ee3561_unit 2(c)al-dhaifallah14351 lecture 5 newton-raphson method assumptions interpretation...

46
EE3561_Unit 2 (c)AL-DHAIFALLAH1435 1 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections 6.2

Upload: lorena-shell

Post on 14-Dec-2015

221 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 1

Lecture 5 Newton-Raphson

Method

Assumptions Interpretation Examples Convergence Analysis

Reading Assignment: Sections 6.2

Page 2: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 2

Root finding Problems Many problems in Science and Engineering are

expressed as

0)(such that value thefind

, function continuous aGiven

rfr

f(x)

These problems are called root finding problems

Page 3: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 3

Solution MethodsSeveral ways to solve nonlinear equations are

possible.

Analytical Solutions possible for special equations only

Graphical Solutions Useful for providing initial guesses for other methods

Numerical Solutions Open methods Bracketing methods

Page 4: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 4

Bracketing Methods In bracketing methods, the method starts

with an interval that contains the root and a procedure is used to obtain a smaller interval containing the root.

Examples of bracketing methods : Bisection method False position method

Page 5: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 5

Open Methods In the open methods, the method starts

with one or more initial guess points. In each iteration a new guess of the root is obtained.

Open methods are usually more efficient than bracketing methods

They may not converge to the root.

Page 6: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 6

Solution Methods Many methods are available to solve nonlinear

equations Bisection Method Newton’s Method Secant Method False position Method Muller’s Method Bairstow’s Method Fixed point iterations ……….

These will be covered in EE3561

Page 7: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 7

Newton-Raphson Method (also known as Newton’s Method)

Given an initial guess of the root x0 , Newton-Raphson method uses information about the function and its derivative at that point to find a better guess of the root.

Assumptions: f (x) is continuous and first derivative is known An initial guess x0 such that f ’(x0) ≠0 is given

Page 8: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 8

Page 9: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 9

Page 10: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 10

Newton’s Method

end

xf

xfxx

nifor

xfnAssumputio

xxfxfGiven

i

iii )('

)(

:0

______________________

0)('

),('),(

1

0

0

end

XFPXFXX

ifor

X

PROGRAMMATLAB

)(/)(

5:1

4

%

XXFP

XFPFPfunction

XXF

XFFfunction

*62^*3

)(][

12^*33^

)(][

F.m

FP.m

Page 11: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 11

Example

2130.20742.9

0369.24375.2

)('

)( :3Iteration

4375.216

93

)('

)( :2Iteration

333

334

)('

)( :1Iteration

143'

4 , 32function theof zero a Find

2

223

1

112

0

001

2

023

xf

xfxx

xf

xfxx

xf

xfxx

xx(x) f

xxxxf(x)

Page 12: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 12

ExampleIteration xk f(xk) f’(xk) xk+1 |xk+1 –xk|

0 4 33 33 3 1

1 3 9 16 2.4375 0.5625

2 2.4375 2.0369 9.0742 2.2130 0.2245

3 2.2130 0.2564 6.8404 2.1756 0.0384

4 2.1756 0.0065 6.4969 2.1746 0.0010

Page 13: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

Convergence analysis of the Newton’s Method

The Taylor series expansion can be represented as

An approximate solution can be obtained by

At the intersection with x axis f(xi+1)=0, which gives

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 13

Page 14: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

Convergence analysis of the Newton’s Method Substituting the true value xr into Eq (B6.2.1) yields

Subtracting Eq (B6.2.2) from Eq (B6.2.3) yields

Substituting and gives

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 14

Page 15: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

Convergence analysis of the Newton’s Method If we assume convergence, both xi and should

eventually approximated by the root xr, and Eq(B6.2.5) can be rearranged to yield

Which means that the current error is proportional to the square of the previous error which indicates quadratic convergence rate.

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 15

Page 16: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 16

Convergence AnalysisRemarks

When the guess is close enough to a simple root of the function then Newton’s method is guaranteed to converge quadratically.

Quadratic convergence means that the number of correct digits is nearly doubled at each iteration.

