ee 4900: fundamentals of sensor design 1...2 ece 5900/6900 fundamentals of sensor design dr. suketu...

34
1 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik EE 4900: Fundamentals of Sensor Design Lecture 14 Interface Electronics (Part 2)

Upload: others

Post on 20-May-2020

33 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

1

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

EE 4900: Fundamentals of Sensor Design

Lecture 14

Interface Electronics (Part 2)

Page 2: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

2

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Interface Electronics (Part 2)

Linearizing Bridge Circuits (Sensor Tech Hand

book)

Precision Op amps, Auto Zero Op amps,

Instrumentation Amplifiers (Art of Electronics)

Miniaturizing Sensor Systems

Page 3: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

3

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Why Linearize?-The change in resistance and hence voltage is very small

-The output of a Wheatstone Bridge with only a single

active resistive sensor is inherently nonlinear

- For all Bridge configurations: Nonlinearity comes from

variation of the resistors in the bridge, wiring resistance

and the sensor itself

R

R

R

R+∆R

Sensor

(Strain Gauge,

RTD, Thermistor)

Page 4: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

4

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

R

R

R

R+∆R

Sensor-Temp

R

R

R-∆R

Sensors-Pressure

-FlowR+∆R

R-∆R

Sensors-load cells

-strain gaugesR+∆RR-∆R

R+∆R

Good Better

Best

Sensors-load cells

-strain gauges

Bridge Configuration: 1,2 or 4 element circuits

Page 5: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

5

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Current or Voltage Drive?Linearity Error for Current Drive Bridge

Constant current source: free of wiring resistance

Page 6: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

6

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Amplification

Use small tolerance resistors, low noise opamp, and

decouple the power supply

Advantage:

-Quick (& Dirty)

Amplifier

-Single Power Supply

(use matched RF resistors

to bring up DC level to

Vs/2)

-Single Opamp

Disadvantage:

-Noise

-Nonlinear

-Low CMRR

Page 7: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

7

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Precision, Low Noise Amplification

Use small tolerance resistor, low noise opamp, and

decouple the power supply

Advantage:

-Gain accuracy

-Balanced operation

(differential)

-High CMRR

-Small Nonlinearity

can be corrected in software

Disadvantage:

-Cost

-Gain: may need more

amplification

Page 8: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

8

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Active Bridge with Single Sensor

1) Output voltage is equal in

magnitude but opposite in

polarity to the change in

sensing voltage due to ∆R

2) Linear output voltage

given small change ∆R

3) Second amplifier is

required

Page 9: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

9

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Active Bridge with Two Sensors

1) Output voltage is equal in

magnitude but opposite in

polarity to the change in

sensing voltage due to ∆R

2) Linear output voltage

given small change ∆R:

twice the sensitivity as single

element

3) Second amplifier is

required

Page 10: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

10

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Active Bridge with Single Sensor and Noniverting Amplifier

1) Bridge opamp maintains

the current level through

the sensor

2) Non-inverting opamp

requires precise matching

for accurate gain

Page 11: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

11

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Problem:Wiring Resistance and Noise Pickup

1) Temperature rise will result in rise in the output voltage

2) Use RCOMP to offset the error, or adjust the value in software

Page 12: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

12

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Solution1 :Use 3-Wire Connection

1) Increase in temperature causes the lead resistor to change equally in

each half of the divider

2) Sense lead is connected to high output impedance (no vol change)

3) The imbalanced offset error is reduced in half

Page 13: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

13

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Solution2 : Kelvin (4-wire Connection) Sensing

1) Two sense-leads connect to high impedance opamp inputs: no current

draw

2) Op amp ensures that any voltage variation due to wiring resistance will

be negated and bias voltage VB (and 0 V at the bottom) is maintained

Must have

highly accurate

bias voltage VB

Page 14: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

14

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Solution3 : Ratiometric Technique with Kelvin (4-wire

Connection) Sensing

ADC minimizes offset and gain errors

Eliminate

dependency on

VB

24-bit Σ∆ ADC

Page 15: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

15

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Linearizing Bridge Circuits

Solution3 : Ratiometric Technique with Kelvin (4-wire

Connection) Sensing

ADC minimizes offset and gain errors

Eliminate

dependency on

VB

24-bit Σ∆ ADC

Page 16: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

16

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Interface Electronics (Part 2)

Linearizing Bridge Circuits (Sensor Tech Hand

book)

Precision Op amps, Auto Zero Op amps,

Instrumentation Amplifiers (Art of Electronics)

Miniaturizing Sensor Systems

Page 17: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

17

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Precision Op Amps

Why use Precision Op-amps?

