effect of herbicide use on soil...

14
EFFECTOFHERBKIDEUSEON SOILMICROBIOLOGY PA. Rogerand I. Simpson h4utlcrr~ rice-gron*ing IcclilIologicS-increasing crqqkig intensily, wing optitnwn crop m:~n;pwwil practices, planting improvccl variclics. applying fcrtilizcrs. prolect- itif tlic crop with lmticidcs-liavc increased yicltls mnrkcdly. Tlxw snme tccllnolo- (Tics also Iiavr climigc~l tr:~dilimial rirc-growing environmenls iiinrkctlly. One clian_rc .Y is Icss tlivcrsity of vrrtclmtcs and invcrtchtcs in riccliclds (Roger ct al I99 I ). 0thc1 cl~~iranmmt:II iiiqxicts. whctlici~sli~wl- or loilg-km, arc far from king fully ~Ssesscd. The I~OSI intcmc lw~ssurc being cxcrtcd on 1l1e microl~ial, faunaI, and floral com- tnunitics ofricclicltls COIIWS from IIK increasing use offer~ilizcrs and pesticiclcs. Tlwc ;tgroclictiiicals sigiiificnntl~~ impxl tlic composilion and poplntion clyilniiiics of iiii- croorpi~isni and iiiverlcl~r;itc commuiiitics. Grcatcr rintlcrstaiitliiig is ncetlc,d of liow :i~rochwiirals. CSlKYiilllV pcsticidcs, m;iy affect soil fcrfility through tiicir cffccts oil tllc pp~~l:ilioiis of Iiiicr(,org;lilisms and ill\~CrlCl~lXlCS tli;1l rccyclc md tr;inslocatc Iiu- tricnts. arul mnkc 111cm availal.dc to ;I crop. The issue. is wl~ctlw. as USC of pcsticirlcs iticiwscs. tlic cflicacy of soil niicroorg:liiisms will bc retliiced hy pcq-mlalion shifts toward spccics iiiorc cflicicnl iii pcslicitlc degradation. In rcccnt yrars, pcsticidc disc iii less tlcvclolml comitrics has tcritletl to iiicrcmc fxlcr lli:iii it has iii Ilic iiitlwitri;~lizcd cwnlrics, and Iliat trend is causing coiiccru (hhoily I900). In most i-kc-growing coiinlrics, iiisccticidcs liavc hew Ilic doniiii:~nt class of pcsticitlcs rwd (VIII tlcr Valk antI K~~III~II 1988). In the Pl~ilil~l~ines, TOI cx;~~~~ldc. 5S-60% of tllc pcsticitlcs mcd kf()rc I980 were insecticides, 20-2.5% wcrc flmficidcs. ;iiitl 5-l 6% Iicrhicides. While tlinl rchlivc pattcrii still csisls, hcrhiciclc use’ is increasing rapidly as ldinr :iv:iil:il~ilily in m:iiiy agricrrllural :irens is deldctcd hy rxpitl ~~rl~nni73lic~ti (h4ootly 1390). \\‘c untlcrtook :I l~ildiop3pliic survey to itlcntify sludics th:it measured the iilipct ofpcsticitlcs wi i~oiit:irgcl niicroorgmisnis antI soil and water inverlclmlcs in ricclicltls VeTROjCr et ;I1 I994). A comlxilcrizctl (l:llil lmw \VilS csl:hlislictl :iliJ cp;uitit;ltivc d;It:l 011 L tllc htc 0r llcsticitlcs antI their crrccts on microorganisms in rice soils were tnlx~lnted

Upload: others

Post on 27-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

EFFECTOFHERBKIDEUSEON SOILMICROBIOLOGY

PA. Roger and I. Simpson

h4utlcrr~ rice-gron*ing IcclilIologicS-increasing crqqkig intensily, wing optitnwn

crop m:~n;pwwil practices, planting improvccl variclics. applying fcrtilizcrs. prolect-

itif tlic crop with lmticidcs-liavc increased yicltls mnrkcdly. Tlxw snme tccllnolo-

(Tics also Iiavr climigc~l tr:~dilimial rirc-growing environmenls iiinrkctlly. One clian_rc .Y is Icss tlivcrsity of vrrtclmtcs and invcrtchtcs in riccliclds (Roger ct al I99 I ). 0thc1

cl~~iranmmt:II iiiqxicts. whctlici~sli~wl- or loilg-km, arc far from king fully ~Ssesscd.

The I~OSI intcmc lw~ssurc being cxcrtcd on 1l1e microl~ial, faunaI, and floral com-

tnunitics ofricclicltls COIIWS from IIK increasing use offer~ilizcrs and pesticiclcs. Tlwc

;tgroclictiiicals sigiiificnntl~~ impxl tlic composilion and poplntion clyilniiiics of iiii-

croorpi~isni and iiiverlcl~r;itc commuiiitics. Grcatcr rintlcrstaiitliiig is ncetlc,d of liow

:i~rochwiirals. CSlKYiilllV pcsticidcs, m;iy affect soil fcrfility through tiicir cffccts oil

tllc pp~~l:ilioiis of Iiiicr(,org;lilisms and ill\~CrlCl~lXlCS tli;1l rccyclc md tr;inslocatc Iiu-

tricnts. arul mnkc 111cm availal.dc to ;I crop. The issue. is wl~ctlw. as USC of pcsticirlcs

iticiwscs. tlic cflicacy of soil niicroorg:liiisms will bc retliiced hy pcq-mlalion shifts

toward spccics iiiorc cflicicnl ii i pcslicitlc degradation.

In rcccnt yrars, pcsticidc disc ii i less tlcvclolml comitrics has tcritletl to iiicrcmc

fxlcr lli:iii it has iii Ilic iiitlwitri;~lizcd cwnlrics, and Iliat trend is causing coiiccru (hhoily I900). In most i-kc-growing coiinlrics, iiisccticidcs liavc hew Ilic doniiii:~nt

class of pcsticitlcs rwd (VIII tlcr Valk antI K~~III~II 1988). In the Pl~ilil~l~ines, TOI

cx;~~~~ldc. 5S-60% of tllc pcsticitlcs mcd kf()rc I980 were insecticides, 20-2.5% wcrc

flmficidcs. ;iiitl 5-l 6% Iicrhicides. While tlinl rchlivc pattcrii still csisls, hcrhiciclc

use’ is increasing rapidly as ldinr :iv:iil:il~ilily in m:iiiy agricrrllural :irens is deldctcd hy

rxpitl ~~rl~nni73lic~ti (h4ootly 1390).

\\‘c untlcrtook :I l~ildiop3pliic survey to itlcntify sludics th:it measured the iilipct

ofpcsticitlcs wi i~oiit:irgcl niicroorgmisnis antI soil and water inverlclmlcs in ricclicltls

VeTROjCr et ;I1 I994). A comlxilcrizctl (l:llil lmw \VilS csl:hlislictl :iliJ cp;uitit;ltivc d;It:l 011 L

tllc htc 0r llcsticitlcs antI their crrccts on microorganisms in rice soils were tnlx~lnted

illJLl ~lu~Jl;~igcl suil rlJicroLjr~~;lrli~ill~ illlcl il~~llilti~ illVcl‘l~bl~i~t~S ill l-kc clJvirL~tlllJclki.

PESTICIDE FATE AND IMPACT

l’lw I~ibliogrqhic LlLlla buse on p~:xliciLk late und impact 011 rnicl~uo~~~~rnisllis arIcl iii-

vertdmtcs in rice envirunluents co~ltnins Lhout 600 rcl:renccs. Quantitative tlat;l col-

leckcl liorn 63 al-~icles 011 pesticide he, 7 1 articles on impact WI nonI)l~otosyl~tlletic ~rJioroo~ganisn~s, ancl 140 wticles un ill~pilcl on pholosynlllelic I1lic~OO~gil1lis~~lS wcrc.

lihlllillLXl ilnd ~t?llLZrlll trencls iln~llyXXi (Roger Cl il l lFzJ4). Q Llill1lililliVl: l l i l l i l 011 pCSli-

ciile impnct 011 soil ilncl WiItM invertebriitcs Wet-e Only ilViIil~ll~lc in SLJiJlC LlOXcn iII-

liclcs, IlOt CIlOLlgIl LO IX l~lblllillLXl.

‘I’lle genc:lal cllillXclc~iSlicS illld Iiniitations 01. tllis Lliltil bxx, illId specific ilSlXCtS

Ihilt pertilin 10 herbicide stuLlizs, incliide 1lJC I’ullowiiJg:

l Most f)ebti&k stucliss cofitIuctccl in ricelieltls, with riccliclcl soil, or wilh or- gillliSlllS isLhlcLl fl.um ricclields, were publish4 during lhc 1980s. i\iIorc rc- Cell1 studies ill’i: SCiIIXcC, which implies tlliit Cll~IYllt kno\Vlcdge is somcwlint Ol.ItllillCLl. 1’ill.t LJf 111~2 inl‘urniillion LkillS wilh SLl~XW.Xl~LI liJ~~~llll~ltiOllS, il l l l l littlc is hllLl\Vll iIbLJU1 IUXlltiy K!ll2ilSLXl COlllpLJllllLlS UlLl li~mitllilliorls. ‘I’iLljlL! I lihts

llle lllllllb~~ Ol’~XllX1’S in tlli2 Llillil LX193 lllilt LlL!illS with (111: iiJJplcts LIII JJJiClUl-

IL)rit LJ~’ 1lJe licrbiciclcs ikpl)lied LJ11 CilliliJrniu I-kc in 10%) (Crosby lU96j. No

illli~~lllillioll is ilVilil~hlL? t;N lwu Uf‘tllC hcrbicidcs; 11~ tlic others, riiost sludics kill with CUltllIES LIl‘ flIiCl~LJill~~lC NIL1 CyilflOlXlClt2~iiI ICSLCLI ifi tllC lillJl~l~illlJl~y.

4 Most ol’llle ilVilililblC inloriiiation 011 1111: I;ite o~dillcrcnl pesticides in riocliclrl soil is bilScL1 011 cxpcrinicnts with 20-100 g of iiiil~lantsd soil. Such cspcri- IllClllS i~nclcrcstiniatc chemical tl~~I2lLlilliLtll IhXiltISC ul‘ lllc: iIlJhcllcc 01

I.~liLiJsphic cl’lh d bCCiIttS~ ~~l’Vil~iilti01JS Ol’clJVii’onIII~II~iIl corILlilioIIs (liglIt,

Wiflcl, lc!llllJC:l-:ltllIU, R!Lhi pOt~lltiill). Ollly ~1JLJllt 70 ul’ ?_OO l’Cl’~WncSS lJIx-

Xllt~?d LJiIliI LJIJ IlL!l’biCi&X.

e Quwltililtivc cStiNlillcS 01’ llie el’l‘ects: Of pesticiilcs 011 i~Jic~LJc~r~~wJis~lis in

hxliclcls iIll.? giwl itr 2-M r-ekfimxs. Tliosc sluclic‘s asscsscLI inqJacls using tllc classical rnelho~lology 01’ soil rliicrobiology, including dntnifcr;~tion iJJJll

lllL’ilSLII‘c1~161lt ol’i~clivily (~J’c~lVcS et ai l?J7xj. such ~~t~illllili~livc: ;III;I~~SCS ;IIJLI

intcrprctaliun sll0Uld 1X ilCLXlJlCLl with ciIuliLJl1, li)r lllc li~llowing I’CilSlJJlL:

- ‘I’lIe Ol&llliSlJlS illlcl pAciLlcs sluLlicLl cl0 no1 corlslitulc ii rcprchclllali\rl:ltiVc

Sillll~~lL? 01’ tllc IlUIll61’o~IS cunibinulions 0Ccurfi;lg in riccliclcls. l>ilt~[ 1~1 pholosynthztic i~licl~L~LJlgiliiisms (I40 K~LXc~lCcS) il1.e Inostly on Iicrbicidcs illJd cyUlLh;lcl~l-iil, iln~l NC: lllc)l‘d ilhlllL~~lllt tIliIl1 111~~~ LJIJ Ili~Il~J~lLItLIsyIlt~I~tiC

iilicroolgmiisri~s (7 I rcl’erences). which clc;~l ~iioslly willi iiiscclicidcs (Roger cl id 1994). ‘I‘he impact ol~herbicidcs 01J l~hulosyiillictic Iiiicr~)l,r~aJiisiiis is 10~11Jcl iii h-l sttrdies lesliiig 54 t~rrnttlations; orJly IO sttrclic5, testing 33 I;ll~lll~lli~lilJllS, i12~11 with ounl~llotosy~ltl~ctic IlliurL)ol.g:lnisllls.

