ee247 lecture 20 - university of california, berkeleyee247/fa04/fa04/lectures/l20_f04.pdfee247...

27
EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 1 EE247 Lecture 20 ADC Converters - Comparator architecture examples – Flash ADC sources of error Sparkle code • Meta-stability – Techniques to reduce flash ADC complexity • Interpolating • Folding EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 2 Voltage Comparator Architectures Comparator architectures High gain amplifier with differential analog input & single-ended large swing output Output swing compatible with driving digital logic circuits Open-loop amplification no frequency compensation required Precise gain not required Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe Two options for implementation : High-gain amplifier + simple digital latch Low-gain amplifier + a high-sensitivity latch Sample-data comparators S/H input Offset cancellation Pipelined stages

Upload: others

Post on 18-Jan-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 1

EE247Lecture 20

ADC Converters- Comparator architecture examples– Flash ADC sources of error

• Sparkle code• Meta-stability

– Techniques to reduce flash ADC complexity• Interpolating• Folding

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 2

Voltage ComparatorArchitectures

Comparator architectures• High gain amplifier with differential analog input & single-ended large

swing output– Output swing compatible with driving digital logic circuits– Open-loop amplificationà no frequency compensation required– Precise gain not required

• Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe– Two options for implementation :

• High-gain amplifier + simple digital latch• Low-gain amplifier + a high-sensitivity latch

• Sample-data comparators– S/H input– Offset cancellation– Pipelined stages

Page 2: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 3

Latched Comparator

• Clock rate fs• Resolution• Overload recovery• Input capacitance (and linearity!)• Power dissipation• Input common-mode range• Kickback noise• …

Av LatchVi+

Vi-

Do+

Do-

fs

Preamp

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 4

Comparators Overdrive Recovery

Uà amplification after time ta

During reset amplifier settles exponentially to its zero input condition with τ0=RC

Assume Vm à maximum input normalized to 1/2lsb (=1)

Linear model for a single-pole amplifier:

Example: Worst case input/output waveforms

à Limit output voltage swing by1. Passive clamp2. Active restore3. Low gain/stage

Page 3: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 5

Comparators Overdrive RecoveryLimiting Output

ClampAdds parasitic capacitance

Active RestoreAfter outputs are latchedà Activate φR &

equalize output nodes

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 6

CMOS Comparator Example

A. Yukawa, “A CMOS 8-Bit High-Speed A/D Converter IC,” JSSC June 1985, pp. 775-9.

•Flash ADC: 8bits, +-1/2LSB INL @ fs=15MHz (Vref=3.8V)•No offset cancellation

Page 4: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 7

Comparator with Auto-Zero

I. Mehr and L. Singer, “A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications,” JSSC July 1999, pp. 912-20.

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 8

Auto-Zero Implementation

Ref:I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC,” JSSC March 2000, pp. 318-25.

Page 5: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 9

Comparator Example

Ref: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter," IEEE Journal of Solid-State Circuits, vol. 30, pp. 166 - 172, March 1995.

•Variation on Yukawa latch used w/o preamp

•No dc power when φ high

•Good for low resolution ADCs

•M11 & M12 added to vary comparator threshold

•To 1st order, for W1=W2 & W11=W12

Vthlatch = W11/W1 x VR

where VR=VR+ - V R-

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 10

Comparator Example

•Used in a pipelined ADC with digital correctionàno offset cancellation

•Input buffers suppress kick-back

•Note differential reference

•M7, M8 operate in triode region•Preamp gain ~10

•Current in MB2 switches by LATCH signal to flow either in the preamp or the latch.

Ref: S. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC ,NO. 6, Dec. 1987

Page 6: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 11

Bipolar Comparator Example

•Used in 8bit 400Ms/s & 6bit 2Gb/s flash ADC

•Signal amplification during φ1 high, latch operates when φ1 low

•Input buffers suppress kick-back & input current

•Separate ground and supply buses for front-end preamp à kick-back noise reduction

Ref: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," IEEE International Solid-State Circuits Conference,vol. XXX, pp. 98 - 99, February 1987.Ref: T. Wakimoto, et al, "Si bipolar 2GS/s 6b flash A/D conversion LSI," IEEE International Solid-State Circuits Conference, vol. XXXI, pp. 232 - 233, February 1988.

