efiects of dissipation on quantum critical points with disorder · t. vojta, j. phys. a 39,...

24
Effects of dissipation on quantum critical points with disorder Thomas Vojta Department of Physics, Missouri University of Science and Technology Introduction: disorder, dissipation, criticality Continuous O(N ) symmetry: infinite-randomness critical point Ising symmetry: smeared quantum phase transition Toronto, September 25, 2008

Upload: others

Post on 11-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Effects of dissipation on quantum critical points

with disorder

Thomas Vojta

Department of Physics, Missouri University of Science and Technology

• Introduction: disorder, dissipation, criticality• Continuous O(N) symmetry: infinite-randomness critical point

• Ising symmetry: smeared quantum phase transition

Toronto, September 25, 2008

Page 2: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Acknowledgements

at Missouri S&T

Chetan KotabageMan Young Lee

Adam FarquharJason Mast

former group members

Mark Dickison (Boston U.)Bernard Fendler (Florida State U.)

Jose Hoyos (Duke U.)Shellie Huether (Missouri S&T)

Ryan Kinney (US Navy)Rastko Sknepnek (Iowa State U.)

external collaboration

Dietrich Belitz (U. of Oregon)Ribhu Kaul (Harvard U.)

Ted Kirkpatrick (U. of Maryland)Jorg Schmalian (Iowa State U.)Matthias Vojta (U. Karlsruhe)

Funding:

National Science FoundationResearch Corporation

University of Missouri Research Board

Page 3: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

• Introduction: disorder, dissipation, criticality• Continuous O(N) symmetry: infinite-randomness critical point

• Ising symmetry: smeared quantum phase transition

Page 4: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Phase transitions, disorder, and dissipation

T

QuantumGriffithsregion

gc0 ggc

QCP

Quenched Disorder:

• can destabilize clean critical point

• stronger effects at QPTs than at classicaltransitions (disorder correlations in time)

• exotic critical points with non-power-lawscaling

• rare regions lead to Griffiths singularitiesclose to actual transition

Dissipation:

• slows down critical dynamics

• further enhances disorder effects

Question: Fate of QPT under combinedinfluence of disorder and dissipation?

Page 5: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Experiment I: Itinerant quantum magnets

• quantum phase transitions between paramagnetic metal and ferromagnetic orantiferromagnetic metal

• transition often controlled by chemical composition ⇒ disorder appears naturally

• magnetic modes damped due to coupling to fermions ⇒ Ohmic dissipation

• typical example: ferromagnetic transition in CePd1−xRhx

(Sereni et al., Phys. Rev. B 75 (2007) 024432 + Westerkamp, private communication)

Page 6: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Experiment II: Superconductivity in ultrathin nanowires

• ultrathin MoGe wires (width ∼ 10 nm)

• produced by molecular templating usinga single carbon nanotube[A. Bezryadin et al., Nature 404, 971 (2000)]

superconductor-metal QPT asfunction of wire thickness

Pair breaking mechanism:

• magnetic impurities at the surface

• pairing interaction: repulsive atsurface, attractive in core

Page 7: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

• Introduction: disorder, dissipation, criticality

• Continuous O(N) symmetry: infinite-randomness critical point• Ising symmetry: smeared quantum phase transition

Page 8: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Dissipative O(N) order parameter field theory

N -component (N > 1) order parameter field ϕ(x, τ) in d dimensions

S = T∑q,ωn

(r + ξ2

0q2 + γ |ωn|

) |ϕ(q, ωn)|2 +u

2N

∫ddxdτ ϕ4(x, τ)

Disorder:

distance r from criticalitybare correlation length ξ0

Ohmic dissipation constant γ

random functions of position

Applications:

• Superconductor-metal quantum phase transition in nanowires (d = 1, N = 2)ϕ(x, τ) represents local Cooper pair operator (Sachdev, Werner, Troyer 2004)

• Hertz’ theory of itinerant quantum Heisenberg antiferromagnets (d = 3, N = 3)ϕ(x, τ) represents staggered magnetization (Hertz 1976)

Page 9: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Discrete large-N theory in one dimension

To apply real-space based strong-disorder renormalization group:

• discretize space by introducing “rotor” variables φj(τ)• large-N limit of an infinite number of order parameter components

Resulting action:

S = T∑

i,ωn

(ri + λi + γi|ωn|) |φi(ωn)|2 − T∑

i,ωn

Ji φi(−ωn)φi+1(ωn)

ri, γi > 0, Ji > 0: random functions of lattice site i

λi: Lagrange multiplier enforcing large-N constraint 〈ϕ2i (τ)〉 = 1

εi = ri + λi: renormalized (local) distance from criticality

Page 10: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Strong-disorder renormalization group

• introduced by Ma, Dasgupta, Hu (1979), further developed by Fisher (1992, 1995)• asymptotically exact if disorder distribution becomes broad under RG

Basic idea: Successively integrate out the local high-energy modes andrenormalize the remaining degrees of freedom.

in our system

S = T∑

i,ωn

(εi + γi|ωn|) |φi(ωn)|2 − T∑

i,ωn

Ji φi(−ωn) φi+1(ωn)

the competing local energies are:

• interactions (bonds) Ji favoring the ordered phase• local “gaps” εi favoring the disordered phase

⇒ in each RG step, integrate out largest among all Ji and εi

Page 11: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Recursion relations

J=J2 J3/ε3

ε5ε4ε3ε2ε1

J1

J1 J4

J3 J4J2

~

ε5ε4

ε=ε2 ε3 /J2

ε2ε1

J1

J1 J3

J4J2

~

J3

ε3

if largest energy is a gap, e.g., ε3 À J2, J3:

• site 3 is removed from the system

• coupling to neighbors is treated in 2nd orderperturbation theory

new renormalized bond J = J2J3/ε3

if largest energy is a bond, e.g., J2 À ε2, ε3:

• rotors of sites 2 and 3 are parallel

• can be replaced by single rotor with momentµ = µ2 + µ3

renormalized gap ε = ε2ε3/J2

Page 12: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Renormalization-group flow equations

• RG step is iterated, building larger and larger clusters connected by weaker andweaker bonds (while gradually reducing maximum energy Ω)

⇒ flow equations for the probability distributions P (J) and R(ε)

−∂P

∂Ω= [P (Ω)−R(Ω)] P + R(Ω)

∫dJ1dJ2 P (J1)P (J2) δ

(J − J1J2

Ω

)

−∂R

∂Ω= [R(Ω)− P (Ω)] R + P (Ω)

∫dε1dε2 R(ε1)R(ε2) δ

(ε− ε1ε2

Ω

)

Flow equations are identical to those of the random transverse-field Ising chain

⇒ infinite-randomness critical point⇒ activated dynamical scaling

QPT of a disordered dissipative O(N) order parameter is in the same universalityclass as the dissipationless random transverse-field Ising model.

Page 13: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Results: Phase diagram

finite-temperature phase boundary andcrossover line take unusual form

Tc ∼ exp(−const |r|−νψ)

⇒ very wide quantum critical region

Infinite-randomness critical point:

• at fixed point of the flow equations,disorder scales to infinity

• FP characterized by 3 exponents

• tunneling exponent ψ = 1/2 controlsdynamical scaling ln(1/Ω) ∼ Lψ

• moments of surviving clusters grow likeµ ∼ lnφ(1/Ω) with φ = (1 +

√5)/2

• average correlation length diverges asξ ∼ |r|−ν with ν = 2

Quantum Griffiths regions:

• fixed points of the flow equations canalso be found off criticality

• power-law dynamical scaling withnonuniversal exponent

Page 14: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Results: Observables

Thermodynamics:

to find order parameter susceptibility and specific heat at temperature T :run RG down to energy scale Ω = T and consider remaining clusters as free

χ(r, T ) =1T

[ln(1/T )]2φ−d/ψ Θχ

(rνψ ln(1/T )

)

C(r, T ) = [ln(1/T )]−d/ψ ΘC

(rνψ ln(1/T )

)

at criticality: χ ∼ 1T [ln(1/T )]2φ−d/ψ, in Griffiths phase: χ ∼ T d/z′−1

Dynamic susceptibilities at T = 0:

found by running RG to energy scale Ω ≈ ω

Imχ(r, ω) ∼ 1ω

[ln(1/ω)]φ−d/ψX

(rνψ ln(1/ω)

)

Imχloc(r, ω) ∼ 1ω

[ln(1/ω)]−d/ψX loc

(rνψ ln(1/ω)

)

Page 15: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Results: Numerical confirmation

5 10 15 20 25 30x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

C(x

)

αc = −0.93(3)ν = 1.9(2)

α0.00-0.25-0.50-0.65-0.75

−2.0 −1.5 −1.0 −0.5 0.0

ln δ

0

1

2

3

lnξ

0.5 1.0 1.5 2.0 2.5

δ

0

2

4

6

8

10

12

14

16

|ln

Ω|

ψ = 0.53(6)

−2.0 −1.5 −1.0 −0.5 0.0

ln δ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ln|ln

Ω|

• A. Del Maestro et al. (2008) solved disorderedlarge-N problem numerically exactly

• calculated equal time correlation function C,energy gap Ω, and ratio R of local and orderparameter dynamic susceptibilities

ν ψ φ

SDRG 2 1/2 (√

5 + 1)/2Numerics 1.9(2) 0.53(6) 1.6(2)

6 8 10 12 14

| ln ω|

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R

φ = 1.6(2)

δ0.430.280.18

−2.0 −1.5 −1.0 −0.5

ln δ

−6

−5

−4

−3

lnR

| lnω|16.114.513.812.2

Page 16: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Generalizations: N < ∞, d > 1, nonohmic damping

Order parameter symmetry

• our explicit calculations are for an infinite number of OP components, N = ∞• results apply to all continuous symmetry cases N > 1

(clusters are marginal – gaps depends exponentially on size)