70 Roger and Simpson

Table 1. Number of papers dealing with the ilnpact of herbictdes’ on Inicroorgan- isms ial CiNornia ricefields, 1990. .._- ._.-- ---.-

Herbicide Algae and

cyanobacteria Bacteria

LaW Pot Field Lab Pot Field -_ Bensulfuron methyl Copper sulfate 2 - 6 _ - -

2,4-D 21 - 2 - 1 - Glypliosale 2 _ - - - - MCPA 5 - 1 1 - - Molinate 3 1 1 1 1 Pcndi~nelllalin Propanil 1

; 1 3 2 - -

Thiobencarb 1 1 - - Total 45 2 14 5 2 0

------

“Lisled by Croslty (199G). “Lab = laboratory.

1. _.. I

- MLISI stuclit2s aI’ IilbCIIXtOl~y experiments with CtllttIIXS Of microor~:ukans or with only i l Tew grailIs of soil. Less thnn So/o Of the qtiantitntlve studies wut conLlI~ctrcl in riurliclds. Bxperiments with nGcrobia1 cultures give nn index of ii StlXill’S sensitivity to pesticides, but the results c:\nnot be ex- trq~olaterl to liclil contlilions where the initial concentrations of pesticides nrc likely 10 ~IWrense iqiclly, i lS their- dCgIX&lti011 is 1XISteIJd by soil mi- crollorn, n0nbiological clecomI~ositiun, I%lclling, vOlntili2illi0n, and soil

atlsorptiun. Concentrations ol’pesticides thut :Gect microorganism growth ~lclJc~J~l on the initial microbial popniution, i&nutrient status, the method ot’lk!sti~ick upl)liartio[i, xlcl th! Lkg~itt~illiOIl pI’OdUCtS. l‘hCSl I;ICtOls IlJilIk-

tdly dill& in vitro itnd in situ. I$ exim~plc, little agreement was Ibnnd IJL’I~~L’JJ 111c I~~OJJSL‘S of microbial species to glyphosate in incubated soil SiIlnp1es ant1 in pli’e culture (Wurdle illld Piukinson 1990).

- hd;lily SluLhx ilsecl pcslicick COllCCIJtl~iltiOllS higher thiltl tlJ~se WdthJg

I’IUJIJ 11~ I-cxxJIJ~JIJ~IJL~~~ lcwl for lield appkiltion. Such experiments mly

ovcrcstiminc pesticide persistence becunse degr&tion is slowed at high ClII1CL’lltI~illiOl1S, ilS IlUS been SllO\Vll with LrifIuraIin (Pilrr ild Sniitli 1973) sod moliiinlcl (Dctil cl al 1978). ‘file reconunrtntle4l levels of tlXlitiOn~ll

pcsticitles ~xiige llo~n 3 lkw huoclred gams lo a Few kilograms of active

ingredient per hectWe. The median recommendation for herbicides (2.5 kg iii ha-‘) is higher thnn it is for l’nngicides (I .7 kg ai hn-I) and insecticides ( I . I kg ai hu.‘) (Roger 1990). Experiment4 results should be interpreted in the context ol’the langr ol‘pesticicle concentmtions thnt can be expected iIl ~~lI3JJ~l~s’ lielrls ilftel iIpphCi1liOn. II’iI herbicide applied on ;l nonilooded ficlcl slays \vilhin lhe surl’ace 2 cm of soil, 2.5 kg ai hii” wotlldcorrespond to I5 mg I;(1 2 -’ tlly wright ol‘soil, I’or II bulk density oi I mg in”. Ila \v;tfer-

Effect of herbicide use on soil microbiology 71

,. : ” _‘, _I

soluble herbicide is distributed in IO cm water and 10 cm p~~dtllcrl soil. I .

kg ai ha-’ would correspond to I mg kg-’ of soil. The field silualwn is

probably closer to the lower value. Our tln~a base lists I JI4.S articles that

report quantitative data on the effects of pesticides 011 plio~osynlficlic fiii-

croorganisms. In 638 of the studies, effects were measured al conccn~~‘a- lions higher than twice the rccommendcd level for Ii&l application. This is probably because the stuclics were clcsigned to eslablish Ihe Icrhal ml-

centration for strahs rather than to measure possible cffccls in the field. Such dala are of little value in drawing conclusions. except when no cffccl was recorded.

MICROBIAL DEGRADATION OF HERBICIDES

Pesticide dcgraclalion in ricefields is accclcrated by the reducing conditions caused by submersion and by the temperature and 111-l ranges that favor microbial activily (Ponnamperunm 1972). As a result, pesticides oh persist longer in rlonIlooclcd soils than thy do in flooded soils (Sethnathan and Siclclaran~al~a 1978). In a data IXISC o11

the IlalF-life of pesticides in rice soils, only 8,$4S tests rcpor~cd shnrtcr half-lives in nonfloodcd than in flooded soils (Roger et al 1994). Herbicides with faster dcgrada- tion in flooded soils include trifiuralin (half-life >4 cl in IIooded soil and >20 rl in nonflooded soil [Parr and Smith 1973, Willis et al 1974]), pyrazoxyfcn (half-lilt <IO d in flooded soil and 3-34 d in nonflooded soiJ [Arita and Kwvalst~ka I99 1 1). and MCPB-ethyl (half-life 2 d in flooded soil and 3 d in nonfloodcd soil [Asaka anti Izawa 19821). Some herbicides degrade faster in nonflooded, upland soils than fhcy do in flooded, lowland soils. These include molinate (half-lift 4-l GO d in I’loodcd soil. 8-25 d in npnflooded soil [Deucl ct al 1978, Thomas and I-lo11 1980, lfnai and

Kuwatsuka 1952)), thiobencarb (half-life 45 cl in nonlloodcd soil. I(10 tl in flootlcd soil [Ishikawact al 1976, Nakamura cl al 1977, Dual-Ycntumi and Kuwatsuka l%Ol).

and MCPA (4-chloro-2methylphenoxyacctic acicl [Dual-Yentumi end Kuwa~suka 19801). The persistence of MCPA, 2,4-D, and 2,4,5-T about half as long unrlcr moist as under flooded conditions was explained by the nectl of an aerobic rnicrol’lora Jo rapidly degrade phenoxy acid herbiciclcs (Sattar and Paasivirta 1980).

Herbicide-degrading microflora in ricefields In dryland soils, bacteria and fungi are considered to be the organisms primarily rc- sponsiblc for pesticide degradation. In wetland soils, bacteria arc lhc fnaior ngcnl

(although fungi are involved in wetland soils [Rao and Sctlwn;~~hnn 19741, they proh-

ably are less important than bacteria). Microalgae may play a significant role in wet- land soils, either directly by favoring photooxidation through the oxygen they rclcnsc ’

in floodwater or indirectly when their photosynthetic activity causes water pl.! IO vary l-2 units during the day, to favor chemical decomposition of pcsticidcs. So 1’~. Ilfc

contribution of microalgae to pesticide dccofJJposiIion in ricefields has been clcrno~J-

slralcd flfostly for inscclicidcs. Pliololysis 0r Ihc iiisccticitle mclhyl parathion was

nirrcl~ raster in waler conlaining algnc Ilian in distilled waler (Zcpp ml Schlotzlmcr 10X.3). The importance Tar pesliciclc clegrndnlion or IIJC iwrcase of wflcr pl-I caused

hy algae is ol~viorrs for llic ifiseclicide c:ffhfifran, whose hyclrolysis was more Ihnn

700 times I;1sIcr f11 lJ1.l IO than at pl-17 (Seihcr cl al 1978). The cyanohcIcriufn Arfncwh ~iiddtrrrs c:m conVcrl llic plJefJylcarl~afiJ:fIc hcrhicidcs propham and clhprol~lJ:1fJJ lo

their corrcspofJdif1g f1flilifJcs (Wright and Maule 1982). A significanl role of rice

rliizosplicric haclcria in pesticide clcgradation was also clcmn1fstrated for- (lie ifisecti-

citlc pnratlhn. Al’Icr 2 wk in an m~plantccl, (loodcd soil, less than 5.5% off4C-labcled

paralhiofi was cvolvccl as “‘CO . in a plantcd, flootlcd soil, 22.h% was ewhecl (l7;1~iosckliar Iicddy and Scthunat&ffJ 1983a). Similar clata are not available For herbi- cides.

l’cslici~lc-1lccofi~lJosii~g fnicroorganisiiis isolaIccl l’rom ricel’iclcl soils belong lo

lllc gCflCfI A r?lfr~hnct~~I; Ihrcillrrs, Closf~irlirrn~, I;kri~obtrcte~irriii, A/licrn~occrr.r, h/l\l- c.r~hrrc.~c~.inrrr. IJ.scrttl~~rr~mrrtrs, and Sfw~~forrqw,r (Roger CI al 1994). They can degrade

pcsticitlcs by using lhcrn as their sole carbon sotfrccs, throrfgh cometabolism, or IJy

synergy. MosI oltirc species that have been isolated degrade insecIicidcs; IWO spccics

have lscn isohcd lhal degrade lJe~~I;\clJl1~rol~IJcfJ~~l (PCP). il~~l~r)hrrcl~~~if/~~f sp. (Suzuki

1083:1,h) :llltl I’.vr~fftlr,rlff~/ln.~ SIJ. (Wflt:lll:lly2 1973). SCverill species ll;lVC hccfl Cllilf2c-

Icrizcd Ihf1I tlcgrade MCPA. ~~~Il~obtrc/er-irrrlt pewgrw~rrrn and A r~/lfrn/&?~l- spp. pro-

tlucctl 4-clfloro-2-f1icl~iyll~l~cnt,l as Ilic mqior fll~lilljOlilC,’ ancl A.gwqillrf.7 ffispf. pro-

tlucctl 4-clJloro-5-l1ydr1~xy-2-mc~l1~~llJl1c111~xyacetic acid (SoderquisI and Crosby I Y75).

