ee292: fundamentals of eceb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β·...

21
http://www.ee.unlv.edu/~b1morris/ee292/ EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 19 121030

Upload: others

Post on 18-Sep-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 19

121030

Page 2: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Outline

β€’ Review

β–« Phasors

β–« Complex Impedance

β€’ Circuit Analysis with Complex Impedance

2

Page 3: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasors

β€’ A representation of sinusoidal signals as vectors in the complex plane

β–« Simplifies sinusoidal steady-state analysis

β€’ Given

β–« 𝑣1 𝑑 = 𝑉1cos(πœ”π‘‘ + πœƒ1)

β€’ The phasor representation is

β–« 𝑽1 = 𝑉1βˆ πœƒ1

β€’ For consistency, use only cosine for the phasor

β–« 𝑣2 𝑑 = 𝑉2 sin πœ”π‘‘ + πœƒ2 = 𝑉2 cos πœ”π‘‘ + πœƒ2 βˆ’ 90Β° =

𝑽2 = 𝑉2∠(πœƒ2βˆ’90Β°)

3

Page 4: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Adding Sinusoids with Phasors

1. Get phasor representation of sinusoids

2. Convert phasors to rectangular form and add

3. Simplify result and convert into phasor form

4. Convert phasor into sinusoid

β–« Remember that πœ” should be the same for each sinusoid and the result will have the same frequency

4

Page 5: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.3 β€’ 𝑣1 𝑑 = 20 cos πœ”π‘‘ βˆ’ 45Β°

β–« 𝑽1 = 20∠ βˆ’45Β°

β€’ 𝑣2 𝑑 = 10 sin πœ”π‘‘ + 60Β°

β–« 𝑽2 = 10∠ 60Β° βˆ’ 90Β° =

10∠ βˆ’30Β°

β€’ Calculate

β–« 𝑽𝑠 = 𝑽1 + 𝑽2

5

Page 6: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasor as a Rotating Vector β€’ 𝑣 𝑑 = π‘‰π‘š cos πœ”π‘‘ + πœƒ =

𝑅𝑒{π‘‰π‘šπ‘’π‘— πœ”π‘‘+πœƒ }

β€’ π‘‰π‘šπ‘’π‘— πœ”π‘‘+πœƒ is a complex vector

that rotates counter clockwise at πœ” rad/s

β€’ 𝑣(𝑑) is the real part of the vector

β–« The projection onto the real axis of the rotating complex vector

6

Source: Wikipedia

Page 7: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phase Relationships β€’ Given

β–« 𝑣1 𝑑 = 3 cos πœ”π‘‘ + 40Β°

β–« 𝑣2 𝑑 = 4 cos πœ”π‘‘ βˆ’ 20Β°

β€’ In phasor notation

β–« 𝑽1 = 3∠ 40Β°

β–« 𝑽2 = 4∠ βˆ’20Β°

β€’ Since phasors rotate counter clockwise

β–« 𝑽1 leads 𝑽2 by 60Β°

β–« 𝑽2 lags 𝑽1 by 60Β°

β€’ Phasor diagram

7

Page 8: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Complex Impedance

β€’ Previously we saw that resistance was a measure of the opposition to current flow

β–« Larger resistance less current allowed to flow

β€’ Impedance is the extension of resistance to AC circuits

β–« Inductors oppose a change in current

β–« Capacitors oppose a change in voltage

β€’ Capacitors and inductors have imaginary impedance called reactance

8

Page 9: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Resistance

β€’ From Ohm’s Law

β–« 𝑣 𝑑 = 𝑅𝑖 𝑑

β€’ Extend to an impedance form for AC signals

β–« 𝑽 = 𝑍𝑰

β€’ Converting to phasor notation for resistance

β–« 𝑽𝑅 = 𝑅𝑰𝑅

β–« 𝑅 =𝑽𝑅

𝑰𝑅

β€’ Comparison with the impedance form results in

β–« 𝑍𝑅 = 𝑅 β–« Since 𝑅 is real, the impedance for a resistor is purely

real

9

Page 10: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Inductance β€’ I/V relationship

β–« 𝑣𝐿 𝑑 = 𝐿𝑑𝑖𝐿(𝑑)

𝑑𝑑

β€’ Assume current

β–« 𝑖𝐿 𝑑 = πΌπ‘š sin πœ”π‘‘ + πœƒ

β–« 𝑰𝐿 = πΌπ‘šβˆ  πœƒ βˆ’πœ‹

2

β€’ Using the I/V relationship

β–« 𝑣𝐿 𝑑 = πΏπœ”πΌπ‘š cos πœ”π‘‘ + πœƒ

β–« 𝑽𝐿 = πœ”πΏπΌπ‘šβˆ  πœƒ

β–« Notice current lags voltage by 90Β°

β€’ Using the generalized Ohm’s Law

β–« 𝑍𝐿 =𝑽𝐿

𝑰𝐿=

πœ”πΏπΌπ‘šβˆ  πœƒ

πΌπ‘šβˆ  πœƒβˆ’πœ‹

2

= πœ”πΏβˆ πœ‹

2= π‘—πœ”πΏ

β–« Notice the impedance is completely imaginary

10

Page 11: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Capacitance β€’ I/V relationship

β–« 𝑖𝐢 𝑑 = 𝐢𝑑𝑣𝐢(𝑑)

𝑑𝑑

β€’ Assume voltage

β–« 𝑣𝑐 𝑑 = π‘‰π‘š sin πœ”π‘‘ + πœƒ

β–« 𝑽𝐢 = π‘‰π‘šβˆ  πœƒ βˆ’πœ‹

2

β€’ Using the I/V relationship

β–« 𝑖𝐢 𝑑 = πΆπœ”π‘‰π‘š cos πœ”π‘‘ + πœƒ

β–« 𝑰𝐢 = πœ”πΆπ‘‰π‘šβˆ  πœƒ

β–« Notice current leads voltage by 90Β°

β€’ Using the generalized Ohm’s Law

β–« 𝑍𝐢 =𝑽𝐢

𝑰𝐢=

π‘‰π‘šβˆ  πœƒβˆ’πœ‹

2

πœ”πΆπ‘‰π‘šβˆ  πœƒ=

1

πœ”πΆβˆ  βˆ’

πœ‹

2= βˆ’π‘—

1

πœ”πΆ=

1

π‘—πœ”πΆ

β–« Notice the impedance is completely imaginary

11

Page 12: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Circuit Analysis with Impedance

β€’ KVL and KCL remain the same

β–« Use phasor notation to setup equations

β€’ E.g.

