effects of electromagnetism exposure on human environment

15
Effects of Electromagnetism Exposure on Human Environment Kenny J. Colón Seminar in Scientific Literature

Upload: kenko95

Post on 11-May-2015

314 views

Category:

Education


5 download

TRANSCRIPT

Effects of Electromagnetism Exposure on Human

Environment

Kenny J. Colón

Seminar in Scientific Literature

Outline

• What is electromagnetism?• Types of electromagnetism

• Wave lengths• Sources of electromagnetism

• Natural• Artificial (human-made)

• Main uses• Technological• Biological

• Effects of excessive or consistent electromagnetism• Harmful

• LF-EM modulates receptors in human peripheral blood mononuclear cells

• ELF-EMF affects the DNA in human cells• Electromagnetism on Peacemakers

• Beneficial• Non-ionizing EM leads cancer cell

suppression• Static Magnetic Field and

Chemotherapy Toxicity

• Conclusion

Available source: http://www.patana.ac.th/secondary/science/anrophysics/ntopic6/images/magnetic_field_earth.jpg

What is Electromagnetism?

Description• Effect of electricity and magnetism

unified through any means (land, airborne, seaborne)• Based in induction (voltage across a

conductor)• Invisible, linear field traveling at

speed of light• Can only be represented with

mathematics (frequencies and wavelengths)

Types of electromagnetism• Light waves (radiation)• Steady currents of electric

charges (Static)• Non-ionizing radiation

(harmless)• Ionizing radiation (break

molecule bonds)

Sources

• Natural• Lightning• Earth’s magnetic field

• Artificial (human-made)• X-rays• Power outlets• Mobile phones• Anywhere where there

are electric charges

Main UsesTechnology

• Most of the electronic devices operate through electromagnetic pulses• Without the purpose of emitting

unnecessary electromagnetic radiation

Biology• Some medical appliances use

and emit electromagnetic waves as ways to get to diagnostics• These appliances have the

purpose to emit electromagnetic radiation

Available source: http://images.wisegeek.com/meteor-and-a-radio-telescope.jpg Available source:

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scanner.jpg

Effects of Electromagnetic exposure

Devices• Absolute dysfunction• Variety of non-destructive

persistent failures (system upset) (Holloway, et al. 2011)

Humans• Some studies show that can

cause diseases• Others show that can counteract

diseases• It is not completely assured

Studies

Exposure of low frequency electromagnetic fields can modulate receptors in human peripheral blood mononuclear cells.• Receptors respond to invading pathogens and are stimulus from the

innate immune system• Human peripheral blood mononuclear cell were stimulated with

ligands and later exposed to controlled and standardized low frequency electromagnetic fields (20–5000 Hz) for 30 minutes• The conclusion was that there was no difference in immune response • Using higher frequency electromagnetic fields with the same

experiment may lead to different results (Kleijn et al. 2011).

ELF-EMF may affect the DNA in human cells

• Used technique to detect any DNA damage at the level of the individual eukaryotic cell (Comet assay)• Human primary fibroblast cells were exposed to 50 Hz of EMF at 1

militesla (mT) of flux density• Assay showed that the processes of DNA replication and cell

reproduction were the ones affected, not on the DNA itself• In conclusion, the exposure of human primary fibroblast to ELF-EMF

stimulates cell termination (necrosis) rather than DNA alteration (Focke et al. 2009)

Electromagnetism on Peacemakers

• Peacemakers operate by microcircuits• EM interferes with a peacemaker’s function• Causes wrong responses towards cardiac signals• Instructions and guides about safe distances at which patients with

peacemakers can be, to ensure their normal function away from EM sources that could interfere with the device (Lakshmanadoss et al. 2011)

Studies (Beneficial)

Non-ionizing EM leads cancer cell suppression • Chemotherapy and ionizing radiation harm normal cell tissues• 9 of 21 mice were used in preliminary experiment to discover if clinical

diseases or weight loss occur after being exposed to 100 mT, 1-Hz, half-sine-wave unipolar magnetic fields• 12 remaining mice were injected with breast cancer cells labelled with firefly

luciferase and part of them (9) were daily exposed to a non-ionizing EM source for 360 minutes during four weeks• Eventually, the mice that were exposed to the magnetic source subdue cancer

cell growth whereas the mice of the control group developed tumours (Tatarov et al. 2011).

Electromegnetism and Chemotherapy Toxicity

• Investigators used a combination of static magnetic field (SMF) and antineoplastic chemotherapy, in 10 patients with lung cancer, non-Hodgkin’s Lymphoma, and colon/rectum cancer.• White blood cell and platelet amount data were estimated from the

patients.• Results from this work suggest that the combination of SMF and

antineoplastic chemotherapy is safe without increasing the severity of chemotherapy toxicity (Salvatore et al. 2003).