1)Control circuits: must be accurate,

stable with time and temperature,

and predictable

2) Measurement/Sensing circuits: must be accurate, must have high

CMRR and precise gain selection, and must be stable

Examples:

Strain gauge (350 ohm): typical response= +/-10 mV

at some DC level

Light detector/Photo diode/Photo transistor:

Stability is important

Thermocouple: Accuracy is important

Page 18: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

18

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Precision Op Amps

Important Characteristics of a Precision Op-amp Circuit

1) Input Impedance

2) Input Bias Current

- Variation with temperature

- Variation with common-mode input voltage

3) Input Voltage Offset

4) Common-mode Rejection(Ratio of differential vol. output vs. common mode vol. output)

5) Power Supply Rejection(Change in power-supply causes change in output voltage)

Radiation Hardened Precision

Op-amps in Space Applications

Page 19: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

19

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Precision Op Amps

Choosing a Precision Op-Amp: What to look for

1) Supply Voltage and Signal Range

2) Single-supply vs. Dual-supply

3) Offset voltage

4) Noise (voltage noise, current noise, and 1/f noise)

5) Bias Current

6) CMRR and PSRR

7) Gain Bandwidth Product (GBW), Transition

Frequency (fT), and Slew Rate

8) Harmonic Distortion

Page 20: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

20

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Auto Zero or Zero Drift Op Amps

Auto Zero Op-amp Characteristics1) Ultra-high precision

2) Very small input offset voltage (e.g. 2 mV)

3) Large Gain Bandwidth Product (e.g. 2 MHz)

4) Very Low Noise (e.g. 50 nV/√Hz)

5) Low Voltage Supply (e.g. 3.3 V, 5 V)

When to use them?

Load cells, Thermocouples, slow but accurate

measurements

Example: Microchip MCP6V26

Input Offset Voltage Drift

MCP6V26 Specifications

CMRR and PSRR vs Temperature

Page 21: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

21

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Auto Zero or Zero Drift Op Amps

Example CircuitUltra-high precision measurement

Page 22: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

22

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Instrumentation Amplifiers

Instrumentation Op-amp Characteristics1) Differential In, Single-ended out

2) Very high input impedance (10 MΩ-10 GΩ)

3) Wide gain (G=1-1000)

4) Very high CMRR at high gains (110-140 dB

at G=100

When to use them?

Strain gauge, Audio, Weigh scales/ Load cells, ECG and medical

electronis, process control

Example: Analog Device AD620

CMRR vs Frequency Voltage Noise vs Frequency

Page 23: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

23

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Instrumentation Amplifiers

Three Op-amp Design

Page 24: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

24

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Instrumentation Amplifiers

AD620 Instrumentation Amplifier

1) The input transistors Q1 and Q2

provide lower input bias current

through Superϐeta processing

2) Feedback through the Q1-A1-R1

loop and the Q2-A2-R2 loop maintains

constant collector current of the input

devices Q1 and Q2: this creates the

input voltage across RG

3) This creates a differential gain from

the inputs to the A1/A2 outputs given

by G = (R1 + R2)/RG + 1

4) The unity-gain subtractor, A3,

removes any common-mode signal,

yielding a single-ended output referred

to the REF pin potential

Page 25: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

25

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Instrumentation Amplifiers

AD620 Instrumentation Amplifier CircuitsPressure Monitor at 5 V Single Supply

ECG Monitor Circuit Voltage-to-current Converter

Page 26: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

26

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Programmable Gain (Instrumentation) Amplifiers

Gain is programmable by microprocessor

Robotic arm with thermistor and torque sensor:

programmable gain amplifier with output directly interfaced with ADC (3.3 V)

Page 27: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

27

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Interface Electronics (Part 2)

Linearizing Bridge Circuits (Sensor Tech Hand

book)

Precision Op amps, Auto Zero Op amps,

Instrumentation Amplifiers (Art of Electronics)

Miniaturizing Sensor Systems

Page 28: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

28

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Data acquisition, process control and measurement can be

miniaturized with Smart Sensors

Page 29: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

29

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

What is a Smart Sensor?

Microcontroller Unit (MCU) must consume low power

Page 30: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

30

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Analog Devices Microconverter Series

ADUC7124

Page 31: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

31

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Analog Devices Microconverter Series

ADUC842

Page 32: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

32

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Texas Instruments Wireless Sensor Node with low power

MCU eZ430-RF2500 kit

MSP430F2274

microcontroller CC2500 2.4-GHz

wireless transceiver

Page 33: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

33

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Silicon Labs Wireless MCU Development Kit 1064-434-DK

1064-434-DK

(434 MHz)Si106x/8x Wireless MCU

Page 34: EE 4900: Fundamentals of Sensor Design 1...2 ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik Interface Electronics (Part 2) Linearizing Bridge Circuits (Sensor Tech Hand

34

ECE 5900/6900 Fundamentals of Sensor Design Dr. Suketu Naik

Miniaturizing Sensor Systems

Xbee Wireless Sensor Node with Solar Power and Arduino-

Xbee Shield (Seedstudio)

Xbee is based on IEEE 802.15.4 networking protocol

for point-to-multipoint or peer-to-peer networkingRef:

https://www.sonoma.edu/users/f/farahman/sonoma/courses/cet543/resources/802_intro_01655947.pdf

Solar powered Xbee module Xbee-Arduino Shield