ee669: vlsi technology - nptel notes/lec1.pdf · plasma and rapid thermal processing: pecvd, plasma...

50
EE669: VLSI TECHNOLOGY Autumn Semester Graduate Course 2014-2015 Session by Arun N. Chandorkar Emeritus Fellow Professor Department of Electrical Engineering Indian Institute of Technology, Bombay Powai, Mumbai-400076,India E-Mail: [email protected]

Upload: vodung

Post on 27-Mar-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

EE669: VLSI TECHNOLOGY Autumn Semester Graduate Course

2014-2015 Session by

Arun N. Chandorkar

Emeritus Fellow Professor Department of Electrical Engineering Indian Institute of Technology, Bombay

Powai, Mumbai-400076,India E-Mail: [email protected]

Page 2: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Course SyllabusCrystal Growth. Clean rooms. Solid State diffusion modelling and technology. Ion Implantation modelling, technology and damage annealing, characterization of Impurity profiles. Oxidation: Kinetics of Silicon dioxide growth both for thick, thin and ultrathin films. Oxidation technologies in VLSI and ULSI, Characterization of oxide films, High k and low k dielectrics for ULSI. Lithography: Photolithography, E-beam lithography and newer lithography techniques for VLSI/ULSI; Mask generation. Chemical Vapour Deposition techniques: CVD techniques for deposition of polysilicon, silicon dioxide, silicon nitride and metal films, Epitaxial growth of silicon, modelling and technology. Metal film deposition: Evaporation and sputtering techniques. Failure mechanisms in metal interconnects, Multi-level metallisation schemes. Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition of various films for use in ULSI.

Process integration for NMOS, CMOS ICs.

Introduction to Silicon Solar Cell technologies.

Page 3: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Examination Schedules Autumn Semester Exam Dates: Quiz/Cum Test : 4th Week in August 2014 Test -1 : 2nd Week in October 2014 Mid-Semester Exam: September 2014( Institute Time table or as decided by us) End-Semester Exam: Mid- November 2014 All Examinations except Mid-semester and End semester ones will be from 8.45 to 10.45 PM slot in GG 001 and GG 002

Home assignments/Project submission as per announced dates , time to time.

Page 4: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Grading Policy : Total of 4 Exams: Quiz, Test, Mid-Semester and End-Semester Weightage in % : 8 +8+20+ 50 = 86 AND some Design Project/Problem Assignments Weightage: = 15%

PLUS 7 % Total bonus on Attendance ( 80 % Min), Sincerity, Project preparation and excellence in Exams. TOTAL : 100 % ( 108 in actual number)

Page 5: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

“Micro to Nano” A Journey into Integrated Circuit Technology

Lecture No 1

EE669: VLSI TECHNOLOGY                        by              Arun N. Chandorkar          Emeritus Fellow Professor     Department of Electrical Engineering  Indian Institute of Technology, Bombay           Powai, Mumbai­400076,India               E­Mail: [email protected]

Page 6: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

History of Electronic Devices

Transistor Concept

IC

Vacuum tube 1st Electronic circuits

Solid-State Circuits

Silicon TechnologyLSI

2000

70

60

50

30

20

10

1900

TriodeDiode

MOSFETMISFET

bipolarICSi-MOSFET

1st Transistor

VLSI

LSI

CMOS

30 years

ULSI

20 years

10 years

Low Power

High Integration

Low PowerHigh speedHigh integration

Low PowerHigh speedHigh integration

High reliability

Iwai Hiroshi

Page 7: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Lee De Forest

1906: Vacuum Tube : Triode

Iwai Hiroshi

Page 8: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

J.E.LILIENFELD

J. E. LILIENFELD

DEVICES FOR CONTROLLED ELECTRIC CURRENT

Filed March 28, 1928

Iwai Hiroshi

Page 9: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1947: 1st transistorJ. Bardeen, W. Bratten,

W. Shockley

Iwai Hiroshi

Page 10: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

First Bipolar Ge Transistor

Page 11: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1958: 1st Integrated Circuit Jack S. Kilby

Iwai Hiroshi

Page 12: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1958 - Integrated circuit invented

September 12th 1958 Jack Kilby at Texas instrument had built a simple oscillator IC with five integrated components (resistors, capacitors, distributed capacitors and transistors)

In 2000 the importance of the IC was recognized when Kilby shared the Nobel prize in physics with two others. Kilby was sited by the Nobel committee "for his part in the invention of the integrated circuit 

a simple oscillator IC

3

University of southern Alabama

Page 13: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1959: 1st Planar Integrated Circuit

