effect of cabin pressure on the piloted ignition of ... · how does a solid fuel ignite? piloted...

24
Effect of Cabin Pressure Effect of Cabin Pressure on the Piloted Ignition on the Piloted Ignition of Combustible Solids of Combustible Solids Sonia Fereres 1 , Chris Lautenberger 1 , Carlos Fernandez-Pello 1 , David Urban 2 , Gary Ruff 2 1 University of California at Berkeley Dept. of Mechanical Engineering Berkeley, CA 2 NASA Glenn Research Center Cleveland, OH FIST FIST FIST FIST FIST FIST 6 th Triennial International Aircraft Fire and Cabin Safety Research Conference, October 28, 2010, Atlantic City, New Jersey

Upload: others

Post on 13-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Effect of Cabin Pressure Effect of Cabin Pressure on the Piloted Ignition on the Piloted Ignition of Combustible Solidsof Combustible SolidsSonia Fereres 1, Chris Lautenberger1, Carlos Fernandez-Pello 1, David Urban 2, Gary Ruff 2

    1University of California at Berkeley

    Dept. of Mechanical Engineering

    Berkeley, CA

    2NASA Glenn Research Center

    Cleveland, OH

    FISTFISTFISTFISTFISTFIST

    6th Triennial International Aircraft Fire and

    Cabin Safety Research Conference,

    October 28, 2010, Atlantic City, New Jersey

  • Motivation

    • Fires in pressurized vehicles (aircraft, spacecraft or submarines) are extremely hazardous ▫ Small compartments▫ Difficulty to escape

    • Emphasis on fire prevention:▫ Material flammability▫ Effect of environmental conditions (oxygen

    concentration, pressure, radiant heat flux, etc) on ignition

    2

  • Today’s Talk• Understand the physical mechanisms responsible for

    ignition of solid combustibles under low pressure

    • Aircraft cabin pressure is typically pressurized to a "cabin altitude" of 8000 feet or less (~ 75 kPa)

    • Are reduced pressure environments a higher fire risk?▫ Piloted ignition experiments at low P

    Forced Ignition and Spread Test (FIST) apparatus at UC Berkeley to analyze material flammability

    ▫ Analytical explanation of results

    12 psi 6 psi

    3

  • Lower ambient pressure can be found at…

    • High Altitude

    Lhasa, Tibet– 3,650 mpopulation 250,000

    Quito, Ecuador- 2,850 mpopulation 2M• Inside Aircraft

    • Inside Spacecraft

    4

  • Cabin Environments

    5

    Typical Aircraft Cabin

    Quito, Ecuador 2,850 m

    Lhasa, Tibet 3,650 m

  • How does a solid fuel ignite?Piloted ignition process:

    1. Solid heating & pyrolysis

    2. Mixing of gaseous fuel and air

    3. Chemistry: fuel/air mixture reaches lean flammability limit at high temperature igniter

    4. If sufficient pyrolysis gases are generated: a diffusion flame will anchor on solid (burning) critical mass flux at ignition

    6

  • 7

    Possible Fire Scenario

    • Heat source: electronic component overheating

    • Fuel: polymeric materials used in panels, blocks, covers

    • Ignition source: spark from electrical arching

  • Forced Ignition and Spread Test (FIST)

    Variables:-air flow velocity-incident heat flux-ambient pressure

    Material: PMMA

    Ignitery

    x

    Data logging scale

    u

    Pressure Chamber

    IR heater

    Fuelsample holder

    q”

    Measure :-Tsurface vs. time tig, time to ignite

    -Mass vs. time (dm/dt )|tig mass loss rate at ignition

    8

  • 9

    FIST Apparatus

  • Video of Test

    10

  • 0

    100

    200

    300

    400

    500

    600

    700

    800

    ‐1

    ‐0.9

    ‐0.8

    ‐0.7

    ‐0.6

    ‐0.5

    ‐0.4

    ‐0.3

    ‐0.2

    ‐0.1

    0

    0 200 400 600 800

    Tempe

    rature (C )

    Mass Loss (g)   

    time  (s)

    m_100kPa

    T_100kPa

    Mass Loss

    Sample Surface T

    Experiment Example• 100 kPa (Raw Data)

    11

    Ignition

  • Experimental Results• Pressure Comparison : 55, 83 & 100 kPa (Raw Data)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    ‐1

    ‐0.9

    ‐0.8

    ‐0.7

    ‐0.6

    ‐0.5

    ‐0.4

    ‐0.3

    ‐0.2

    ‐0.1

    0

    0 200 400 600 800

    Tempe

    rature (C )

    Mass Loss (g)   

    time  (s)

    Heat Flux q"= 16 kW/m2, Air Flow Velocity 0.4 m/s

    m_55kPa m_83kPa m_100kPa

    T_55kPa T_83kPa T_100kPa

    P increase

    P increase

    Mass Loss

    Sample Surface T

    12

  • 0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0

    200

    400

    600

    800

    1000

    1200

    0 20 40 60 80 100

    Mass Loss Rate at Ignition

     (g/m

    2 s)

    Ignition

     Delay Tim

    e (s)

    Ambient Pressure (kPa)

    tig (s)m"ig (g/m2s)