Relative importance of microbial degradation The ns~ially r‘aslcr degradalion or pcsiicides in nonsIc1~ilizccl lhan in sterilizcd (:mIo-

ClilWd) soils and. ii i Soffic casts, fasler tlegrntlation in soil on second cxposore lo a

hcii pcsticitlc dcn~o11s~ralc lhe imlJorlancc or microlJi;1l tlegradnIicJn or pcsticidcs t- t Iiogcr cl al 1004). ScVcral l~:~lliways of clcgr:1tlnliofi/~lissilJafion fliay IX involved fof

if siii@c pcslicidc-adsOrpIioii, Iransport (volaIilization, pCrC0liftiOf1, rfifl0iI). nficl Irans-

Ir~1GihJ processes (lhlolysis, chemical hydrolysis, lJiotlcgr:1dafiorl!. ir a chcniical

is wry VOlillilC, il lllily flol hc a long cnor1gli rcsitlcncc lifne r0r sigfiilicafJI tlcgmda-

lion lo occur. cvcn IhoifglJ Ilic ralc ol’ dcgradalion coold bc rclilliVely rapid if Ihe

chemical is mainhinctl if1 COIJI:ICI with the soil. The rclf1tiVe importance or microlhl

rlccoinlJosiIiotl will Vary. drlJending oil the IlillUlT or llic hcrhicidq lhc CllVifQllll~enlill

coridiliofis, nrftl the fnctl1otl or npplicaliofJ.

For a m1111bcr ol~hcrlJicidcs, soil stcrilizalion fnarkctlly rcdrfced dcgraclalion. in-

tlic:ilirig llinl rindcr flit cxupcrifncnlal condilions, clcgracl:ilioii was flinstly a fnicrobial

prwcss. Tlwsc liclbicidcs inclrfdc thiobcncalh (Nakamurn CI al 1977), lJutacl1lor (Chcn 1980). MCPB-ethyl (Asaka antI imwa 19X2), 2,4-D and 2,4,5-T (Yoshida d Castro

1975). and molinatc (Ifwfi i1fJtl Kuwatsuka 1982). Stutlics of the dissip:f(ion of MCPA

intlicalctl Ilial fiiicrol~ial tlcconilJosiliofJ was grcaler than phnlotlccofnyosition, and

tl1:11 Volatilizatio11 was or littlc imporlf1ncc (Soderqnist and Crosby 1975). Dissipation

10 I-3. i- ,. r,. I c; . . . . . c VI.

IMPACT ON MICROALGAE.AND CYANOBACTERlA

germination because they compete for light, forni a iiienibr;iiiaceous inat restricting penetration of the rice roots into thc soil and thc gaseous excliangc bctwecn soil and water, and have dctrimental mechanical effects on rice whcn tlicir epiphytic growth either pulls seedlings down or lifts and uproots tlicni wlicn the watcr lcvcl varies (Smith et al 1977, Noble and I-lappey-Wood 1987).

Pesticides have three major effects on rice fi el (1 ni i croa I giic a ncl cy anobnctcri II. Soine prefcrentially affect green algac and promote cyanobacteri:i gron'tli. :IS lins hccn observed with the algicides simetryn (Yaniagishi antl Masliizumc 1074) antl algacdyn (Almazan and Roblcs 1956). Insecticides over the short tcrm incrcasc niicroalgae by temporarily decreasing populations of iwertcbrates h a t g r a x on algac. i nscclicidcs also have a selective effect on cyanobacteria by causing tlic rccruitmcnt of algal gl'nz- ers, which results in the dominance OF strains that form inuc i lag iwns niacrcicolonics resistan[ to grazing.

General trends As photosyntlictic organisms, cyanobacteria ancl algae can bc cxpcctctl to IJC iiiorc sensitive than 0 t h microorganisms to licrbicides, espccinlly tlic pliolospiillictic in- hibitors. Several unicellular eukaryotic a l g ~ most coninion in riccliclrls (C/r/rrrr//tr. Cli lnrrt~t~~nionn.~, Eriglcnn) have bccn shown ,to bc sensitivc to pliotosynthctic inhihi- tor lierbicidcs (Aivik et al 1973). Quantitative data obtaincd ;it concentrations corre- sponding to the rccommended level of field application are mostly cstiinatcs of tlic inhibitory effect of herbicides on cyanohactcria cultures; cxpcriiiicnts with soil in vitro and in situ rnake up less than 10% of tlic data (Tdde 2). Rcsults conlii.ni. how- ever, that among pesticides not aimed at controlling algae, licrbicidcs arc most dctri- mental to cyanobacteria and algae, causing partial or total inhibition in 67% o f tlic in vitro tests and in 42% of the i n situ or soil tcsts at recommenclctl lcvcls o f ficltl :ippli-

Table 2. Effects of pesticides on photosynthetic ricefield microorganisms (cyanobacteria and microalgae) a t concentrations corresponding to recommended field application.

Data (%) corresponding to different levels of inhibilion

Nature of data Data (no.) None e50 50 >50 100

All data 407 All data in situ or with soil 39 Algicides (3 tested) 33 Fungicides (22 tested)a 30 Herbicides (57 tested) 252 Herbicides in situ or with soil 24

Insecticides in situ or with soil 10

'Several fungicides are used as algicides.

Insecticides (28 tested) 97

39 19 62 8 3 O

40 10 33 25 59 8 67 11 90 10

26 3

67 7

28 4 14

O

2 14 3 26 O 30 o 43 2 12 4 25 3 4 O O

.-

7G Roger and Simpson

cation. Tlicsc v:iliics also confirm that pcsticitle cffccts arc iiiorc marked i n vitro than i n situ.

Effects on photodepenclent BNF and biofertilizers III tl~c w;lkc of intcrcst in hiorcl-tilizcrs which developed in the 1980~, a nunlhcr or stutlics clcall with Ihc iiiipact of hcibicitlcs on free-living ant1 symbiotic N,-fixing cy:inobnclciki indigciious to or inoculatccl in ricefieltls.

Ili dig c ir o r i s c.ycr/r o htr c / e riti. 1-1 c r 11 i ci cl cs c :i n i II li i I) i I cy an o 1) act e r i a and I)liototlcl~cnclciit LINT;. L:ibot.atoi-y cxpcriments showed that PCP-a pcsticide used hoth ;IS :in insccticidc and a licrlicidc-was inhibitory to cyanobacteria and diatorns whcn applictl on thc surf:lcc, but not wlicn incorporated into thc soil (Ishizawa and

ildlihitctl I)llolotlcpcnrlent R N F (Mittsuguchi 1979) ancl scver:il iormulations 11sctl in I iccficlrls rctlucctl algal gro\v~Ii (Srinivasan and Ponnuswami 1978). Sotnc licrbicidcs SCCI11 IO Ílfrcct tllc N,-fixing :Ii)iiity orcyaliobacteria spccific;liiy; ~ I I C inIiiI)i(ory crrcct of 1~iit:tcIil~v (III N,-fixing str:iins growing in an N-ficc nictlium was iiiarkedly dc- cic:isctl o r rcvcrscrl by inorganic N sources (K:isliy:ip arid Pantley 1982). Wlicrcas iii:iny Iicrhicitlcs sccni to Rc most dctrimental for pliotc~~lcpcntlc~it BNE scvernl spc- cics of cy:lnolmcr i a tolcl ÍIICCI 100-SOO ppm of 2,411, ÍI ICVCI much higher illan that rcc(ilnlncntlcd for lïcld application. This suggests th:it this hcrbicitlc might IX colil- piit ¡lile \vitIl cultural practices aimctl :II promoting cynnohnctcria growth as hiorcrtilizer (Vcnk:it:ir:imiin and R:i.jy:ilakshini I97 I , 1972). . - "

/\/p/ i / r w i h / i o i r . Allliougli iiuiiicroiis cxpcriincnts havc dc:ilt with inociil:iting ricclicltls willi N,-lixing strains oTcyatlohaclcria (Rogcr 1990), allnost no ficltl trials 1i:ivc tcstcd tlic in(cractioii bclwccn pcsticiclcs ancl a1g:il inocu1:ition. Kcrni ct al (1983, I O ~ J ) rcl7(?1 teci tiI;lt hllt:lci1i(~r :lllIiic(i at 5-30 kg 11a-t il1 il1(jc1liatc~i I ~ I O ~ S i lad 110 crrccc. 13-Snwy C I :il ( 1984) tcstcd thc intcraction hctwcen cyano1xictcri:i inoculation and Ihur llcrbicitlcs in a pot cxpcrimcnt. When algal inocularion was efrcctive, licrbicitle application liioslly h:td no cffcct or a I)osilivc effccl o11 plant cliaracteristics and soil N al 40 d aftcl- ll:insplanling. Ncgarivc crfccts were ohserved with propanil in only 2 out of 16 C:ISCS. Srinivasan and Ponnuswanli (1 978) reported thst rccommcntlcd lcvcls or ficltl :~p~dic:~tio~~ of Saturn (ilhbcncarb), Basalin, :IIICI TOI< hati INI crrect on the pro- duct ion of bloc-grcen algae i n cyanobac~crin inociduni miiltiplication plots; Sirmnte, Fcriioxonc, Stmii I: 30 (proliaii¡I). and Wcctlnnc (2,1-D) clccreased growth by 15- 40%.

/\zolla involves a syiiibiosis betwecii a N,-fixing cyanobactcriuin aiid an aquatic fc111 traditionally iised as green ~ ~ i : I ~ ~ l ~ r e for ricc (Roger et al 1993). I d b r m i o n 011 the cffccts ofpesticitlcs on BNF by azolla is lirnitcd. Insecticicles tlccrease pcst iiicitlcnce, which iisually favors :izolla growth (S:itapatliy aiid Singli 1987). I-lctbicidcs niore oiicn i1:IVc :I tictli11lcnt:li crrcct. iioist ct ;II (1982) tcstccl tilt errcct in vilro or 1s licihicitlcs on growth nntl N, fixation ofAzo//n nresicnrtn. Bipyridinlium and phcnolic 1icil)icitlcs wcre tlic most clctrinicntal; at O. I ppni, they causcd up to a 75% reduction

h4:lrstlgtlclii 1966). Ili ficltl StlItlics, CNP (2,4,4-t~i~lil0~ophfnyl 4-tlitroplictiyl ethcr)

Effect of fierbicide use on soil microbiology 77

p;iriicula. Iicrbicick niay vary c i~~~s idc i~ably aiiiong algnl struiiis, herbicide application might C;ILISC shil'ts i n doiiiiiiant strains within the al~aIlcyanobacteria1 conmunity r;llller Illan ;I llecl.ense or Ille entire algal biolmnss.

Bioconcentration in algae and cyanobacteria Aliliotigli bioco~iceat~ntion ol'pesticides in food chains has been demonswaled in many - ccosysteiiis, ilic issue lins received little attention in ricefield studies. Avaikible data only rclkr to possible pcsticitlc accumuluiion in vilro by ihe cyanobacteria common i n riccl'i1:lJs ( fhs iind Singli 1977, Kar aiid Singli 1979). The ability ol'inirro:iIgae to accun~ulute Iieihicicles i n freshwater environments lins been denionstrated (Wright 1978). Algae wd cyiiIiobi\ct~riil also are known to accumulate heavy metals, which lias iriiplicntions i n ternis of copper- or tin-bnscd pesticides. Invertebrate grazers that li.ccl o11 pliytoplankton ihai coninins high conce~iiriitioiis of pesiicjde or nielal could suIl'cr. 13 i[)coiiccntr~itic,n o f pesticides iii phyiopl~uikton iiiid zooplankton is important wlrcn 1111: riccliclcl ccusystcln is considerecl ;IS it possible environment for aqunculture (rice-lisll, ricc-slirilnp).

