ee 560 chip input and output (i/0) circuits -...

26
EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS 1 Kenneth R. Laker, University of Pennsylvania

Upload: others

Post on 13-Aug-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

EE 560 CHIP INPUT AND OUTPUT (I/0)CIRCUITS

1

Kenneth R. Laker, University of Pennsylvania

Page 2: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

2

-> ESD PROTECTION CIRCUITS (INPUT PADS)-> ON-CHIP CLOCK GENERATION & DISTRIBUTION-> OUTPUT PADS-> ON-CHIP NOISE DUE TO PARASITIC INDUCTANCE-> SUPER BUFFER CIRCUIT DESIGN-> LATCH-UP PHENOMENON

Page 3: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

3

ESD PROTECTION

1 MΩ

100 pF

1.5 kΩ

DUT+−V

esd

HUMAN BODY MODEL MACHINE MODEL

1 MΩ

200 pFDUT+

−Vesd

ESD TESTERS: LUMPED ELEMENT MODELC

S

CC

DUT+

-V

LS

RS C

t

I Component HBM MMC

C (pF) 100 200

RS (Ω) 1500 25

LS (µΗ) 5 2.5

CS (pF) 1 0

Ct (pF) 10 10

Page 4: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

4

VDD

input pin

to circuits on dieV

A

-0.7 V < VA < V

DD + 0.7 V

PROTECTIONNETWORK (PN)

Page 5: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

5

VDD

PNA

E

XINPUT SERIES TRANSMISSION GATE CIRCUIT

TGA

E

X

A -> EXTERNAL (OFF-CHIP) input signalE -> INTERNAL (ON-CHIP) enable signalX -> INTERNAL (ON-CHIP) output signal

X = A, when E = 0X = HIGH-IMPEDANCE STATE when E = 1

NOTE: ANY UNUSED INPUT TERMINALS SHOULD BE TIED TOV

DD OR GND USING PULL-UP OR PULL-DOWN RESISTORS

RATHER THAN FLOAT

Page 6: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

6

VDD

PNA XA X

INVERTING INPUT CIRCUIT

VOL

= 0.8 V

NMH

NML

VOH

= 2.0 V

TTL

Vin

= A

CMOS

VIH

VIL

Vth

Vout

= X

VOH

= VDD

Vth

VOL

= 0

Vout

= V

in

VIL V

IH2.0

Vin

= A

0.8

LEVEL SHIFTING FROM TTL TO CMOS

DESIGN FOR Vth

= 1.4 V

X = A

Page 7: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

7

Vout

= X

VOH

= VDD

Vth

VOL

= 0V

IL VIH

2.0V

in = A

0.8

PM-NM

PH-NL

PL-NH

PM-NM => nominal processingPH-NL => strong pMOS, weak nMOS process cornerPL-NH => weak pMOS, strong nMOS process corner

VARIATIONS IN LEVEL SHIFT VTC DUE TO PRCESS VARIATIONS

Page 8: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

VDD

PNA

XA XTTL

X = A

NON-INVERTING TTL LEVEL-SHIFTING CIRCUIT

Kenneth R. Laker, University of Pennsylvania

8

Schmitt Trigger

Page 9: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

9OUTPUT CIRCUITS AND L(di/dt) NOISE

Z

CK

D

CKV

DD

D

ZCK

VDD

Z

D

CK

TRISTABLE OUTPUT CIRCUIT

Z = D for CK = 1Z = HIGH IMP for CK = 0

12 transistors

6 transistors

LargeW/L

LargeW/L

LARGE W/L-> Sufficent current sink, source-> Reduce delay times

Page 10: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

10LARGE W/L-> Sufficent current sink, source-> Reduce delay times

=> LARGE di/dt

L (di/dt) VOLTAGE DROP ACROSS BONDING WIRECONNECTING PAD TO PACKAGE PIN

t

VOH

VOL

Vin

, Vout

T/2 T

t

nMOSON

nMOSON

pMOSON

iC

0 tst

s/2

Imax

iC(t)

t

Imaxts2

≈ CloadVDD

Imax ≈ 2CloadVDD

ts

didt

max

≥ Imaxts/ 2

= 2 Imaxts

≥ 4 CloadVDD

ts( )2

Page 11: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

11

LET Cload

= 100 pF, L = 2 nH, VDD

= 5 V and ts = 5 ns

HIGH-END MICROPROCESSOR CHIPS WITH 32 BITS OR 64BIT DATA BUS LINES - ALL OTPUT DRIVERS SWITCHING ATTHE SAME TIME!