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 12

Flash Converter Sources of Error

• Comparator input:– Offset– Nonlinear input capacitance– Kickback noise (disturbs

reference)– Signal dependent sampling

time

• Comparator output:– Sparkle codes (… 111101000

…)– Metastability

R/2

R

R

R

R/2

R

Enc

oder

DigitalOutput

VinVref

Page 7: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 13

Typical Flash Output Encoder

0

0

1

1

1

0

1

0

0

Binary Output (negative)

Thermometer to Binary decoder ROM

VDD

• Thermometer code à 1-of-n decoding

• Final encoding à NOR ROM

b3b2b1b0

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 14

Typical Flash Output Decoder

0

0

1

1

1

0

1

0

0

Binary Output (negative)

Thermometer to Binary decoder ROM

b3 b2 b1 b0Outputà 0 1 1 1

VDD

b3b2b1b0

Page 8: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 15

Sparkle Codes

Correct Output:0111 … 1000

Erroneous Output:0000

0

1

0

1

1

1

0

1

0

Erroneous 0 (comparator offset?)

VDD

b3b2b1b0

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 16

Sparkle Tolerant Encoder

Protects against a single sparkle.

Ref: C. Mangelsdorf et al, “A 400-MHz Flash Converter with Error Correction,” JSSC February 1990, pp. 997-1002.

0

0

1

0

1

0

1

0

0

0

Page 9: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 17

Meta-StabilityDifferent gates interpret metastable output X differently

Correct output: 0111 or 1000

Erroneous output: 0000

Solutions:–Latches (high power)–Gray encoding

Ref: C. Portmann and T. Meng, “Power-Efficient Metastability Error Reduction in CMOS Flash A/D Converters,” JSSC August 1996, pp. 1132-40.

0

0

X

1

1

0

1

1

0

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 18

Gray Encoding

• Each Ti affects only one Già Avoids disagreement of interpretation by multiple gates

• Protects also against sparkles• Follow Gray encoder by (latch and) binary encoder

BinaryGrayThermometer Code

1110011111111

0111010111111

1011110011111

0010110001111

1100100000111

0101100000011

1001000000001

0000000000000

B1B2B3G1G2G3T7T6T5T4T3T2T1

43

622

75311

TGTTG

TTTTG

==

+=

Page 10: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 19

Reducing Flash ADC Complexity

E.g. 10-bit “straight” flash– Input range: 0 … 1V– LSB = ∆: ~ 1mV – Comparators: 1023 with offset << LSB– Input capacitance: 1023 * 100fF = 102pF– Power: 1023 * 3mW = 3W

Techniques:– Interpolation– Folding– Folding & Interpolation– Two-step, pipelining

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 20

Interpolation

• Idea– Interpolation between preamp outputs

• Reduces number of preamps– Reduced input capacitance– Reduced area, power dissipation

• Same number of latches• Important “side-benefit”

– Decreased sensitivity to preamp offsetà improved DNL

Page 11: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 21

Simulink Model

2

Y

1

Vin

2*Delta

Vref2

1*Delta

Vref1

Vi

Preamp2

Preamp1

Vin

A2

A1

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 22

Preamp Output

Zero crossings (to be detected by latches) at Vin =

Vref1 = 1 ∆Vref2 = 2 ∆

0 0.5 1 1.5 2 2.5 3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Vin / ∆

Pre

amp

Out

put

A1A2

VinA1

A2

Page 12: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 23

Differential Preamp Output

Zero crossings at Vin =

Vref1 = 1 ∆Vref12 = 0.5*(1+2) ∆Vref2 = 2 ∆

0 0.5 1 1.5 2 2.5 3

-0.4-0.2

00.20.40.6

Pre

amp

Out

put

0 0.5 1 1.5 2 2.5 3

-0.4-0.2

00.20.40.6

A1+

A2

A1-A1A2-A2

A1+A2

Vin / ∆

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 24

Interpolation in Flash ADC

Half as many reference voltages and preamps Interpolation factor:x2

Possible to accomplish higher interpolation factorà Resistive interpolation

Vin

A1

A2

Page 13: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 25

Resistive Interpolation

Ref: H. Kimura et al, “A 10-b 300-MHz Interpolated-Parallel A/D Converter,” JSSC April 1993, pp. 438-446.