IMPACTS OF HERBICIDES ON CHEMOTROPHIC MICROORGANISMS

General trends I I I coiiifiist 10 experinleiits witli niicroulgae and cywobacteria which were conducted prirnwily w i i l i I;~bol-;itory cultures, tests of pesticide effects on nonphotosynthetic iiricroflufii iind their aciivitics \vere I)erforiiiecl primarily in small-scale experiments with soil or in silir at conceiitI.;itic)ns cori~esponding to the recommended level oflield applicniion. 't'lie tl:1io base coninins 606 rcco~-cIs otminod at those concentraiions, al- tlioiigli most of ihc studies den1 \villi insecticides. Studies with herbicides (;I liiere 102 record!,) only ;11low LIS IO iclcntil'y \'cry generíil tl-ends (Table 3). Insecticicles affected the iiiicroflurn i)r its aciiviiies less olien (no effect i i i 68% of the studies) than liingi-

I

Effect of herbicide use on soil microbiology 79 I

L

table 3. Effects of pesticides on nonphotosynthetic ricefield microorganisms at concentrations corresponding to recommended field application.

Data for each effect (%)* Group -i-

Data All Negative No Posilive All (no.) negative Irend ef feet trend positive

--... -.------ --_-. - .- All data 606 8 12 60 11 9

Fungicides 58 1: 0 50 24 22 Herbicides 102 23 30 21 14 Insecticides 7 440 6 11 68 8

Biological N, fixation 176 2 23 31 26 19 Fungicides 25 0 0 20 52 28 Herbicides lZ56 0 23 23 35 19 Insecticides 2 27 35 18 17

_- _.-_ I.--_-.-- -.---

*Most experiments are baclerial counts and activity measurements perlormed several times after aoliiication. Each experiment was as follows: no effect-no significant difference between treatment and control: all nega- tive/positive-for all measurements the treatment was statistically lower/higher than lhc control; negative trend-various effects: positive trend-various effects. Adapted from Roger et al (1994).

tides (no effect in 50% of the studies) and hcrbicidcs (no cffccI in 30% of the sI\lrlics). Data from field experiments (Snto 1987, T~Janclal et al 1987, Roger ct al I O%l) NC 11ol

nulncrous enough to bc tabulatcL

Changes in microbial populations Reports of experiments where microbial populations were coun~ctl afIcr hcrhicirlc was applied usually do not present a statistical analysis of the tln~a. Microbial cnu- merations in soil are highly variable, making it cliff&II lo assess Ihc significnncc or data not supporied by statistical cvaluation:In many cases, Ihe cliffcrcnccs l~c~~cn microbial enumerations in treated and control soils were less Ihan Ihrceli~lrl. which indicates a need for caution in interpreting the rcsulIs (Roger et al 1993). 1% cx- ample, among 14 microbial groups (aerobic bacteria, actinoiiiycclcs. runsi. ammonifiers, ammonium oxidizers, denitrifiersl aerobic and anaerobic N2 fiscrs. acro- bit and anaerobic P solubilizers, sulfatc reducers, cellulose decnmposcrs, and iron precipitators) counted 3 wk after the application of linuron to a floo~lcrl soil. only ammoniuni oxidizers and sulfate reducers exhibilcd cli;ingcs in dcnsilics ninrc Ihan Ihrec times that of Ihc control (Sivasithamparam 1970).

When changes in populations wcrc considered significant, they wcrc usually ml long lasting. In one heId experiment, counls at 4, 1 1, IX, and 25 d after application of preemergence herbicides (Goal, TOK E-25, Saturn, and Machc~c) indicaIcrl only a slight initial depression of total microflora, bacleria, actinomycctes, and fungi popu- lations; recovery occurred within a few days. No prolonged cffcc~ of hcrbicidcs on microflora was observed (Mandal et al 1987). ImmediaIely afIcr Ihiobcncarh was applied to a rice soil, total viable bacteria and populations of Gram-1lcgaIivc. nm-

80 Roger and Simpson

monifying, niI1-:1tc-recluc,ing, and dcnilrifying bacteria increased and populations of :1inmonium-oxidizing and niIriIc-oxidizing bacteria decrcnscd. The changes did not pcrsisl and lhc gcncral dynan&s of microbial populations during the crop cycle was noI affcclcd (Sate 19X7). AI 30 “C and pJ-J 6.8, 6 pJm1 hulachlor Ilacl no significant dlcd oii l>nJ~ulaIions of fungi nncl aclinoinycclcs, hut possihlp iiicrcnsed IoIal l~lv11;1- lions (>r I>:iclcri:i for ahouI 2 wk (Ch IWO).

Effects on soil nutrients and enzymes In :I JWI cxJ>crinlcnl using u~~J~l:~nIctl Jlnodcd soil, Ordranl (1nolinaIc) rcduccd NH, avnilnhiliIy and 111~ tlccomJ”‘siIit,1-, nf organic 1naIIer. and incrcnscd P and K availahil- iiy for I~C 80-d tl11raIion of the cxpcrimenl (Russo 1970). J Jowcvcr, algal tlcvelop- 111c111 in lhc poIs may IWC inlcrfcrccl will1 Ihe process. It was suggcsrcd I~;II the cf- IticIs clhscrvctl on NJ I,, and I< availahiliIy were possibly corrcJaIcd wiIh sIimulation/ i1111il~iIion of soil niicroor~:1riisnls. wllilc P availal$liIy may have heen afrected hy the. caJ>acitics clf~llc aciivc chcrnical gro11ps of Ihe pcsIicidcs IO sul,sIiIuIe for P iotis freed hlll sIablc cor1~l~inalions d the soil conslilurnls.

h~lc:1surcmcnIs of cnzynwlic activilics in po( and hsk expcrimcnts ~I~owccl ei- Ihcr ill1 nlxcnce Or drcc~ or a slight ancl iionl:isting inliihilion 0r flmylnsc, dchytlroge- 11asc. invcrtasc. and urc:1sc I?y 2.4-D, nfrazinc, hasalin 4X-W. I~rrIncl~Jor, ant1 oxyfluorfcn (Chcntlr:1yan :IIKI SctJ1ut1:1Ih;111 19X0, J’aJ;1niaJ~J7an ant1 ~al;1s11hra1~~anian 19X.5, RnrunJ1 and Mislira 19x6). 111 it West ~cngal ricelicld soil, IO kg MCPA I& was necdcd (0 tlcc~wsc cclJr1lolyIic J~oJ~ulalions (De ant1 h~rik~~oJ~:1cJhy:ty 197 I); the recommcntlctl ficltl aJ>plicaIion is only 0.2X-2.25 kg ha-‘.

Effects on nitrogen cycle /Irrrrr1otr~~;r.trliorl. Thiobcncarh (Sale J 9X7) and I~utachlor or mixIurcs ofbuI:1ci~l~~r anrl dipl1cnylcIllcr-IyJlc hcrl~icitlcs (niirofcn. chJorniIrofcn, and clilomeIhoxyt~il) (Chcn

ION)) l~atl no significant cffccl on :un1noniTrcnIion when appliccl at recommended licltl Icvcls. Ten limes Ihc rccn1nmcndccl rale 0r thiobcncarh was nccdcd lo signifi- c:1111ly :IW~CI amn~onilicntion (SaIo 19X7).

Ni/r~~/icrr/io~~. Various in vitro cxpcrimcnts with unplanIccl soil rcporI either 110 or

ncgaiivc cffccls of hcrhicitlcs OII nilrification. AI 30 “C and pI1 6.8, buIn&lor or mix- IIIIW of hul:1clilor and Ihrcc cliphcnylcihcr-Ippc hcrhicitlcs :1pJ~lictJ :II recomrncndcd ficlcl lcvcl and aI IO Iimcs Ihc rccommcncictl Jcvel hatI no signif&nt effect on nitrifi- calion (Chcn I%O). Propanil aI 3. I4 antI 5.3 kg ha-1 decreased populations of nitrificrs (Dc and Mukhop:~clhy;ly 197 1). Three weeks aficr linuron npplic:lIion, growIh of 11iIrilicr.s was rctluccd. hut populaIion clcnsity recovcrcd wiIhin 3 mo (SivasiIllamp;~t;ln~ 1!?70). Propanil antI hifcnox applied al I~C recommcndccJ Jield level inhibiIed nitrifi- caIio11 during lhc firs1 IO 11 of incuharion (Turner 1979). Their effectiveness varied

i with soil lypc. After 60 cl of incubation, only llifeuox sIill rcIardcd niIrification. That - l101h Ilcrl~icidcs have Ihc J>oIcnIial IO rcIartl nilrificntion S~OIIICI hc rccognizcd when N

Effect of herbicide USC, on soil n$crobiology 81

Negu1ivr elTwts ol’ herbicides 011 ni1riliwtiou ciInlllJ1 neceswrily bc cowGclcrscl detrinwntal because reducing nitrilication niso leclwes N losses by Ilelli1rilic~~1iclil. Iclzfl1il‘ying ellicicnl alkl zconuinically I’kXkGibll: ~~illilicilliiln inhibilors has bwn ill1 objective of 1he r~~ti~rcll on microbial n~aniigelnent io riwliclcls (R~gcr ~1 ill 1903).

Dnd~~iJinrlion. lknilrilicnlion is li11le ulltcletl by peslicidcs, l1l’Obilbly bccniisc the complex iuid versatile clenilrif’ying microIlora ciw fnc1abolize or r~~isl it wi,dc I+iIflge ofStIbSli-o1e.s. 1 ligh levcls idpeslicirlc ;II% ll&xld 10 idlibil LlCllil~iliCilliOll (I(ogcl IA aI 199-l). This prd~;tbly expli~ills why CLIIXII~ r~~cnr~h aiming 211 cIccI.cilSing N fa.- 1ilizer IOSSL!S I’ocusrS 011 LlICilS~ illlcl nilrilicilli~~n idd~ilors 1~allltX Illilll 011 llc~ii1ri(‘iCil- lioa inliibilors (Ragw Cl aI 1993). Pesticides lcsled for lheir ell‘ecls 011 clcnilrilicaliori arti n~>s1ly ftmgiciclcs iuncl inseduidcs. Dilla Ibr hcrbicitlzs idia1c no Sigllilic;u\1 d’l’cct of I’CI’ on delli1rilicikutl oI’ Iti1rde npplicd 10 ll~~~~d~d soil (h4i1sui ~1 al 1901, h4ilsui c1 aI 11Xi4). 011 tl~c CJIIIIX Iii~lltI, a sigllilici~n1 dccrc;lhC iu clcni1rilicr p~~lwl;~1io~~ illld dwilrilica~iwi WLIS 0l>S61.Vd ilflCr IO.5 kg lli l I l~fl~l~Ol~iIlIil.illl~l 2.75 Ag Ilil ’ 01’

hlCl’A Wcrt! q~plid 10 il WeSl I3l?llgill ricclielcl suil (Ik ullcl ~llikll~Jl~illlll~~l~ I97 I ). A’2Ji.\-trrio/~. N,-lixing ~~licruorgaksn~s iilltl l3NF itrc nw~ i~lT~c1ed by pta1icida

lllU11 iIK OLllC1. lx.plliIliOllS illld aclivilics (‘l:lble 3). Wilh 25%~ of lhc ncguliw cI’l’uclS i\l\d -15% 01‘ 1hc posilive ~I~cIs, I3NF SWII~S quill: \rcrSik1ilc: in i1s wslml~c: lo lm1i- tides. Iivcn 11112 SillllC: pes1icick wulil cxllibil :I IICgiIli\zC or pusilive c(li’cl, dclw~icling CJII IIIC wil 1ypc; the inswricicle .g;u~l111~1-131lC s1i~r~trla1etl 13Nl’ in i~llttvii~l ;t11d ;rcid SU~I’LI~C soils bu1 inhibited i1 ill OIIICI. soils (Nilyutt alItI I~i!j;Il.iIll~;llnt,IliIll I<uo IOX( ‘I’hrst: rud1s were il(ll‘ibu(~C1 10 (he dill:rwiul ~~spor~ses ol’ spccil’ic grot~ps of NJ- lixing orguiims lo Lhc: pcslioiilcs, Cltq~uidilig on soil lypc. WIICII signilicair1, tllc cl- ICcts of lm1icitks 1~ II~~~~~~I~o~o~L’~~~~~~I~III HNI; were 111ow O~‘IL’I> lmsi1isc Illill II~~;I- live.

