G = (V ,E ), a (∆ + 1)-edge-coloring can befound in O(|V | × |E |).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 10: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Simple graphs

Theorem (Vizing ’64)

For any simple graph G, ∆(G) ≤ χ′(G ) ≤ ∆(G) +1.

Theorem (Holyer ’81)

It is NP-complete to compute χ′ on simple graphs.

Theorem (Misra Gries ’92 (Inspired from the proof of Vizing’stheorem))

For any simple graph G = (V ,E ), a (∆ + 1)-edge-coloring can befound in O(|V | × |E |).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 11: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Multigraphs

∆ = 2p.χ′ = 3p.µ = p.

Both theorems areoptimal!

µ: Maximum number of edges sharing the same endpoints.

Theorem (Shannon ’49)

For any multigraph G , χ′(G ) ≤ 3∆(G)2 .

Theorem (Vizing ’64)

For any multigraph G , χ′(G ) ≤ ∆(G ) + µ(G ).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 12: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Multigraphs

∆ = 2p.χ′ = 3p.µ = p.

Both theorems areoptimal!

µ: Maximum number of edges sharing the same endpoints.

Theorem (Shannon ’49)

For any multigraph G , χ′(G ) ≤ 3∆(G)2 .

Theorem (Vizing ’64)

For any multigraph G , χ′(G ) ≤ ∆(G ) + µ(G ).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 13: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Multigraphs

∆ = 2p.χ′ = 3p.µ = p.

Both theorems areoptimal!

µ: Maximum number of edges sharing the same endpoints.

Theorem (Shannon ’49)

For any multigraph G , χ′(G ) ≤ 3∆(G)2 .

Theorem (Vizing ’64)

For any multigraph G , χ′(G ) ≤ ∆(G ) + µ(G ).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 14: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Linear relaxation of edge coloring

M(G ): set of all matchings.w : M(G )→ {0; 1}.

Minimise∑

M w(M) s.t.

∀e ∈ E ,∑

M|e∈M w(M) = 1.

w ′ optimal solution ⇔∑M w ′(M) = χ′(G ).

.

χ′p: Minimum number of colors to ensure that

a1 a2 . . . ap b1 b2 . . . bp

⇒ ∀i , j , ai 6= bj .

Property

χ′f (G ) = infp

χ′p(G)

p .

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 15: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Linear relaxation of edge coloring

M(G ): set of all matchings.w : M(G )→ {0; 1}.

Minimise∑

M w(M) s.t.∀e ∈ E ,

∑M|e∈M w(M) = 1.

w ′ optimal solution ⇔∑M w ′(M) = χ′(G ).

.

χ′p: Minimum number of colors to ensure that

a1 a2 . . . ap b1 b2 . . . bp

⇒ ∀i , j , ai 6= bj .

Property

χ′f (G ) = infp

χ′p(G)

p .

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 16: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Linear relaxation of edge coloring

M(G ): set of all matchings.w : M(G )→ [0; 1].

Minimise∑

M w(M) s.t.∀e ∈ E ,

∑M|e∈M w(M) = 1.

w ′ optimal solution ⇔∑M w ′(M) = χ′

f (G ).

.

χ′p: Minimum number of colors to ensure that

a1 a2 . . . ap b1 b2 . . . bp

⇒ ∀i , j , ai 6= bj .

Property

χ′f (G ) = infp

χ′p(G)

p .

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 17: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Linear relaxation of edge coloring

M(G ): set of all matchings.w : M(G )→ [0; 1].

Minimise∑

M w(M) s.t.∀e ∈ E ,

∑M|e∈M w(M) = 1.

w ′ optimal solution ⇔∑M w ′(M) = χ′

f (G ).

.

χ′p: Minimum number of colors to ensure that

a1 a2 . . . ap b1 b2 . . . bp

⇒ ∀i , j , ai 6= bj .

Property

χ′f (G ) = infp

χ′p(G)

p .