Robert N. Noyce

Iwai Hiroshi

Page 14: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1960: First MOSFET by D. Kahng and M. Atalla

Top View

Al Gate

Source

Drain

Si

Si

Al

SiO2Si

Si/SiO2 Interface is extraordinarily good

14

Page 15: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

First Computer Eniac: made of huge number of vacuum tubes 1946  Big size, huge power, short life time filament

Today's pocket PCmade of

semiconductor has much higher

performance with extremely low power

consumption

dreamed of replacing vacuum tube with solid-state device

15

Iwai Hiroshi

Page 16: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1970,71: 1st generation of LSIs

DRAM   Intel 1103 MPU    Intel 4004

16

Page 17: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Most Recent SD Card

128GB (Byte) = 128G X 8bit= 1T(Tera)bit

1T = 1012 =  1 Trillion

Brain Cell : 10 ~ 100 BillionWorld Population : 7 Billion

Stars in Galaxy : 100 Billion

In 2012

17

Iwai Hiroshi

Page 18: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

2.4cm   X   3.2cm   X   0.21cm

Volume : 1. 6cm³  Weight : 2g

Voltage : 2.7 ­ 3.6V 

Old Vacuum Tube :    5cm X 5cm X 10cm, 100g, 50W

128 GB = 1Tbit

What are volume, weight, power consumption for 1Tbit

18

Iwai Hiroshi

Page 19: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Old Vacuum Tube: 5cm X 5cm X 10cm

1Tbit = 10,000 X 10,000 X 10,000 bit   

Volume = (5cm X 10,000) X (5cm X 10,000)                 X (10cm X 10,000)

             = 0.5km X 0.5km X 1km 

500 m

1,000 m

1Tbit

Burji KhalifaDubai, UAE(Year 2010)

828 m

Indian TowerMumbai, India

(Year 2016)

700 m

700 m

Pingan IntenationalFinance CenterShanghai, China

(Year 2016)

19

Iwai Hiroshi

Page 20: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Old Vacuum Tube:    50W

1Tbit = 1012bit   

Power = 0.05kWX1012=50 TWNuclear Power Generator

1MkW=1BW We need 50,000 Nuclear Power Plant for just one 128 GB memory

In Japan we have only 54 Nuclear Power Generator

Last summer Tokyo Electric Power Company (TEPCO) can supply only 

55BW.

We need 1000 TEPCO just one 128 GB memory

Imagine how many memories are used in the world! Iwai

Hiroshi20

Page 21: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

So progress of integrated circuits is extremely 

important for power saving.

21

Page 22: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Brain: Integrated Circuits

Hands, Legs : Power device

Stomach : PV device

Ear, Eye : Sensor

Mouth : RF/Opto device

22

Iwai Hiroshi

Page 23: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

23

Near future smart­society has to treat huge data. 

Demand to high­performance and low power CMOS become much more stronger.  

Iwai Hiroshi

Page 24: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

24

Semiconductor Device Market will grow 5 times in 12 years, even though, it is very 

matured market!!

Gartner: By K. Kim, CSTIC 2012

300B USD

2011

1,500B USD

2025

Page 25: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1970,71: 1st generation of LSIs

DRAM Intel 1103 MPU Intel 4004

INTEL

Page 26: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition
Page 27: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Today, silicon device is the indispensable andmost important devices for our human society.

Everything has to be controlled by Si device.

Today’s IT -- such as internet, i-mode, cellular phone, GPS navigation, game machine, Entertainment robot – could not be realizedWithout Si integrated circuit development.

Si realized extremely high-frequency (speed)operation with extremely low cost, low power,small size, high reliability.

Page 28: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

INTEL

Page 29: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

INTEL

Page 30: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

1900 “Electronics” started.

Device:  Vacuum tubeDevice feature size:  Several cm

1970 “Micro­Electronics” started.Device:  Si MOS integrated circuits

Device feature size:  10 µm

Major Appl.: Amplifier (Radio, TV, Wireless etc.)

Major Appl.: Digital (Computer, PC, etc.)  

 Technology Revolution 

 Technology Revolution 

30

Page 31: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

2000 “Nano­Electronics” started.

Device: Still, Si CMOS integrated circuitsDevice feature size:  100 nm

Major Appl.: Digital (µ­processor, cell phone, etc.)

 Technology Revolution?? 