Conclusion

• While some studies have shown that EMF can be prejudicial to human environment, but others have proven completely the opposite. Some researchers say that the relation, whether EMF can cause problems to humans or not, rely on the level of frequency of the radiation that is emitted and exposed.• We should be aware of the localization of these sources just to

prevent unnecessary exposure and avoid other unknown consequences.

References

• Anonimous. Unknown year. Electricity, Field Theory, Electromagnetism. [Internet]. Available source: http://abyss.uoregon.edu/~js/21st_century_science/lectures/lec04.html

• Anonymous. Unknown year. Types of Electromagnetic Fields. [Internet]. Availeble source: http://corrosion-doctors.org/Voltage/electromagnetic-def.htm

• Anonymous. 2013. Magnetic Field. Last updated November 30, 2013. Available source: http://www.greenfacts.org/glossary/mno/magnetic-field.htm

• Anonymous. 2013. Contaminación Electromagnética. [Internet]. Wikipedia Encyclopedia [Cited 23 September 2013] Available source: http://es.wikipedia.org/wiki/Contaminaci%C3%B3n_electromagn%C3%A9tica

• Chou J, Su L. Unknown year. The Effects of Radiation on Matter. Available source: http://chemwiki.ucdavis.edu/@api/deki/pages/1491/pdf?stylesheet=default

• Dervié K, Janković S, Despotović Ž, Šinik V, Kerleta V. 2012. The Radiation of Electromagnetic Fields of Very Low Frequency. II International Conference: Ecology of Urban Areas 2012: 348-356. [Cited 15 October 2012]. Available from: http://www.academia.edu/2967929/THE_RADIATION_OF_ELECTROMAGNETIC_FIELDS_OF_VERY_LOW_FREQUENCY

• Focke F, Schuermann D, Kuster N, Schär P. 2009. DNA fragmentation in human fibroblasts under extremely low electromagnetic field exposure. Science Direct [Internet]. Mutation Research 683 (2010): 74-83. [Cited November 6, 2009]. Available from: Focke F, Schuermann D, Kuster N, Schär P. 2009. DNA fragmentation in human fibroblasts under extremely low electromagnetic field exposure. Science Direct [Internet]. Mutation Research 683 (2010): 74-83. [cited November 6, 2009]. Available from: http://www.sciencedirect.com/science/article/pii/S0027510709003418

• Holloway M, Dilli Z, Seekhao N, Rodgers J. 2011. Study of Basics Electromagnetic Effects in CMOS Integrated Circits. Available source: http://www.ireap.umd.edu/AppEl/Publications/Tasks1,2/Holloway-2011.pdf

• Kleijn S, Bouwens M, Kemenade L, Cuppen J, Ferwerda G, Hermans P. 2011. Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signalling in human peripheral blood mononuclear cells. Science Direct [Internet]. Cytokine: 43-50. [cited 15 Jan 2011]. Available from: www.elsevier.com/locate/issn/10434666

• Kune D, Backes J, Clark S, Kramer D, Matthew Reynolds, Fu K, Kim Y, Xu W. 2013 Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors. Web page source: https://spqr.eecs.umich.edu/emi/ Available from: https://spqr.eecs.umich.edu/papers/fookune-emi-oakland13.pdf

• Lakshmanadoss U, Chinnachamy P, Daubert J. 2011. Electromagnetic Interference of the Pacemakers, Modern Pacemakers - Present and Future, Prof. Mithilesh R Das (Ed.), ISBN: 978-953307-214-2, InTech, Available from: http://www.intechopen.com/books/modern-pacemakers-present-andfuture/electromagnetic-interference-of-the-pacemakers

• Tatarov I, Panda A, Petkov D, Kolappaswamy K, Thompson K, Kavirayani A, Lipsky M, Elson E, Davis C, Martin S, et al. 2011. Effect of magnetic fields on tumour growth and viability. National Center for Biotechnology Information [Internet]. Comp Med. 2011 August; 61(4): 339–345. [Cited August 2011]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155400/

• Verginadis I, Velalopoulou A, Karagounis I, Simos Y, Peschos D, Karkabounas S,Evangelou A. 2012.Beneficial Effects of Electromagnetic Radiation in Cancer, Electromagnetic Radiation, Prof. S. O. Bashir (Ed.), SBN: 978-953-51-0639-5, InTech, Available from: http://www.intechopen.com/books/electromagneticradiation/beneficial-effects-of-electromagnetic-radiation-in-cancer