• Resistors produce additional levels

• With 4 resistors, the “interpolation factor” M=8(ratio of latches/preamps)

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 26

DNL Improvement

• Preamp offset distributed over M resistively interpolated voltages:à impact on DNL divided by M

• Latch offset divided by gain of preampà use “large” preamp gain …

Ref: H. Kimura et al, “A 10-b 300-MHz Interpolated-Parallel A/D Converter,” JSSC April 1993, pp. 438-446.

Page 14: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 27

Preamp Input Range

Linear preamp input ranges must overlapi.e. range > ∆

Sets upper bound on gain<< VDD / ∆

0 0.5 1 1.5 2 2.5 3

-0.4-0.2

00.20.40.6

A1-A1A2-A2

0 0.5 1 1.5 2 2.5 3

-0.4-0.2

00.20.40.6

A1+A2

Pre

amp

Out

put

A 1+A

2

Vin / ∆

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 28

Interpolated-Parallel ADC

Ref: H. Kimura et al, “A 10-b 300-MHz Interpolated-Parallel A/D Converter,” JSSC April 1993, pp. 438-446.

Page 15: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 29

Measured Performance

Ref: H. Kimura et al, “A 10-b 300-MHz Interpolated-Parallel A/D Converter,” JSSC April 1993, pp. 438-446.

(7+3)

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 30

Folding Converter

• Significantly fewer comparators than flash ~2B/2+1

• Fast• Nonidealities in folder limit resolution to ~10Bits

LSBADC

MSBADC

Folding Circuit

VIN

DigitalOutput

Page 16: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 31

Folding• Folder maps input to

smaller range

• MSB ADC determines which fold input is in

• LSB ADC determines position within fold

• Logic circuit combines LSB and MSB results

MSB ADC

LSBADC

Analog Input

0 0.5 1 1.5 2 2.5 3 3.5 4-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fol

der

Out

put

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 32

Generating Folds

-0.5

0

0.5

A1

-0.5

0

0.5

A2

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

A1-

A2

0

0.5

1

A1-

A2

-0.5

0

0.5

A3

0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

0

0.5

A1-

A2+

A3

Vin /∆Vin /∆

Page 17: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 33

Folding Circuit

M110 / 1M110 / 1

M210 / 1

M210 / 1

I1I1

Vref1 M310 / 1M310 / 1M310 / 1M310 / 1M310 / 1M310 / 1M310 / 1M310 / 1

M410 / 1

M410 / 1

M410 / 1

M410 / 1

M410 / 1

M410 / 1

M410 / 1

M410 / 1

I2I2I2I2I2I2I2I2

Vref2 M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1M510 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

M610 / 1

I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3

Vref3M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1M710 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

M810 / 1

I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4I4

Vref4

R11kOhm

R21kOhm

3 V 3 V

Vo2Vo1

Vin

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 34

CMOS Folder Output

0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

0

0.5

Fold

er O

utpu

t

0 0.5 1 1.5 2 2.5 3 3.5 4-0.1

-0.05

0

0.05

0.1

Err

or

Vin / ∆

Ideal FolderCMOS Folder

Accurate only at zero-crossings

LowdownàMost folding ADCs do not actually use the folds, but only the zero-crossings!