Page 17: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 17

Problems with Newton’s Method

• If the initial guess of the root is far from

the root the method may not converge.

• Newton’s method converges linearly near

multiple zeros { f(r) = f ’(r) =0 }. In such a

case modified algorithms can be used to

regain the quadratic convergence.

Page 18: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 18

Multiple Roots

1at zeros0at x zeros

twohas threehas

-x

f(x)f(x)

21)( xxf

3)( xxf

Page 19: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 19

Problems with Newton’s Method Runaway

The estimates of the root is going away from the root.

x0 x1

Page 20: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 20

Problems with Newton’s Method Flat Spot

The value of f’(x) is zero, the algorithm fails.

If f ’(x) is very small then x1 will be very far from x0.

x0

Page 21: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 21

Problems with Newton’s Method Cycle

The algorithm cycles between two values x0 and x1

x0=x2=x4

x1=x3=x5

Page 22: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 22

Newton’s Method for Systems of nonlinear Equations

2

2

1

2

2

1

1

1

212

211

11

0

)(',,...),(

,...),(

)(

)()('

'

0)( ofroot theof guess initialan :

x

f

x

fx

f

x

f

XFxxf

xxf

XF

XFXFXX

IterationsNewton

xFXGiven

kkkk

Page 23: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 23

Example Solve the following system of equations

0,1 guess Initial

05

0502

2

yx

yxyx

x.xy

0

1,

1552

112',

5

5002

2

Xxyx

xF

yxyx

x.xyF

Page 24: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 24

Solution Using Newton’s Method

2126.0

2332.1

0.25-

0.0625

25.725.1

1 1.5

25.0

25.1

25.725.1

1 1.5',

0.25-

0.0625

:2Iteration

25.0

25.1

1

50

62

11

0

1

62

11

1552

112',

1

50

5

50

:1Iteration

1

2

1

1

2

2

X

FF

.X

xyx

xF

.

yxyx

x.xyF

Page 25: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 25

ExampleTry this

Solve the following system of equations

0,0 guess Initial

02

0122

2

yx

yyx

xxy

0

0,

142

112',

2

1022

2

Xyx

xF

yyx

xxyF

Page 26: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 26

ExampleSolution

0.1980

0.5257

0.1980

0.5257

0.1969

0.5287

2.0

6.0

0

1

0

0

_____________________________________________________________

543210

kX

Iteration

Page 27: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 27

Secant Method Secant Method Examples Convergence Analysis

Page 28: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 28

Newton’s Method (Review)

lyanalyticalobtain todifficult or

availablenot is )('

:Problem

)('

)(

'

0)('

,),('),(:

1

0

0

i

i

iii

xf

xf

xfxx

estimatenewMethodsNewton

xf

availablearexxfxfsAssumption

Page 29: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 29

Secant Method

)()(

)()(

)()()(

)(

)(

)()()('

points initial twoare if

)()()('

1

1

1

11

1

1

1

ii

iiii

ii

ii

iii

ii

iii

ii

xfxf

xxxfx

xxxfxf

xfxx

xx

xfxfxf

xandx

h

xfhxfxf

Page 30: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 30

Secant Method

)()(

)()(

:Method)(Secant estimateNew

)()(

points initial Two

:sAssumption

1

11

1

1

ii

iiiii

ii

ii

xfxf

xxxfxx

xfxfthatsuch

xandx

Page 31: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 31

Secant Method

)()(

)()(

1

0

5.02)(

1

11

1

0

2

ii

iiiii xfxf

xxxfxx

x

x

xxxf

Page 32: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 32

Secant Method

1

;)()(

)()(

1

11

ii

xfxf

xxxfxx

ii

iiiii

1,, 10 ixx

ii xx 1Stop

NO Yes

Page 33: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 33

Modified Secant Method

divergemay method theproperly, selectednot If

?select toHow :Problem

)()*(

*)(

*)()*(

)(

*

)()*()('