Ikl~orls of cxpsrilnc~~ts OII hcrbiciclc cl’l:c1s OII I~c1cro1ropl~ic ISNI: ii1.c ~~;I~LYL’. 11IlJ~l \VcI’C ~tJlltlLIClCd i1S l~ll~l~l-;1llJl~y iI~CtIl~illil~rIS willi i l I’CW ~rillllS 01. soil (Si~~;l.\i1lli~l~~I~iI~‘~~IIl 1970, NiIyill, illld I~iIji~I.iIllliIilllJlriIII IZ~IO lOti?, JCI~;I ;II~CI I(iI,jilriIIlI:IIlluIIiIn 12;10 1987~. Jcnit and Ki?j;tl.iI1niIIII1)lIiIll IiiItj ~1tdid 111~ CITCC~ 01’ I~cu- bicides llliOl)2l1Cill.l~ iil1Ll ~JXildiilZl~l~ iIild irisecliciclz CillhCJfllIYlll 011 lllr~c: I’likj&tl Soil.4. Cii~lJ~~l’llI3Il illOllC 01’ill C0llll~illillil~ll Will1 Iwbicidcs IlilLl il ClC;ll~!4illIlIl;ll~Jl.~ cll>Cl, Ill)

1~ I%%:, OII l~NI’(~s1i1ni114 I’KOI~I a~~1ylcll~-rcclllcirlg iw1ivi1y IIIt!itS[II.~II1~l11~ iIJ’1cr .{(I tl Of incubution). IlCrbiCidCs ilpl)lied illOllL! INWAy IIilll 0iIly ;I IIl~J~lCl’iIlL! L’(‘l;Lc(, ;I11

ilVl!ITlgC 01’ 15%) OWI’ I8 \‘iIlUCS. Silnilili. IUUIIS WCK! lJlUillOll IiJl iii~ruk~i, i l l COIlCL’II-

-1raliom CI~JSC 10 ilit2 rsc~~~ii~ucticlcd licld level (5 I-1:: g:‘l ). I1 S1illlt~littd N, lixntioll in iI ~t11~1~rcrged rice soil UII~CI~ liIhI3(IJl~y conrlilions antI sywrgislic Stilll1il;\1t,l’y cl’fcc~> \VCL‘C cvidcnt \vIu~ i1 \ViIh appliccl ill col~tbillu1i1J~~ will\ 111~ insec1iciclc cit~b~)l’tlti~~~ (N:lyah ill111 ICiIjil~illllilllll~l~ill~ Iti 1987-J.

82 Roger’ and Simpson

Field experiments Ikltl capcril~imls 011 1111: illlpiK1~ ol’ bcrbicidcs on illicrOOrgilnisllls in ricelields have cc~~lsis1~d ol’ wmwra1iwis ol’ soil Itricrollurik ul’ler :q~plication O[ thiobencarb (Sat0 I 987) or prwnwrgc~~cc hcrbiciclcs (hd~n&l et al 1987). Both experiments indicated ci1lw i\n itbScncc ol’el’l’e~1 01. iI 1ransitory ~hmge of popuk~tion densities, f~llo\~ed by rccovcry wilhiii 3 or 3 wk.

Soil nliurl)bid biotn:iSS is regid~cl tis it major ChitntleI thr~~~gh which nu1kntS arc 1ransl’errd to rice (Wntani\be 21 ill 1988). Field surveys on 32 rice lkms in the I%iliIq~ines slii~w~cl nu COlXliUiOn belweeo lbe intensity OK pesticide LISC in IhI3llf5S’

liclds, ilicluiling lhe spccilic use of herbicide (ilS esliniatecl IYom surveys Ol’ use over Sl2\‘cl-ilI prwious croppin g scnsons) und [he soil microbial biomass estinmled at the Iwgiwirlg illld Cl111 01’ 1111: Cloll CYCIC: (IIOgCY Cl il l 1994).

IMPACT ON INVERTEBRATES

‘l‘lic dwliinwil soil illILl \v;ilCr inv6rid~j~ales in ricdielcls are 0slrx0ds, copepods, cla- ilocciXrl~, rolil’crs, insccl Imw, iKlLliItiC inswls, IlldluskS, oligocliaeles, illld nemn- lo&5 (Roger illld Kurilim I99 I ). They llil\Te agriculliir~il signilicancc IS nulrienl re- cyclc1.5, rice: pssls, ill>tl ricl: l>CSl pI~c-‘dillU?Z, illld IllCCliCill sigIiiliCilllCi2 :I!? vectors Of Il1iIllilll ;llld i~llilll~ll discuses.

hlicro~l~~rstirce~~~ls and IiIKVae of mosqui1oes ;~ntl chirononCJs are ubiqui1ous pri- inary consunws wllich rccyclr ntwims from 1hc pholosynlhctic nclunlic biomass. 2’hcp usu;llly polifC~illl: abOUt 3 Wk ill’LW llle ptXk Ol’ pllytOpl~IlklOll dNllldLIllC~ 1 I<LlrilS;l\Vii 1956) iIlld SKI)’ CiILISC thy diSitl>l>eari1nce Of Gcrodgile blooms within l-2 WI,. O>~rilt.ds Ili\vC (11~ poLenLii\l LO WC~CI~ 20 kg N hi~?,-l>e~*crop. l5nul.y consunlers IIIXI I&XI 011 Cy;ltld~;lCterii~ rl~:ty idtibi1 ph01dependent BNF 01’ GIUSC (be dominnnce ol~r~~ucila~il~o~ls c~>lolliitl I’ornl~ 11~11 iI1.C less suscep1ible IO grazing than are noncoloninl limm, 1~11 ilt’c ICSS ilcti\tc: N2 fixers (ROgCl’itlld Kuribara I99 I).

Oligocliaws, CsllCCiillly lttbiIiciclar, itre ;L major conq~onent 01’ the zooben1bos LIlaI CII~UIT w1ricnt CSCIIU~C b~1\v~~:n soil ilncl ~IUX~\V~I~IX iIncl increase soil N ~1p1tke by rice l~la111s. I’q~t~l;~~iotis in riccliclcls range up lo 40,000 rn-’ (O-700 kg I+resb weight Ilil ‘) (Sinq~w~~ Cl ill I99.lil,b).

A~lllilliC ill\UIClNiIlL’S illSO IlilVl clWh3ltid 12lTtXlS in rice-based ecosystems. hl~)sclt~i1l>c> i1l.C \‘CCLOI’~ ~l’cli~i~~, including tddil UKI Japanese enceplditis (Roger mcl I<lltIiyiill I Y(O). Cl~irononricls and OSIriIc& ltecl on rice scedlirig rools, but this cl’Ccc[ is lilni14 ill 1inlc a1ld spwc (Clemen1 CL ill 1977, Barrion and Litsinger 1984). SlXCiCS i~l’lill~~! SllililS Illi gl’aZc 011 rice scetllings Ila\lC bee11 recognized i lS ill1 impor- Ii\llI kc: pc?;( ill Il.l)pici11 cotuuies and Ji\pLIIn. O(her species (L’ili/~m spp., Bimr~~hrrlarir SI+. Li/rr,tc*t/ ?;I)/>.) MY k1rin~en1ill ilS VKIOW uI’ bilharziosis (12oge1. d Bbuiyikn 1990).

h4os1 i~~liwm~~io~l OII 111~’ imlmcis of pesricides OH nonmget inver1ebrtltes deal wit11 inswticiclcs i~l~l)li~d alone or in conlbinution with hcrbicitles. Thiobenci~rb is the hcrhicitlc 11Io5l 01’1~111 k.slctl.

Effect of herbicide use on soil microbiology 83

.

Floodwater invertebrates Application of Ihiobencarb to experimental riccficlcls in .J~XIII dr~\sIically rctl~c~d populations of cladocernns, odonatans, midges, and nioscluiI0 Inrvnc. Rcsurgcnce 0r

midges, cladocerans, and mosquito larvae occurred rapidly, to dcnsilicx higher than those of Ibe controls (Isbibasbi and Itoh 19X 1). Simpson CI al (I 99Jn.h) sludicd Ihc impact of carbofuran and butachlor applications 011 Ibc popul;tIion dyn;nnics ol’l’lood- water invertebrates in Philippine ricefields. While significant clTccIs wcrc observed on ostracod, copepod, cladoceran, chironomicl, and niosquilo larvae populnlions. Ibc impacts were relatively small, transient, and inconsistent. They concluded Illnl. i l l

realistic application rates, carbofuran and butachlor clid noI alTccI I’l1Wd~vaICr inverlc- brates in the context ofcrop cycle population dynamics.

Snails are not usually affected directly by conventional rice pcsricidcs. hut Ihci1 populations may increase because of reduced competition. Ishihashi and IIoh ( I9S I ) observed larger snail populations after harvest in Jiclds trcaled wiIh Ihiobcncarb Ihan in untreated fields. Simpson et al (I 994c) founcl IiIIle eviclcnce thnI indigenous snail populations were affccled by butachlor applicaIions.

Soil invertebrates Aquatic oligochaetes and nemaIodes dominate the soil fauna in ~ctland ricclicltls. The effects of pesticides on nontarget ncmatbclcs, bowcvcr. have rcccivctl littlc a~Icn- lion. Ishibashi and Itoh (I98 I) round no Crk~ 0r tbiobcncarb on avcragc pol~ulalions ofsaprophytic and parasitic nematodes in a Japancsc riccficld. or I6 inscclicidcs and 3 herbicides (2-4-D, butachlor, and preIilacbior) applied to ric-cliclrls in tbc I%ilip- pines, only the insccticidcs n~onocrotophos and cIl~ofcnpros had limilcd illlpilCl 011

parasitic nematodes (Prot and MaIhias 1390). Information ahor hcrbicirlc inlpacls on populalions of aquatic oligochacles in riccliclds also is scarce. Tllc rccrnl rlisap- penrance of aquatic oligochaetcs from some Jnpancsc ricelicltls is Illoughl lo Ilc asso- ciated wiIh the use of so1nc herbicides. This would explain ihc rcappcarancc of oli- gocbaetes soon after PCP was replaced by NIP (2.4-dicl~Iorol~hcnyl p-niIrophcnyI ether), CNP (4-nitropbenyl 2,4,6-Iricbloropbenyl ether), and Ibiobcncarh. This con- clusion has been supporred by laboratory tests (Kuriharn and Kikuchi 198X). A sur- vcy of aquatic oligocbaetcs in farmers fields in the Plrilippi11cs did not lind differ- ences among JJopuJations associated wi~b differcnlinl pcsticidc use (Sinlpson cl al 1993b).