    No ignition

    m''ig= 0.005∙P + 1.483

    tig = 4.604∙P + 355.32

    13

    Experimental Results• Ignition Delay & Mass Loss Rate at Ignition vs. Pressure

  • Visual Observations

    14

    • Different surface behavior: bubble formation, size and bursting characteristics

    • Flame establishment over solid surface also different

    3 psi (21 kPa) 12 psi (83 kPa)

    3 psi (21 kPa) 12 psi (83 kPa)

  • Effect of Pressure (1)• Ignition delay time, tig:▫ tig= theating + tmixing/transport +tinduction

    • Heating time: convective heat loss over flat plate▫ Forced flow:

    ▫ Natural convection:

    ▫ Mixed flow

    Re= ρUL/μ , Re~ P Pr≠f(P) h~P1/2

    Ideal gas: Gr ~ P2

    As pressure decreases, convective heat loss of material to surroundings is lower heats more rapidly

    4 32

    31

    21

    PrRe

    1PrRe Grh +∝

    15

    31

    21

    PrRe∝h

    41

    41

    PrGrh ∝

  • Effect of Pressure (2)•

    • Mixing/transport time: Mass loss rate at which a flammable concentration (LFL) is obtained at the pilotSimplified Analysis : Boundary Layer – Integral Method

    3rd order polynomials for velocity, temperature and species profiles:

    Integrate BL Eqns. analytical expressions for hydrodynamic, thermal and concentration BL thicknesses:

    δyxδc

    160.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

    boun

    dary layer thickne

    ss (m

    )

    longitudinal distance, x (m)

    Velocity and Concentration Boundary Layers

    d_ 100 kPa

    d_85 kPa

    d_69 kPa

    d_55 kPa

    dc_100 kPa

    dc_85 kPa

    dc_69 kPa

    dc_55 kPa

    P ↑ P ↑

    δ

    δc

  • Simplified AnalysisHeat Transfer Coefficient

    • h ≈k/δT

    • At the sample location, h decreases by 13% when the pressure is reduced from 100 kPa to 75 kPa

    17

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0.0 0.1 0.2 0.3 0.4

    h (W

    /m2 K)

    Longitudinal Distance (m)

    28 kPa

    41 kPa

    55 kPa

    69 kPa

    83 kPa

    100 kPasamplelocation

  • Simplified AnalysisSpecies Concentration

    • Reduced pressure leads to a thicker species boundary layer

    δyx

    δc

    18

    0.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0.014

    0.0 0.2 0.4 0.6 0.8 1.0

    Vertical distance (m

    Fuel Mass Fraction Profile  YF/YF0

    28 kPa

    41 kPa

    55 kPa

    69 kPa

    83 kPa

    100 kPa

  • Simplified Analysis

    • To determine mass loss rate:

    • At lower P, required mass flow rate of fuel to reach lean flammability limit at igniter location is reduced

    19

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.0 0.5 1.0 1.5 2.0 2.5

    Fuel M

    ole Fraction

    , XF

    m0"  (g/m2s)

    28 kPa41 kPa55 kPa69 kPa83 kPa100 kPaMMA LFL

  • Comparison of Trends• Mass Loss Rate at Ignition vs. Pressure

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 20 40 60 80 100

    Mass Flow

     Rate at Ignitio

    n (g/sm

    2)

    Ambient Pressure (kPa)

    Experiments (Burning)

    Analysis (Flash Point)

    m''ig = 0.005∙P + 1.483

    20

  • Current Work

    21

    Fire Dynamics Simulator (FDS) 2D model▫ PMMA is irradiated under a prescribed heat flux the solid

    decomposes and the products of the pyrolysis ignite in the gas phase.

    HRR Temperature

    Premixed flame appears in the gas phase

    Flame ‘jumps’on to solid fuel surface

    Diffusion flame anchored on solid surface travels

  • Current Work• Fire Dynamics Simulator (FDS) 2D model

    ▫ Heat release rate/volume:

    22

  • Summary & Conclusions• Experimental results from piloted ignition show that

    tig & m”ig decrease with pressure:

    ▫ At 75 kPa , Δtig = - 15%Δmig”= -7%

    • A theoretical explanation provides insight on the effect of pressure on:▫ Heat transfer coefficient▫ Mass loss rate required to reach a flammable mixture

    • Next steps include developing a numerical model using FDS to compare to experiments

    • Overall, a reduction in ambient pressure leads to an increased fire risk

    23

  • Acknowledgements• The research at University of California at Berkeley

    was supported by NASA on grant NNX08BA77A

    24

    Effect of Cabin Pressure on the Piloted Ignition of Combustible SolidsMotivationToday’s TalkLower ambient pressure �can be found at…Cabin EnvironmentsHow does a solid fuel ignite?Forced Ignition and Spread Test (FIST)Video of TestExperiment ExampleExperimental ResultsVisual ObservationsEffect of Pressure (1)Effect of Pressure (2)Simplified Analysis�Heat Transfer CoefficientSimplified Analysis�Species ConcentrationSimplified AnalysisComparison of TrendsCurrent WorkCurrent WorkSummary & ConclusionsAcknowledgements