didt

max

≥ 4CloadVDD

ts( )2

didt

max

≥4 100x10−12( ) 5( )

5x10−9( )2 = 80mAns

didt

max

≥ 160mVL

Page 12: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

12

VDD

D

ZCK

ST

PRECHARGES INVERTER OUTPUT “Z” TO VDD

/2 WHEN ST = 1AND CK = 0 (JUST PRIOR TO CK -> 1)

REDUCE L(di/dt) NOISE

Page 13: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

13BIDRECTIONAL BUFFER CIRCUIT WITH TTL INPUTCAPABILITY

Z

E

D

E

TS

TTLDI

VDD

D

ZE

VDD

PN

DI

Level Shift

Reduce di/dt Noise

Page 14: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

14ON-CHIP CLOCK GENERATION AND DISTRIBUTION

CK

CK

RING OSCILLATOR

SIMPLE ON-CHIP CLOCK CIRCUIT

CK FREQUENCY-> PROCESS DEPENDENT-> UNSTABLE

Rbias

CrystalC

1 C2

PIERCE CRYSTAL OSCILLATOR CIRCUIT

-> GOOD FREQUENCY STABILITY

Page 15: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

15TWO-PHASE CLOCKING SCHEMES

phi1

phi2

Tc

clk phi1

phi2

CLOCKDECODER

PRIMARYCLOCKS FROM

XTALCONTROLLEDOSCILLATOR

CK1CK2CK3CK4

Page 16: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

16

CLOCKGEN

GENERAL LAYOUT OF H-TREE CLOCK DISTRIBUTIONNETWORK FOR UNIFORM CLOCK DISTRIBUTION

C AD Techniques to automate the generation of optimum clock distributionnetworks.

Page 17: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

17

SUPERBUFFER

CLOAD

PROBLEM: GIVEN the task of driving a large capacitive load CLOAD

,how can a SUPER BUFFER comprised of chain of N inverters be scaledto minimize the buffer’s delay time?

Cg

1 a2 a3a1

Cd aC

daC

g a2Cg

a2Cd

a3Cg

a3Cd

CLOAD

N = 3

N -> number of inverter stagesa -> optimal stage scale factor

Equiv INV

let CLOAD

= a4 Cg

In General:C

LOAD = aN+1 C

g

Page 18: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Cg

1 a2 a3a1

Cd aC

daC

g a2Cg

a2Cd

a3Cg

a3Cd

CLOAD

N = 3N -> number of inverter stagesa -> optimal stage scale factor

Equiv INV

td

let CLOAD

= a4 Cg

In General:C

LOAD = aN+1 C

g

Kenneth R. Laker, University of Pennsylvania

18

CONSIDER N stages and CLOAD

= aN+1 Cg

ALL INVERTERS HAVE SAME DELAY

td t

dt

d

τ0 is per gate delay for Equiv INV in ring

oscillator circuit with load capacitance = Cg + C

d.

Choose N and a to MINIMIZE ttotal

where CLOAD

= aN+1 Cg =>

t total = N+1( )τ0Cd + aCg

Cd + Cg

N+1=ln CLOAD/Cg( )

ln a( )

td = τ0Cd + aCg

Cd + Cg

Page 19: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

19

=>

TO MINIMIZE ttotal

:

= 0

For the SPECIAL CASE Cd = 0 => ln (a

opt) = 1 or a

opt = e1 = 2.718

N+1=ln CLOAD/Cg( )

ln a( )

t total = N+1( )τ0Cd + aCg

Cd + Cg t total =ln CLOAD/Cg( )

ln a( )τ0

Cd + aCg

Cd + Cg

dttotalda

= τ0 lnCLOAD

Cg

− 1/a

ln a( )( )2

Cd + aCg

Cd + Cg

+

1ln a( )

Cg

Cd + Cg

= 0

aopt ln aopt( ) −1[ ] = CdCg

Page 20: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

20

EXAMPLE: For Cd = 0.5 fF, C

g = 10 fF, determine a

opt and N for

CLOAD

= 50 pF.