needed is guess initial oneonly methodSecant modified thisIn

1

iii

iii

i

iii

iii

i

iiii

xfxxf

xxfx

xxfxxf

xfxx

x

xfxxfxf

Page 34: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 34

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-40

-30

-20

-10

0

10

20

30

40

50

Example

001.0

1.11

points initial

3)(

of roots thefind

10

35

errorwith

xandx

xxxf

Page 35: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 35

Examplex(i) f( x(i) ) x(i+1) |x(i+1)-x(i)|

-1.0000 1.0000

-1.1000 0.0585 -1.1062 0. 0062

-1.1062 0.0102 -1.1052 0.0009

-1.1052 0.0001 -1.1052 0.0000

Page 36: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 36

Convergence Analysis

The rate of convergence of the Secant method is super linear

It is better than Bisection method but not as good as Newton’s method

iteration i at theroot theof estimate::

62.1,

th

1

i

i

i

xrootr

Crx

rx

Page 37: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 37

Comparison of Root

finding methods Advantages/disadvantages Examples

Page 38: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 38

SummaryBisection Reliable, Slow

One function evaluation per iterationNeeds an interval [a,b] containing the root, f(a) f(b)<0No knowledge of derivative is needed

Newton Fast (if near the root) but may divergeTwo function evaluation per iterationNeeds derivative and an initial guess x0, f ’ (x0) is nonzero

Secant Fast (slower than Newton) but may divergeone function evaluation per iterationNeeds two initial points guess x0, x1 such that f (x0)- f (x1) is nonzero.No knowledge of derivative is needed

Page 39: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 39

Example

)()(

)()(

5.11 points initial Two

1)(

ofroot thefind tomethodSecant Use

1

11

10

6

ii

iiiii xfxf

xxxfxx

xandx

xxxf

Page 40: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 40

Solution_______________________________ k xk f(xk)

________________________________ 0 1.0000 -1.0000 1 1.5000 8.8906 2 1.0506 -0.7062 3 1.0836 -0.4645 4 1.1472 0.1321 5 1.1331 -0.0165 6 1.1347 -0.0005

Page 41: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 41

Example

0001.0)(if

or001.0if

or iterations threeafterStop

1 points initial theUse

1)(

ofroot a find toMethod sNewton' Use

1

0

6

k

kk

xf

xx

x

xxxf

Page 42: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 42

Five iterations of the solution k xk f(xk) f’(xk) ERROR ______________________________________ 0 1.0000 -1.0000 5.0000 1 1.2000 0.786 13.93 0.2 2 1.1436 0.0930 10.7348 0.0564 3 1.1349 0.0019 10.2969 0.009 4 1.1347 0.0000 10.2876 0.0002 5 1.1347 0.0000 10.2876 0.0000

Page 43: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 43

Example

0001.0)(if

or001.0if

or iterations threeafterStop

1 points initial theUse

)(

ofroot a find toMethod sNewton' Use

1

0

k

kk

x

xf

xx

x

xexf

Page 44: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 44

Example

0.0000- 1.5671- 0.0000 0.5671

0.0002- 1.5672- 0.0002 0.5670

0.0291- 1.5840- 0.0461 0.5379

0.4621 1.3679- 0.6321- 1.0000

)('

)()(')(

1)(',)(

ofroot a find to MethodsNewton' Use

k

kkkk

xx

xf

xf xf xf x

exfxexf

Page 45: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 45

Example Estimates of the root of x-cos(x)=0

0.60000000000000 initial guess

0.74401731944598 1 correct digit 0.73909047688624 4 correct digits 0.73908513322147 10 correct digits 0.73908513321516 14 correct digits

Page 46: EE3561_Unit 2(c)AL-DHAIFALLAH14351 Lecture 5 Newton-Raphson Method Assumptions Interpretation Examples Convergence Analysis Reading Assignment: Sections

EE3561_Unit 2 (c)AL-DHAIFALLAH1435 46

Example In estimating the root of x-cos(x)=0 To get more than 13 correct digits 4 iterations of Newton (x0=0.6)

43 iterations of Bisection method (initial interval [0.6, .8] 5 iterations of Secant method ( x0=0.6, x1=0.8)