Biodiversity It is generally accepted that crop intensification nntl use of :1grocbctnicals dccrci1sc biodiversity and provoke “bloon~s” of certain organisms. Howcvcr. qunntiIativc tlaIa on aquatic invert&rate diversity in riceficlds arc rare, illld Ihe IiniiIcd amorinl or dnla that are available were obtainccl by different mctbods orsamplin,. 0 over tliflhrcnI IiniC “: frames, from difrcrent locations. The sIudics do 1101 specifically rcfcr lo bcrbicitlcs but to Jlesticidc WC in general.

The only reference on the diver&y of aquatic invcrIchraIcs in traditional riceliclds is a I975 sludy in Thailand. whcrc I83 spccics (protozoans exclnded’) were recorded in one field \;iIhin I yr (I-lcckman 1979). In ;I 2-yr study in Selangor, JVJaJ:lysia, 39 invcrIcbrnIc Iaxa were rccordcd in riccliclds where peslicidcs were nppliccl (J,im 1980).

A single sampling in four- Calili~rnian riccficlds rccordcd IO-21 Iaxa (‘Takahashi et al IOS2). Surveys of I8 silts in lhc Pl~ilipl~incs (Jlilil 1985) and India (Roger et al 1987) rollnd p1~pnlalion doniinancc inversely l~roporlional lo diversily. Ostracods, chirono- niitls, illld niollusks tlonii1inrcd the inverfcbrafc co1nnitrniIy a1 most silts, and a rcw species ;1ll:1inctl cxccl~Iinnnlly high dcnsilics al sonic silts. The highest nunil~cr of Iaxa rccortlcd a~ a silt was 26; IIIC IowesI, 2. Tbc marked decrease in number of Iaxa rccordctl since 197.5 n@I IX taken as a rough indicaIion of a decrcasc in species riclincss. This agrees willi, bul dots nol dctnonsIralc, Ihe gencrnlly acccptcd concept Ihal crop i11Icrisificntion Iias rctlrrccd biodiversily in riccficlcls (Roger ct al I99 I). A tlccrcasc of biodivcrsily also could bc altribulcd IO Ihe disappearance of pcnnnnent rcsrrvnirs or organisnls in Ihc vicinity or Ihc ficltls (I;crnnndo ct al 1980).

LONG-TERM EFFECTS

Availahlc infor1naIion intliCi1lcS the possibilily or dcIrimenInl inipacls or hcrbicidcs on soil fcrliliiy and tbc microbial nietabolisn~ or herbicides over the long term.

Change in herbicide metabolism licl~:~Ictl :1l~l~licalion or :I single pcslicitlc has hcen rcporlcd lo cause changes in Ibc pallcrn or ils 1nelal~olic dccoml~osilin1~. This has been ohscrvcd rol- lhc inseclicide l~c1r;1thic)n (Surlllak:1r-l~arik CI al 1979) and Ihe herbicide Illiol~cncarb (R4oo11 and I<ll\V:liSUk:l 19194). SKI1 Cllilll~CS ill dcgradi1Iion Jl:llli\vnys could Icad I0 ngrirr1lI11r;rl l~rol~lc1ns. TllicA~cnr;~rl~ USOilIly is tleIoxificd by hydrcrlysis, hut ils rcpcalctl applic;1- lion lo Ilootlctl soil ravors lllc mulIil~lic:1lin~~ or anaerobic hactcria IhaI dcconipose Ihiollcncarb by rctluclivc tlccl~lorinnlion. Tint reaction results in lhc Ihr1naIion of a phyloloxic conlp1~und (S-bcnzyl N, N-dicIhylIhiocarl~an~aIc) that causes dwarfing in

rice (h41>01, antI K11waIsuka 198s).

Impacts on soil microbial biomass Scvcral lolig-Icrni cxpcrinienls evaluating conlinuous pcslicidc applications have rc- s11lIc.d in declining rice yicltls aver lime (Cnssmnn and Pingnli 1995). The reasons are riot fully understood, but one factor might be inlensivc hand weeding and hcrbicidc use co1nbinecl wiIh a tlcnsc rice canopy Ihal cmJtJ resIricI Ibe growlb of the J~hoIosyn- lliclic aqualic hioniass. Tlial. in Iurn, wonltl rcslricl lbe replcnishn~cnl or soil niicro- hi;tl biomass and N fcrliliry. J7csticidcs. including hcrhicitlcs, aJsn 1nighI he involved in &X3Yil.~illg l~nl~11lalions orafluaiic 0ligoclincIes~Si~nl~st~t~ el al I993il) and the Irans- lo&ion of lhc nulricnls accum11laling at I~C soil surface IO ;I deeper soil layer. LiIIlc daI:r arc available IO sul~slanlialc Ibis hypothesis. 1~11 in cxpcrimcnIs al JRRI IhaI IO-

84 Roger and Simpson Effect of herbicide use on soil microbiology s5

CONCLUSION

Most of’ 111~ IikrIIttIrc on pesliuicle fh ~l11d ilb iIIIlxLcls in \VelIitIld rice WLIs publishccl

bctwc:cu I970 il11d 1985. Since lllen, lllc nt11hx o!‘ 5lLILlies IIx lll!Cl~eilSCd prccipi-

Lousfy. I\/losl sluclics IlilVe deal1 with 111~ rfl’ecls ul‘ inseclicides on hckxotr~If~liic mi-

crourganisms illld illVerlcbWlCS, ild Ul: hcrbicidcs 011 C~illl0biIClCl~i~l. I11 sludics 011 lllr side cll‘ecls 01’hcIbiciclcs (and pesliciclzs in gciieral), clL11;1 wcrc gonelalcd priInarily in

lllc I;IboInlory wifh miclubial cullurI3 or SIIl~lll Sillllf~llX ol‘uI~l~laIllcd soil, using JXhl-

lively high cuIlcellll~illiuiis 01’ fxh%fcs. ‘I’llis lllahcs ~Xll~iif~l~liIli~ll lo Iicld coiiclitions

Lfll~Sli0llilbl~. PLlrl: UlllLlrC Slucli~s Olily 1101 IlilVC lllLld1 l~I2lCVilllW, silica llle llel ClTecl on the Illicrobiaf coniIiiLiIiiry is Illorc ifllfXJL’tiulf lflilll 1111: eflkt 011 ill! iIitliviclual rni-

croorg;uIisIu. TlIis is piIrticLIl:Irly LI.LIZ I’LJ~ activities SLICII iLs dcnilril?cIILion iIIId N2 I’ixLL-

lion lll i l l iIre cilrried OLIl by il brLkId l%llgZ 0l’lilX0ll0llliCillly clifYercIi1 lllicI~oor~ilIlisIllS

(f?ily ;Illd S2L11LllliIllliIll 1988). SCVCIXI r6SL!~IrCllerS flLIVI2 LfSVCfOlXCl Slll~lff-XilfC IllLJ~lclS (Iuicrucosuis) of riucl‘icfcfs or aqualic ecosyslenis lo sludy antl/cJr f~reclic1 lhc

biOilCCLllllLll;lli0ll 4 dissipalioll Of VilriLJllS pesticides Lippliccl lo lli~r~decl riccliclcls

(1 ligu4ii 19x7). Such nrelliods ofkr ill1 inlcresling luol for cfclililcd lxslicitlc sluilies

Lriiclcr coi~lI~ollcd uondilious, hi1 lhey IlilVl: 1101 yet iIivolvIxl LIIL: SlLIcly ol’lhc niicrohi;il

cumpo11c111 of’ 1111: &x~syslc:l~~. No i i&l cxpcrimci~ls huvc stuclicd the iIlll)iIcl of ilerbi-

citlc ilpf~liCiltiO1~ 011 l~~icl~00rgilllisllls illld invcrccbril~~s OVL’I’ Sl!VL!l’ill CrlJf1 CYCICS iii i l

I’liJoclcJ 54. Studies ol’lhc microbiill llCglNfilli0ll Of IlcrlJiciclCs ill l l l llicir iul’lucncc 011

Illicr0l’lul~il ;lIxf 110l~lil~~L!l illvclkblxles ill floudecl ricdiclds, Iiilhcrlo Inoslly rc?;u~icIccI

LO ~IlUll-lClll1 lilbul-illLlly exfxrimcnls, Slll~Lllcl bl: 1XI~~orlllctl LlllLkr 1110rCZ rCilliSliC IkILl

coIicliLioIIs alld cullLIrIll prilCliC2S, 0VZr il IOllg 1Cllll.

‘1’111: iIll’oI~IiliIliU~~ i)II Icl~IlioJi~lIif~~ hclwccII hcrbicidcs Iulcl IllJIl1ill’~~l IiiicrooI~gaI~- isins ;Iikf inverk:br~Iks in wellarkf riccficlcls is I101 ollly biiiSeLf by cAf~Crilll~lllill clc-

SigllS iflill Cl>IlSll~ilill eXh~;lf~0filli~Jll 10 kfcf WllLfitiOlC& bLl1 ilfSlJ iS 1110 l’l~il~lllL!lllill.y 10

llril\V all)’ coricfusions C~lhCl’ 1l1illl ~CllCl~ilf 1rClldS. hli~rubial l.f~:grildilli~Jll is OIIC L~f’lfl~ IlliliIl ~‘;IOLOI.S 1l1al iII’~tXl hL’rlJiciill: pcrsislcncc

iii llooclcd Soils. 11s ill~fJ~JlliillC’: vurics LlLIicc bl~Llildly, dcfxxidiIi, 11 Lip011 llic hcrbiciclc

f~rIiIIIla~ioii, 1111: Irrucli: ol’iif~fJli~:;llil~1l, illld 1111: ~ll~~i~lJlllll~ll~ilf condiliorIs. Wliilc pcsli-

cidcs iii gciicral fxrsisl lougcr in IloIIl’looclc:cl l l l i l l l i i i I‘l~Jodctl soils, 1IIcI.c is uo obvious 1IXIlJ IOr Iicrbicicl~:b. ‘I’1~iI’lLll~idirl, l)yriLzlJXy~~ll, illld MCl’l3-elllyl lxrsisld IOllg~r 1111- clcr IloIrf~lootlcd condili~~n~; 1lldillilU2, Iliiobcncarl~, and MCI% f~cr:,i.axf liJ11gcr tlndel Il~dcd conclilions. I’indiugs 011 the buildup 0l’tlIe LlcgrIIdiIIg llliCrlJ~‘fOl~~l ill’tcr rcpcu~cd

i1f~l~liCilli~ll ul’ herbicides iii I’llJdd ails iII’% lXIOiAy lllJcLl1llelllCd, allll lliis iIfL!il 1lCSclS f’Lllllle1’ illV~Stigilliu11.