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 18: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Linear relaxation of edge coloring

M(G ): set of all matchings.w : M(G )→ [0; 1].

Minimise∑

M w(M) s.t.∀e ∈ E ,

∑M|e∈M w(M) = 1.

w ′ optimal solution ⇔∑M w ′(M) = χ′

f (G ).

.

χ′p: Minimum number of colors to ensure that

a1 a2 . . . ap b1 b2 . . . bp

⇒ ∀i , j , ai 6= bj .

Property

χ′f (G ) = infp

χ′p(G)

p .

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 19: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.

Maximum size of a matching: b |V |2 c.

χ′(G ) ≥ max |E(H)|b |V (H)|

2c

= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal. And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 20: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.Maximum size of a matching: b |V |

2 c.

χ′(G ) ≥ max |E(H)|b |V (H)|

2c

= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal. And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 21: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.Maximum size of a matching: b |V |

2 c.χ′(G ) ≥ max |E(H)|

b |V (H)|2

c= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal. And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 22: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.Maximum size of a matching: b |V |

2 c.χ′(G ) ≥ max |E(H)|

b |V (H)|2

c= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal. And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 23: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.Maximum size of a matching: b |V |

2 c.χ′(G ) ≥ max |E(H)|

b |V (H)|2

c= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal.

And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 24: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.Maximum size of a matching: b |V |

2 c.χ′(G ) ≥ max |E(H)|

b |V (H)|2

c= m(G ).

m(G ): density of G

Theorem (Edmonds ’65)

For any multigraph G , χ′f (G ) = max(∆(G),m(G )).

Conjecture (Goldberg ’73)

For any multigraph G , χ′(G ) ≤ max(∆(G) +1, dm(G )e).

Which would be optimal. And is computable in polynomial time.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 25: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Goldberg’s conjecture

Theorem (Yu ’08)

For any multigraph G , χ′(G ) ≤ max(∆(G) +√

∆(G)2 ,w(G )).

Theorem (Kurt ’09)

For any multigraph G , χ′(G ) ≤ max(∆(G) + ∆(G) +2224 ,w(G )).

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 26: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Seymour’s conjecture

Conjecture (Seymour)

For any k-regular planar multigraph G s.t. every odd subset H hasd(H) ≥ k verifies χ′(G ) = k.

k = 3⇔ 4CT. (Tait)

k = 4, 5 (Guenin)

k = 6 (Dvorak, Kawarabayashi, Kral)

k = 7 (Edwards, Kawarabayashi)

k = 8 (Chudnovsky, Edwards, Seymour)

Sketch of the proof.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 27: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Seymour’s conjecture

Conjecture (Seymour)

For any k-regular planar multigraph G s.t. every odd subset H hasd(H) ≥ k verifies χ′(G ) = k.

k = 3⇔ 4CT. (Tait)

k = 4, 5 (Guenin)

k = 6 (Dvorak, Kawarabayashi, Kral)

k = 7 (Edwards, Kawarabayashi)

k = 8 (Chudnovsky, Edwards, Seymour)

Sketch of the proof.

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 28: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Conclusion

Conjecture (Jensen Toft ’95)

For any simple graph G on an even number of vertices,χ′(G ) = ∆(G) or χ′(G ) = ∆(G ).

Thanks for your attention.Any questions?

Marthe Bonamy Edge coloring: not so simple on multigraphs?

Page 29: Edge coloring: not so simple on multigraphs? · Edge colorings and matchings Edge coloring ˇDecomposition into matchings. Maximum size of a matching: bjVj 2 c. ˜0(G) max jE(H)j

Conclusion

Conjecture (Jensen Toft ’95)

For any simple graph G on an even number of vertices,χ′(G ) = ∆(G) or χ′(G ) = ∆(G ).

Thanks for your attention.Any questions?

Marthe Bonamy Edge coloring: not so simple on multigraphs?