Page 18: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 35

Parallel Folders

Vref + 3/4 * ∆

Fine FlashADC 4

Folder 3

Vref + 2/4 * ∆

Fine FlashADC 3

Folder 2

Vref + 1/4 * ∆

Fine FlashADC 2

Folder 1

Vref + 0/4 * ∆

Fine FlashADC 1

Folder 4

Logic

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 36

Parallel Folder Outputs

0 1 2 3 4 5-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Vin / ∆

Fold

er O

utpu

t

F1F2F3F4 • 4 Folders

• 16 Zero crossings• à only 4 LSB bits

• Better resolution• More foldersà Large complexity

• Interpolation

Page 19: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 37

Folding & Interpolation

Vref + 3/4 * ∆

FineFlashADC

Folder 3

Vref + 2/4 * ∆

Folder 2

Vref + 1/4 * ∆

Folder 1

Vref + 0/4 * ∆

Folder 4

Encoder

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 38

Folder / Interpolator Output

0 1 2 3 4 5-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Vin / ∆

Fold

er /

Inte

rpol

ator

Out

put

F1F2I1I2I3

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Vin / ∆

Fold

er /

Inte

rpol

ator

Out

put

F1F2I1I2I3

Page 20: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 39

Folder / Interpolator Output

0 1 2 3 4 5-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Vin / ∆

Fold

er /

Inte

rpol

ator

Out

put

F1F2I1I2I3

1.5 1.6 1.7 1.8 1.9 2 2.1

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Vin / ∆

Fold

er /

Inte

rpol

ator

Out

put

F1F2I1I2I3

Interpolate only between closely spaced folds to avoid nonlinear distortion

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 40

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

Ref: B. Nauta and G. Venes, JSSC Dec 1985, pp. 1302-8

Page 21: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 41

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 42

A 70-MS/s 110-mW 8-b CMOS Folding and Interpolating A/D Converter

Page 22: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 43

Pipelined ADCs

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 44

Pipelined A/D Converters

• Ideal Operation• Errors and Correction

– Redundancy– Digital Calibration

• Implementation – Practical Circuits– Stage Scaling

Page 23: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 45

Block Diagram

• Idea: Cascade several low resolution stages to obtain high overall resolution

• Each stage performs coarse A/D conversion and computes its quantization error, or "residue"

Align and Combine Data

Stage 1B1 Bits

Stage 2B2 Bits

Digital output(B1 + B2 + ... + Bk) Bits

Vin

MSB... ...LSB

Stage k Bk Bits

Vres1 Vres2

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 46

Characteristics

• Number of components (stages) grows linearly with resolution

• Pipelining– Trading latency for conversion speed– Latency may be an issue in e.g. control systems– Throughput limited by speed of one stage → Fast

• Versatile: 8...16bits, 1...200MS/s• Many analog circuit non-idealities can

be corrected digitally

Page 24: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 47

Concurrent Stage Operation

• Stages operate on the input signal like a shift register• New output data every clock cycle, but each stage

introduces ½ clock cycle latency

Align and Combine Data

Stage 1B1 Bits

Stage 2B2 Bits

Digital output(B1 + B2 + ... + Bk) Bits

Vin Stage k Bk Bits

φ1φ2

acquireconvert

convertacquire

...

...

φ1 φ2 φ1 ...CLK

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 48

Data Alignment

• Digital shift register aligns sub-conversion results in time

Stage 2B2 Bits

Vin Stage k Bk Bits

φ1φ2

acquireconvert

convertacquire

...

...

φ1 φ2 φ1 ...CLK

+ +Dout

CLK CLK CLK

Stage 1B1 Bits

Page 25: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 49

Latency

[Analog Devices, AD 9226 Data Sheet]

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 50

Pipelined ADC Analysis

• Ignore timing and use simple static model

• Let's first look at "two-stage pipeline"– E.g.: Two cascaded 2-bit ADCs to get 4 bits of

total resolution

Stage 2B2 Bits

Vin Stage k Bk Bits

+Dout

Stage 1B1 Bits

+

Vres1 Vres2

Page 26: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 51

Two Stage Example

• Using only one ADC: Output contains large quantization error

• "Missing voltage" or "residue" (-εq1)• Idea: Use second ADC to quantize and add -εq1

Vin

+Dout= Vin + εq1

2-bit ADC 2-bit ADC

???

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 52

Two Stage Example

• Use DAC to compute missing voltage• Add quantized representation of missing voltage• Why does this help? How about εq2 ?

Vin“Coarse“

+

Dout= Vin+ εq1 − εq1+ εq2

2-bit ADC 2-bit ADC

“Fine“+-

− εq1+εq2

2-bit DAC

-εq1

Page 27: EE247 Lecture 20 - University of California, Berkeleyee247/fa04/fa04/lectures/L20_f04.pdfEE247 Lecture 20 - University of California, Berkeley ... 10

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 53

Two Stage Example

• Fine ADC is re-used 22 times• Fine ADC's full scale range needs to span only 1 LSB

of coarse quantizer

00 01 10 11

Vref1/22

−εq1

00

01

10

11

First ADC“Coarse“

Second ADC“Fine“Vin

Vref2Vref1

221

22

2 222 ⋅== refref

q

VVε

EECS 247 Lecture 20: Data Converters © 2004 H.K. Page 54

Two Stage Transfer FunctionDout

VinVref1

0000000100100011010001010110011110001001101010111100110111101111

CoarseBits(MSB)

FineBits(LSB)