Ill Iilb~J~illOl~y cxpcrimcnts, herbicides ;IHccled soil microl’lora and ils xtivities ’

lllwc LJl’lCIl l l l i l l l did I’LIngiciclrs or iIIseclicicles. I-IoWcVel; WllCll ilpplied 011 soil ill reco1iin1cnclccl levels, herbicides rilrt?ly had i l delrilmxtnl efTWt 011 Il~icrObiill pOpulzl- [ions or un their ;IcLivilies. When signilicimt chLmges were observed, populations or

activities usually recovered within l-3 wk. This seems to partMy confirm lhe com- mon bclicf thut pesticicles applied at recommended levels and intervals are seldom

Llclctcrious lo the bc1lcliciill microorganisms and their activities (Wriinright 1978). Wliilc herbiciilcs Iiiighl IIave only lclllf~Orilry efTecls, when applied repeatedly they

c0L1ld leild lo llic lmJ1iiotion, depression, or LIiSappeilrilnCe Of components Of the mi-

crolJi;Ll community, IIIId promote L\ new equilibrium. This could bring :tbout changes in tlIc rilte or p;L~~crn 01’ microbial decomposition of the herbicides thtlt might be det-

I.illlClllill. Tliis i?ifWCl IltXtls fLurther investigi~lion.

Invcrtebrntes stem to be more scnsilive to pesticides than are microorganisms.

Combkd use 01’ inseclicides ilnd herbicides can ICZIL~ to 1100dwL1ter blooms OT indi-

\~idLIIIl spscies (eslxciL~lly primary ConsLImers) that might be cletrimentnl. Aquatic oli- gochac~os in soil ;~rc LLI least p;~rlly inhibited by some herbicides, which might affect

riulricnl 1r;lnsl0~ilfion i1lld soil lkrlility. Greiiler underst:mding of flOOdWille~ ecology is r~ccclctl iIS ;I LJiISia for developiug IIgricLIlttIral practices thLLt maintain ;I biological

cLluilil~rium in lhe ricelield ecosyslem. ii1 pilrliCLllilr, pmctices are needed that will

~fccrease pcts~iciilc LIse and conserve the IIi1tLIr:iI predators ol’ rice pests and disease

vectors. In order 10 clevclop CLlllLll~ill fxxclices lhnt filvor lhe conservation of inverle-

hlc f)r’L!LlillL)l?4-il 1nqjor coiYil~01le1lt Ol’ illlegl~i~led peS1 find vector nxmgement- Inorc huowlccfgc on the long-term impact ol’hcrbicicfcs on ricefield invertebrate ~O~LI-

IillilJllS is necdccl.

11 is iIiifxJIxint lo rcmembcr l l l i l l impacts of pesli~icies on Ihc soil-lloodwater

CC0SySl~!ll1 Cilll bc sigllilicilnl without being dclril~~etltill. For eXiUllI)Ie, a shifi in algal

conununity s[rLIctLIre IIlL\y not uI‘I:ct soil figtility, provided lhat aquatic primary pro-

LlLIclioIi is L~~ich;~nged. We shoulcl be c;ILIif”LIs in idenlil’ying the nalure oi’ impacts,

which ~houltl lx cousiclcrcd in the context of ecosystem equilibrium, not in isolation.

II \VotIltl bc: ils tlilwiw lo tIIiclercsliliinte ilS 10 0\~~lTxliInill~ lhe signific:lInce OF pesii:

cicle impacts in soils. Undcrc>timution COLII~ CilL1Se avoicluble ecological damage. OvL’l.cstiinutioll could restrict the judicious LISA or pesticide when appropriate. How-

ever, cLIrrcII1 I<nLI\vlodge on kc long-term impacts of herbicide LIse in ricefields is

l’r;IgIncIikary. InvcsLigulion is noeclcd to eStI\bliSh how herbiciclc application over the loug Icrrn may iIl’l’cct primLIry procluction in Floodwater, soil microbial bioInz\ss and

IlIicrobiiIl l”Jl>LIliItiIJIIs, pLIl>tIl;ILioIlS OC inveriebrates responsible for nutrient recycling

iIIld tI-iIIlSlL)cILliL~Il, and I>opt~IUtil>~ts 01’ invertcbrute predators of rice pests and vectors

Ol’l11llllilll cliscascb.

66 Roger and Simpson Effect of herbicide use on soil microbiology 87

. 1 CITED REFERENCES .

Almazan LL, Roblcs DO. 1956. Exploratory slurly of Ibr el’rect of algae upon lowlanci rice.

ArancIa .J. Agric. (Philippines) 3(J): J-27. Arita 13, Kuwntsuka S; 1991. Relationships between 1l1e tlcgratl;~Iion IXIC or IIIC hcrhicitlc

pyrazofen and soil propertics. J. Pcstic. Sci. I(,( I):71 -76. Arvik JM, Hyzak DL, Zimtlnhl RL. 1973. ElTcct.of melribuzin and ~\vn andogs on live sj1ccics

of algae. Weed Sci. 21(3): 173-175. Asaka S, Izawa T. i982. Fate of MCPB-etllyl in Jloodcd ant1 uJ~l;rntl soi1.s. .J. l’cstic. Sci. 7(J)% I -

455. Au LA. l9SO. Pcslicitlc interactions in lbe laboratory rice pncltly motlcl ccosyslc~~i. Diss. Abslr.

ht. B40:3567-3568. Barclsley CE, Savage KE, Walker JC. 196% Trifluralin bcbavior in soil: II Vol:ltilizaIion. ns

influenced by concentration, time, soil moisture COII~TIIL ar1c1 ~~XIII~II~. Agron. J. GO:89- 92.

Bnrunb M, Mishra RR. 1986. EfJ?.cl ofhcrbicides buIacblo~; 2.4-D and oxvflrwfetl on c~nync

activities and CO, evoluIion in submerged paddy field soil. Plant Sojil 96(2):287-29 I. Cassman KG, Pingali PI,. 1995. Extrapolating trends from long-Ierm rxpcrimcnts IO J’armcl

fields: the case orirrigated rice systems in Asin. In: Barrett V. Payne R. Stcincr I<. ctlikvx

AgriculIural sustainability in economic, environmental. anti sIntisticnl terms. New York: John Wiley ancl Sons.

Cbcn YL. 1980. Degradation orbutacblor in paddy ficlcls. III: Wccrls WJ wcctl conIrol in Asia. FFTC Book Series No. 20. Taiwan (Cbimr): Food cmtl FcrIilizcr Tcclmology CcnIcr. p 121-142.

Chcnclrayan K. Setbunatban N. 1980. El’fccI d I-ICM. cnrbaryl and aImzinc on Ihc dchytlrogc~ nasd activity in a llooclcd soil. Bull. Environ. Conlam. Toxicol. 24:379.

Crosby DG. 1983. The Talc of bcrbiciclcs in Calirornin rice culIurc. In: Miyamoto J, Kr;lrllc! PC, editors. Pcsticiclc chemistry, human weIrarc anti Ihc environment. OS liwtl (UK): Pcrgnmon Press. p 339-346.

Crosby DG. 1996. Impact orherbicide use on lbc environmcnI. In: Naylor R. ctlilor. J Icrbicidcs in Asian rice: tmnsitions in weed management. Pnlo Alto (CnliTorni:l): Inslitulc li1r Inlcr- nalional Studies, SIanlord University, ant1 Manila (Philippines): Inlcrllilli0ll:ll Rice kc- search Institute. p 95-107.

Das B, Singb PK. 1977. DeIoxication or Ille J1csticitlc I1enzenchcx~~cIlloritlc by blue-green ill- gac. A4icrob. Lett. 4:99- 102.

De BK. Mukh~pndl~yny S. 197 1. Errect or MCPA and Slim1 F-34 OII 111~ occurrcncc of SOI~C nutritional groups or bacteria in the riceficlcls ol’ West Bcngnl. 1111. Jiicc Comm. Ncwsl. 220:35-39.

Dcuel LE, Turner FT. Brown KW, Price JD. 1978. J’ersistcnce and Jd0t.s all’ccIing dissilwtion ormolinarc under flooclecl rice culture. J. Environ. Qunl. 7(3):373-377.

Duall-Yentumi S, Kuwatsuka S. 1980. EJTcct of organic matter rind cbcmical I‘crtilizcr on IIIC degradation of tbiobcncarb and MCPA hcrbiciclcs in the soil. Soil Sci. Plant NuIr. 26:54 l-549.

El-Sawy M, Mahmoucl SAZ, El-Hacltlad ME, Mnsh~ur WA. Salem KG. 1984. El’l’ccl ofdil’rcr- ent herbicides on nitrogen fixation by blue-green algae in pncltly soil. In: Szcgi J, cclitor. Soil biology and conscrvaiion oF Ihe biospllerc. Butlnpcst (I-Jung;wy): Akdcmi:ti Kiatlo. p 297-306.

Fcrnanclo CH, Furtado Jl, Lim RI? I9SO. Tlw ccolngy ofriceliclds with special rcfcrcncc IO rbc aqwtic fauna. III: Tropical ecology and tlcvelopment. Prwcctlings nl’1l1c St11 Jntcrn;ttion;ll Symposium ofTropical Ecology. Kuala Lumpur (Malaysia): InIernnIionnl Socicly ol’Trc1pi- cal Ecology. p 943-95 I.

Fillery IFG. Jtoger PA. Dc DiIIt:I SK. 1986. Ammonia volnlilization rrc1m nilrogcn sources appliccl to rice lieltls. J’;)rt 2: l%dwIcr properties anti submrrgccl pl1ntosynIbcIic bio- mxs. Soil Sci. Sot. Am. J. 50:X6-9 I.

Gaclkari D. 1987. idhrllcc 0r Ilic l1l1olosyntl1csis-inliil1iling herbicides Gnllix ancl Scncor on gro\vIh :mtl nitrogcmwc acIivity ofAtrrr/wew cylirdricrr rind hkw/r~c IIIII.FC~IIIIII. Bid. &l-I. Soils3(3):171-17X.

Grc;wcs MP. CooJ1cr SL. Dnvics HA. Marsh JAI’, Winglicld Ci, 1978. Mc~hods oI’:malysis Iht clcIcrniining llic errccts (1r Ilcrbiciclcs on soil micronrgnnisms anti Ibcir aclivilics. Tcchni- cnl RclwrI IIO. 45. Oxli)rtl (UK): Agricul~uml Rcsenrch Council Weed Research Organiza- lion.

I l:wxby K. TIlbril 13, Ownl1y J, Badcr I:,. 1977. ElTccls ol’vnrious cl:w~s of bcrbicitlcs on Tom spccics nl’;~lp;rc. Pestic. J3iochcm. Pbysiol. 7:203-209.

I lcckman CW. 1979. Rice ficlcl ecology in norlheastcrn TI1:lilancl. Tl1c efrccl or WCI and dry sc:~sons o11 n cultivntctl aquatic ecosydem. In: lilies 1, ediIor. Monogr. Bid. 34. Scblitz (Gcrni;iny): Jrmli W. Publisbcr.

J ligitsbi RM. 1087. Motlcling the cnvironmcnIal f’alc of rice Iwbicitles. PI1 D clisscrlnlion. Ag- ricultural :IIILI Environmental Chemistry, UniversiIy oTCalifornia, Davis.

I lols~ RW, YoJ1p JI I. J<:lpusIit G. 1982. En’cct ctl several pcslicitlcs on growIh nncl nitrogen ;issin1il:ilion 0r A~r,//rf-Arrnbrrcrm symbiosis. Wcccl Sci. X):54-58.