aopt

[ln(aopt

) - 1] = 0.5 => aopt

= 3.18

N = [ln(CLOAD

/Cg)/ln(a)] - 1

= [ln(50 x 10-12/1 x 10-14)/ln(3.18)] - 1 = [ln(5000)/ln(3.18)] - 1 = 6.36

The SUPER BUFFER DESIGN which MINIMIZES ttotal

for CLOAD

= 50 pF isN = 7 Equiv INV stagesa

opt = 3.18

N+1=ln CLOAD/Cg( )

ln a( )

Page 21: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

21PLL CLOCKING SCHEMES

dclk

= dout-reg

+ dpad

clk

clk pad

output pad

R

C

dclk

= dclk-buf

+ dRC

+dout-reg

+ dpadclk

dclk

data out

chip

clk

clk pad

R

C

clkd

clk

data out

chipPLL

output pad

WHY USE PLL IN SYSTEM CLOCKS?

+ To syncronize the internal clock of a chip to an external clock.

+ To operate an internal clock at a higher rate than the external clock input.

PhaseDetector Filter VCOclk

÷ n

output - clk

clk-out clk-out

clk-out clk-out

buffer

outputregister

Page 22: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

22clk

clk pad

output pad

R

C

chipPLL

÷ 4

clkclk-out

clockPLL PLL

clock

system clk

bus (high speed - tristate)

Generates an internal fclk-out = 4 × fclksynchronized to clk

sychronizes the out-put enables of two chips

dclk

= dout-reg

+ dpad

chipchip1 chip2

Page 23: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

23

Rwell

n+ p+ p+n+

VDDV

out

n+p+

n-wellp-sub

Vin

NPNPNPR

sub

LATCHUP IN CMOS CIRCUITS

Rsub

Rwell

VDD

IE2

VB-npn

IRsub

IRwell

I

VB-pnp

IE1

I

Q1 (PNP)

Q2 (NPN)

+

V

V

I

0

2.0 mA

VH = 1.5 V

trigger pointIH

slope = 1/RT

VDD

VH

IHR

T

SCR EQIVCKT inLatch-up

latch-up susceptabilityα 1/[NSUB (spacing)2]

Rwell

Page 24: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

24

LATCH-UP CONDITION

Rsub

Rwell

VDD

IE2

VB-npn

IRsub

IRwell

I

VB-pnp

IE1

I

Q1 (PNP)

Q2 (NPN)

+

V

At the on-set of latch-up

V

I

0

2.0 mA

VH = 1.5 V

trigger pointIH

slope = 1/RT

VDD

VH

IHR

T

SCR EQIVCKT inLatch-up

I > IH = (V

DD - V

H)/R

T

Page 25: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

25

Latchup Prevention LAYOUT Guidelines:

A. Latchup resistant CMOS processes (thin epi layer on highly doped substrate).

B. Layout n and p channel transistors such that all nMOS transistors are placedclose to GND and V

DD. Physically separate n and p transistors (i.e. with the

bonding pad).

C. Use p+ guard rings connected to GND around nMOS transistors and n+quardrings connected to V

DD around the pMOS transistors to reduce R

well and R

sub and

to weaken BJTs.

D. Place sub, well contacts close to the nMOS, pMOS source connections tosupply rails (i.e. GND for nMOS, V

DD for pMOS).

CONSERVATIVE RULE: One sub contact per source connection to a supply

LESS CONSERVATIVE: One sub contact per 5-10 devices.

Reduce αnpn

, αpnp

; Reduce Rsub

, Rwell

make small

make largeLATCH-UP PREVENTION

Page 26: EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS - Karadimoveducypedia.karadimov.info/library/EE560_IO_Ckts.pdf · 2002. 10. 7. · kenneth r. laker, university of pennsylvania 2-> esd

Kenneth R. Laker, University of Pennsylvania

26

VDD

GND

n+

nMOS pMOS

p+

p+ guardring toGND

n+ guardring to V

DD

OUTBONDPAD

p-tub edge spacedfar from p+

sources to VDD

I/O CELL LAYOUT USING LATCH-UP GUIDELINES