β€’ 𝑣1 𝑑 + 𝑣2 𝑑 βˆ’ 𝑣3 𝑑 = 0

β€’ 𝑽1 + 𝑽2 βˆ’ 𝑽3 = 0

12

Page 13: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Steps for Sinusoidal Steady-State Analysis

1. Replace time descriptions of voltage and current sources with corresponding phasors. (All sources must have the same frequency)

2. Replace inductances by their complex

impedances 𝑍𝐿 = πœ”πΏβˆ πœ‹

2= π‘—πœ”πΏ. Replace

capacitances by their complex impedances

𝑍𝐢 =1

πœ”πΆβˆ  βˆ’

πœ‹

2=

1

π‘—πœ”πΆ. Resistances have

impedances equal to their resistances. 3. Analyze the circuit by using any of the

techniques studied in Chapter 2, and perform the calculations with complex arithmetic

13

Page 14: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.5

β€’ Find voltage 𝑣𝑐(𝑑) in steady-state

β€’ Find the phasor current through each element

β€’ Construct the phasor diagram showing currents and 𝑣𝑠

14

Page 15: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Convert Sources and Impedances β€’ Voltage source

β–« 𝑽𝑠 = 10∠ βˆ’90Β°

β–« πœ” = 1000

β€’ Inductance

β–« 𝑍𝐿 = π‘—πœ”πΏ = j 1000 0.1 =j100Ξ©

β€’ Capacitance

β–« 𝑍𝐢 =1

π‘—πœ”πΆ=

1

𝑗1000(10πœ‡)=

106

𝑗104=

100

𝑗Ω

15

Page 16: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Find Voltage 𝑣𝑐(𝑑) β€’ Find voltage by voltage divider

β€’ 𝑽𝐢 = π‘½π‘ π‘π‘’π‘ž

π‘π‘’π‘ž+𝑍𝐿

β€’ Equivalent impedance

β€’ π‘π‘’π‘ž = 𝑍𝑅||𝑍𝐢

16

Page 17: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Phasor Diagram β€’ Source current

β€’ Capacitor current

β€’ Resistor current

β€’ Phasor diagram

17

Page 18: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

More AC Circuit Analysis

β€’ Use impedance relationships and convert sinusoidal sources to phasors

β€’ Techniques such as node-voltage and mesh-current analysis remain the same β–« (Hambley Section 5.4)

β€’ Thevenin and Norton equivalents are extended the same way β–« (Hambley Section 5.6) β–« Instead of a resistor and source, use an impedance

β–« 𝑍𝑑 =π‘½π‘œπ‘

𝑰𝑠𝑐

18

Page 19: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Example 5.6

β€’ Use node-voltage to find 𝑣1(𝑑)

19

Page 20: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Convert to Phasors

β€’ Sources

β–« 2 sin 100𝑑 = 2∠ βˆ’90Β°

β–« βˆ’90Β° because of conversion to cosine from sine

β–« πœ” = 100

β–« 1.5 cos 100𝑑 = 1.5∠ 0Β°

β€’ Inductor

β–« 𝑍𝐿 = πœ”πΏβˆ πœ‹

2= π‘—πœ”πΏ = 𝑗100 0.1 = 𝑗10

β€’ Capacitor

β–« 𝑍𝐢 =1

πœ”πΆβˆ  βˆ’

πœ‹

2=

1

π‘—πœ”πΆ= βˆ’π‘—

1

100 2000πœ‡= βˆ’π‘—5

20

Page 21: EE292: Fundamentals of ECEb1morris/ee292/docs/slides19.pdfΒ Β· 2012. 10. 30.Β Β· 𝑽2=𝑉2∠(πœƒ2βˆ’90Β°) 3 . Adding Sinusoids with Phasors 1. Get phasor representation of sinusoids

Use Node-Voltage Analysis β€’ KCL @ 1

▫𝑽1

10+

𝑽1βˆ’π‘½2

βˆ’π‘—5= 2∠ βˆ’90Β°

β€’ KCL @ 2

▫𝑽2

𝑗10+

𝑽2βˆ’π‘½1

βˆ’π‘—5= 1.5∠ 0Β°

β€’ In standard form

β€’ 0.1 + 𝑗0.2 𝑽1 βˆ’ 𝑗0.2𝑽2 = βˆ’π‘—2

β€’ βˆ’π‘—0.2𝑽1 + 𝑗0.1𝑽2 = 1.5

β€’ Solving for 𝑽1

β€’ 0.1 βˆ’ 𝑗0.2 𝑽1 = 3 βˆ’ 𝑗2

β€’ Converting to phasor β€’ 0.2236∠ βˆ’63.4Β° 𝑽1 = 3.6∠ βˆ’33.7Β°

β€’ 𝑽1 = 16.1∠ 29.7Β°

β€’ Convert back to sinusoid

β€’ 𝑣1 𝑑 = 16.1cos(100𝑑 + 29.7Β°)

21