Jnwi Y. Ku\viItstIk:I S. 1982. Degr:dntinn of Ilic herbicide molinatc in soils. J. PcsIic. Sci. 7:d87-497.

f IRRI f intcrrr:tIion~~J J7icc I<csearrl~ JnstiIutc. J 9X5. Ann11a1 rcporl Tar- 1984. M;lnil:, (J%iliJ>- pines): lRJ<r.

f llililf lnIcrn:~tional Rice Jicscarch InsIiIuIc. 1989. Annrltll report Tar 1085. h4anil;t (Philill- pines): 111111.

Isbilwdli N. Iloll S. I98 I. I.XrecIs oJ’bcrl1iritlc Ihiobcncall1 (111 P;mnn in pnddy field. Proc. Plani I’roI. Kvusl1u 27:(X)-93. (in .J;I~;IIICSC)

Isllib;~sl~i N,lto S. IO8 I. IXecIr or~~crbicitle thiobcncarl1 on f:luna in l1dly licltl. J’roc. ASSOC. 1%111 J’roI. Kyush~~ 27:00-93. (in Jnpnncsc)

Isbik:tw K. Nak;mium Y. KuwilIsuk:l S. 1076. DcgraclaIion d Ibiobenc;ub llcrhicitlc in soil. J. I’cslic. Sci. I :4C-57.

Isbiz;l\v;l S. ~Jatsuguchi T. 1966. Ell’ccIs of pesticides nn(l lwrbicitlcs upon rnicroorg;lrlis,iis in soil nII(l wIcr untlcr wIcrl~1ggctl contlitiw. Bull. NnIl. Inst. Agric. Sci. I1 (J:I~XIII) 16: I-w.

Jelli1 PK. I~;!i:Ir;lI11:lI11011:1I1 RX) V. 19X7. NiIrogcn fixntion as influcnccd by pesticides and rice stril\\r in t1;dtly soils. J. AEric. Sci. (UK) 108(3):635-67x .,_....

l<;tr S. Singh i>K. i979. Dcln~ication of’ prs;icidc &d1duran and hcx:tcf~I~1rocycI~~l~cx:~nc by blur-green :IIJ~c /Vrw/tw I!II~.T~~I~ antI ll’ollcrr hl~crrnr/~c.r!icrc. Microb. LcIt. IO: I I I-l 14.

K:whyap A K. I%ntlcy KD. 1082. Inl1ibitory cl’rccls dricc-ficltl herbicicle M;dlrtc (111 Amhncrrrr

t/dirdrrrrr illld lirolcclion by nilrogcn sources. Zcitschr. PIl:inzcnphysic,1. 107(4):339-346. Kcarncy PC. Smiih RJ .Jr. Plimmer JR. Cu:ndia FS. 1970. Prop:mil and TCAB resitlucs in rice

soils. Weed Sci. I8:464. Kcrni PN. S~:IIII 1% Gul11:1 1113. Sir@ D. 1084. J:lTcct o~l1ul~~cl1lor on IIIC funciioning dblue

grrcn illgX in paddy fields. Pcslicicles l8( IO):2 I-22. Kcrni PN, Slwnl PS, Sin@ D, Gupta BR. 1983. EITccl d bulncblor (G) OII blue green dgac in

rice J’wms. Sci. Culture (India) May 1983: 137- 138. Ku,rihem Y. Kikuchi E. 19%. Tbc use oflubilicitls forwcccling nncl aquaculture in paddy lid&,.

J. Trap. I?cnl. 4:0 I-09. I*irn RI? I&O. I%qxrla~ior~ cJ~:mgcs of sorm nqrlnfic invcrtcbrnIes in riccliclOs. III: Tropic:rl

ecology iIn<l tlcvclol1men1. Procwtlings or the 5th JnIcrnational Symposium or Tropicnl Ecology. Kualn Lr1n~l1ur (Mnlnysia): IntcrnaIion:d Society of Tropical Ecology. p 97 I - 940.

Elfcct of herbicide ilsr! on soil Ii~icrobiolng 89

Smith RJ, Flinchuni WT, Seaman DE. 1977. Wced control in U S . rice production. Agricultural . Handbook No. 497. Washington (D. C.): U.S. Department of Agricultuie. Soderquist CJ, Bowers JB, Crosby DG. 1977. Dissipxtion of nioliniilc i n ÍI ricc field. J. Agric.

Food Chem. 25(4):940-945. Soderquist CJ, Crosby DG. 1975. Dissipation of 4-chloro-2-metl1yl-plicnoxyacctic ;icitl (MCPA)

in a rice field. Pestic. Sci. 6:17-33. Srinivasan S, Ponnuswami V. (1978) Influence of weedicides on blue-grccn algac. Aclit~liitr:i¡

Rep. 2(11):136. Sudhakar-Barik, Wahid PA, Ramakrishna C, Sethiinathati N. 1979. A cliangc i t i thc dcgr:icl;l-

tion pathway of parathion after repeated application 10 flooded soil. J . Agi ic. Food Chctn.

Suzuki T. 1983a. Metabolism of pcntnchlorophenol (PCP) by soil niictoorgíitiisnis. Bull. Natl. Inst. Agric. Sci. (Japan) Series C 3859-120.

Suzuki T. 1983b. Methylation and hydroxylation of pentncliloro~~licnol (PCP) by t\lyc.o/xrc./c~- riuni sp. isolated from soil. Bull. Natl. Inst. Agric. Sci. (Japan) Scrics C 8:4 19-428.

kaliashi RM, Miura T, Wilder WH. 1982. A comparison betwecn thc arca s:iniplct and t\vo other sampling devices for aquatic fauna i n ricefields. Mosq. News 42:21 1-2 16.

Takamura K. Yasuno M. 1986. Effects of pesticide application on chirononiitl I;~rv:te and o x t r ~ i - cods in ricefields. Appl. Entomol. Zool. 21(3):370-376.

Thomas VN, Holt CL. 19S0. The degradatioti of ‘“C niolinate i n soil undcr llootlctl íincl

nonflooded conditions. J. Environ. Sci. Health B I5:475-484. Tomaselli L, Giovannetti L, Materassi R. 1987. Effect of simazine on nitrogcn-rixing

cyanobacteria in soil. Ann. Microbiol. Enzymol. 37(2): 183-192. Turner FL 1979. Soil nitrification retardation by rice pesticides. Soil Sci. Soc. Ani. J . 43(5):1)55-

957. Van der Valk HC, Koeman JI-I. 1958. Ecological impact of pesticide use in tlcvelcipinp coltti-

tries.The Hague (The Netherlands): Ministry of Housing, Physical Platinitig and Eiiviron- ment.

Vaishampayan A. 1984. Biological effects of a herbicide on a nitt ogcn-fixing cynnoh:irtcria

27:1391-1 392.

. .

I (blue-green alga): an attempt for introducing herbicide I esistance. Ncw Pliytol. I)(,( I ):7- I I .

cyanobacterium Nosroc nirrscoriir11. Microb. Lett. 28: 105- I 1 I ,

Nostoc (itrckin and Nosroc tiiitscorittri. Environ. Ex p. Bot. 22(4):427-432.

Vaishanipayan A. 1985. Biological effects on the rice-field het bicide nionuton on ;I NZ-fixing

Vaishampayan A, Prasad AB. 1982. Blitox-resistant mutants of the Nz-fixitig bluc-gtcct~ olg:ic

Venkataraman GS, Rajyalakshmi. 1971. Tolerance of blue-green algac lo pesticides. Cuti. Sci.

Venkataraman GS, Rajyalakshmi B. 1972. Rclative tolerance of blue-green algae to pcsticidcs.

Wainright M. 1978. A review of the effects of pesticides on niicrobinl activity in soils. J . Soil

40: 143-144.

Indian J. Agric. Sci. 42:119-121.

Sci. 29~287-298. Wardle DA, Parkinson D. 1990. Influence of the herbicide glyphosate on soil niicrobi- <I 1 COlll-

munity structure. Plant Soil 122( 1):29-38.

Plant Nutr. 19: 109- 1 16.

with PCP. Soil Biol. Biochem. 9:99-103.

ally with PCP. Soil Biol. Biochem. 10:7 1-75.

available N during rice cultivation and origin of N. Soil Sci. Plnnt Nutr. 32:37-50.

Watanabe I. 1973. Isolation of pentachlorophenol-decomposing bacteria ftoni soil. Soil Sci.

Watanabe I. 1977. Pentachlorophenol-decoinposing arid PCP-lolernnt bactci ia in lick¡ soil Ircalcd

Watanabe I. 1978. Pentachlorophenol (PU)-decomposing activity of ficltl soils

Watanabe I, Inubushi K. 1986. Dynamics of available nitrogen i n paddy soils. I . Chiingcs i n .

92 Roger and Simpson

Wntmiabe I, Dc Dattn SK, Roger PA. 1988. Nitrogen cycling ¡ t i wetland rice soils. In: Wilson JR. editor. Advances in nitrogen cycling in agricultural ecosystems. Wallingrord (UK): CA13 In~ernational. p 239-256.

Willis GH, Waiitlcr RC, Southwick LM. 1974. Degradation of triflitraliri in soil suspension as relatcd to redox potcntials. J. Environ. Qual. 3:262-265.

Wlighl SJL. 1978. Interactions of pesticides with microalgae. In: I-lill IR, Wright SJL, editors. I’cslicitle tiiicrobiology. London (UK): Academic Press. p 535-600.

Wright SJI,. Maule A. 1982. Tr:insformation of the herbicides propini1 and chlorpropharn by inicro:tlg:tc. Pcstic. Sci. 13(3):253-256.

Yatiingislti A, 1 Iazutninc A. 1974. Ecology orgreen algae in paddy fields ancl thcir control with clictnic:tls. Zasso Kcnkyit I8:39-43.

Yoshitla T, C;tstro TE 1975. Dcgradalioii of 2,4-D, 2,4,5-T and piclorani in two Pliilippine soils. Soil Sci. Plant Nuti: (Tokyo) 21397-404.

Yosliitl:t T. Caslto TE 1970. Dcgradation of gamma-BlJC in rice soils. Soil Sci. Soc. Am. Proc. 34:4l40-442.

Zcpp RG. Schlotzh;iitcr PE 1983. Influence of algac on photolysis rates of chetnicals in water. Enviton. Sci. Tcclinol. 17:462-468.

NOTES

/\rr//wr.v ‘trt/lrc.sses: P.A. Roger. Laboratoire ORSTOM de Microbiologie Anaerobes. Universite tlc Provcncc, Case 87,3 phce Victorl-lugo, E 1333 I Marscille Cedex 3, Rance; I. Simpson, NRI, Central Avcnue, Cliatliani, Cliathatn Maritilne Chathani, Kent, ME4 4 TB, UK.

/~clirtoit./~r/~rri~rirs: This work was conducted under scientific agreements between IRR1 aiid ORSTOM (France) atid between IRR1 and NRI (United Kingdom).

Ci/ri/inri ír!fiv”ott: Naylor R, ed. I996 Herbicides i n Asian rice: transitions in wet1 man- agcriicnt. Palo Alto (Ciili fortiia): Itistitule for Inlernat¡onal Studies, Stanford University, atitl Manila (Philippines): International Rice Research Institute.

l

i

Effect of herbicide use on soil microbiology 93

....

I

Herbicides in Asian rice: transitions in weed management

EDITED BY ROSAMOND NAYLOR

1996

STANFORD UNIVERSITY

200 Encina Hall, Stanford University Stanford, California 94305-6055 USA

INSTITUTE FOR INTERNATIONAL STUDIES