 Maybe, just evolution and innovation!

 But great evolution or innovations!

31

 and so many innovations!

Page 32: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Now, 2014 “Nano­Electronics” continued.

Device: Still, Si CMOS integrated circuits

Device feature size:  around 10 nmMajor Appl.: Still Digital (µ­processor, cell phone, etc.)

Still evolution and innovation.

32

Page 33: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition
Page 34: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Goal: 1TIPS by 2010

0.01

0.1

1

10

100

1000

10000

100000

1000000

1970 1980 1990 2000 2010

MIP

S

Pentium® Pro Architecture

Pentium® 4 Architecture

Pentium® Architecture

486386

2868086

How do you get there?INTEL

Page 35: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Technology ScalingGATE

SOURCE

BODY

DRAIN

Xj

ToxD

GATE

SOURCE DRAIN

Leff

BODY

Dimensions scale down by 30%

Doubles transistor density

Oxide thickness scales down Faster transistor, higher performance

Vdd & Vt scaling Lower active power

Technology has scaled well, will it in the future?

Page 36: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Scaling Evolution

Iwai Hiroshi

Page 37: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

MICRO to NANO Journey Milestones

J.L.HoytMIT

Page 38: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Scaling: Importance of Downsizing

Capacitance reductionPower reduction

Speed increase

High integration Function increase

Parallel processing

Downsizing:

Speed increase

Iwai Hiroshi

Page 39: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Much higher performance Much lower power consumption

Demand for future VLSI:

Thus, downsizing of Si devices is the most important and critical issue.

Iwai Hiroshi

Page 40: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Prediction of Scaling limit

Vacuum tube era : even µm size could not be imaginedSince Si IC started

Late 1970’s 1µm: SCE

Early 1980’s   0.5µm: S/D resistance

Early 1980’s   0.25µm: Direct-tunneling of gate SiO2

Late 1980’s   0.1µm: ‘0.1µm brick wall’(various)

Today 50nm: ‘Red brick wall’ (various)

Today 10nm:   Fundamental?

Period Expected Cause limit(size)

Page 41: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Transistor Integration Capacity

0.001

0.01

0.1

1

10

100

1000

10 5 2 1 0.5 0.25 0.13 0.07

Technology (µ)

Tra

nsi

stor

s (M

illio

n) 1 Billion

On track for 1B transistor integration capacity INTEL

Page 42: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

J.L.HoytMIT

Page 43: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Limits of Moore’s Law?

• Growth expected until 30 nm gate length (currently: 180 nm)– size halved every 18 mos. - reached

in – 2001 + 1.5 log2((180/30)2) = 2009

– what then?• Paradigm shift needed in fabrication

process

Page 44: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Technological Background of the Moore’s Law

• To accommodate this change, the size of the silicon wafers on which the integrated circuits are fabricated have also increased by a very significant factor – from the 2 and 3 in diameter wafers to the 8 in (200 mm) and 12 in (300 mm) diameter wafers

• The latest catch phrase in semiconductor technology (as well as in other material science) is nanotechnology – usually referring to GaAs devices based on quantum mechanical phenomena

• These devices have feature size (such as film thickness, line width etc) measured in nanometres or 10-9 metres

Page 45: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Recurring CostsVariable Cost = {Cost of (Die + Die test + packaging)}/ Final Test Yield

Cost of Die = {Cost of wafer}/[ Dies per wafer x Die Yield]

∏ x [wafer diameter/2]2 ∏ x wafer diameter

Die per wafer =---------------------------------- − ---------------------------

Die area 1.414 x Die area

Die yield= [1 + (defects per unit area x Die area)/α ]− α

Page 46: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Yield Example Example

� wafer size of 12 inches, die size of 2.5 cm2, 1 defects/cm2, α = 3 (measure of manufacturing process complexity)

� 252 dies/wafer (remember, wafers round & dies square)� die yield of 16%� 252 x 16% = only 40 dies/wafer die yield !

Die cost is strong function of die area proportional to the third or fourth power of the die area

Page 47: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition
Page 48: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition
Page 49: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

PROCESS STEPS

Page 50: EE669: VLSI TECHNOLOGY - NPTEL notes/Lec1.pdf · Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE techniques, RTP techniques for annealing, growth and deposition

Is Transistor a Good Switch?

On

I = ∞

I = 0

Off

I = 0

I = 0

I ≠ 0

I = 1ma/u

I ≠ 0

I ≠ 0Sub-threshold Leakage