Higher dimensions d > 1

• infinite randomness scaling scenario also appears in 2D and 3D

• critical exponent values are different, only known numerically

Nonohmic damping

• if damping term is nonohmic, γ|ωn|2/z0, recursion relations change

• subohmic case, z0 > 2: quantum phase transition destroyed by smearing

• superohmic case, z0 < 2: transition survives, likely with conventional scaling

Page 17: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

• Introduction: disorder, dissipation, criticality

• Continuous O(N) symmetry: infinite-randomness critical point

• Ising symmetry: smeared quantum phase transition

Page 18: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Dissipative random transverse-field Ising chain

H = −∑

i

Jiσzi σ

zi+1−

i

hiσxi +

i,n

σzi λi,n(a†i,n + ai,n) +

i,n

νi,na†i,nai,n

Ji: exchange interaction between z-components of spin σi

hi: transverse magnetic field, acting on x-component of spin σi

a†i,n, ai,n: harmonic oscillator bath coupling to z-component of spin σi

Bath spectral function

E(ω) = π∑

n

λ2i,nδ(ω − νi,n) = 2παωe−ω/ωc

α: dimensionless dissipation strengthωc: oscillator energy cutoff

Linear low freq. spectrum: Ohmic dissipation

Page 19: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Strong-disorder renormalization group

Integrate out local high energy modes: Ω = max(Ji, hi, ωc/p)

To reduce maximum energy from Ω to Ω− dΩ:

1. Integrate out all oscillators with frequencies ν ∈ [p(Ω− dΩ), pΩ]

hi = hi exp

(−αi

∫ pΩ

p(Ω−dΩ)

ω

)= hi

(1− αµi

dΩΩ

)

2. Decimate all transverse fields hi ∈ [Ω− dΩ, Ω]

J = Ji−1Ji/hi

3. Decimate all interaction energies Ji ∈ [Ω− dΩ, Ω]

h = hihi+1/Ji, µ = µi + µi+1

Extra downward renormalization of the transverse fields due to dissipation

Page 20: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Renormalization-group flow equations

Flow equations for the probability distributions P (J) and R(h, µ)

−∂P

∂Ω= [P (Ω)− (1− αµ)Rh(Ω)] P + (1− αµ)R(Ω)

∫dJ1dJ2 P (J1)P (J2) δ

[J − J1J2

Ω

]

−∂R

∂Ω= [(1− αµ)Rh(Ω)− P (Ω)] R +

αµ

Ω

[R + h

∂R

∂h

]+

+P (Ω)

∫dh1dh2dµ1dµ2 R(h1, µ1)R(h2, µ2) δ

[h− h1h2

Ω

]δ[µ− µ1 − µ2]

(1− αµ): probability for decimating field vanishes for µ > 1/α⇒ important finite “volume” scale 1/α

• clusters act as Ohmic spin-boson problem with effective damping constant αµ

• if αµ > 1, they undergo localization transition (Caldeira, Leggett, Weiss)

Large clusters freeze independently ⇒ quantum phase transition is smeared

Page 21: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Smeared quantum phase transition

WO

m

h

Griffiths

QCP

Ordered

SO SD typ

WDWODisordered

typ

m

h

OrderedDisordered

IO

WO

SO SD

(b) Smeared ( =0)α

(a) Sharp ( =0)α

SO

SD

IOWD

(c) PI

h )J

eff(RI

( ) • quantum critical point anddisordered Griffiths phasedestroyed

• replaced byinhomogeneously orderedregion in the tail of theordered phase

Low temperature thermodynamics: dominated by large frozen clusters

Example: uniform susceptibility χ ∼ T−1−1/z

Page 22: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Rare region effects in CePd1−xRhx?

• ferromagnetic phase shows pronounced tail ⇒ evidence for smeared transition

• evidence for spin-glass like behavior in tail

• above tail: nonuniversal power-laws characteristic of quantum Griffiths effects

(Sereni et al., Phys. Rev. B 75 (2007) 024432 + Westerkamp, private communication)

Page 23: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Classification of weakly disordered phase transitions according toimportance of rare regions

T. Vojta, J. Phys. A 39, R143–R205 (2006)

Dimensionality Griffiths effects Dirty critical point Examplesof rare regions (classical PT, QPT, non-eq. PT)

dRR < d−c weak exponential conv. finite disorder class. magnet with point defects

dilute bilayer Heisenberg model

dRR = d−c strong power-law infinite randomness Ising model with linear defects

random quantum Ising model

disordered directed percolation (DP)

dRR > d−c RR become static smeared transition Ising model with planar defects

itinerant quantum Ising magnet

DP with extended defects

Page 24: Efiects of dissipation on quantum critical points with disorder · T. Vojta, J. Phys. A 39, R143{R205 (2006) Dimensionality Gri–ths efiects Dirty critical point Examples of rare

Conclusions

• We have studied quantum phase transitions in the presence of both disorder andOhmic dissipation using the strong-disorder renormalization group

• For continuous symmetry order parameters, the RG recursion relations for thelocal gaps and interactions are multiplicative

⇒ infinite-randomness critical point in the universality class of the randomtransverse field Ising model

• For Ising symmetry, the dissipation introduces a finite length scale beyond whichthe clusters freeze.

⇒ quantum phase transition is smeared

Exotic QPTs due to interplay between disorder and dissipation: disorder createslocally ordered rare regions, dissipation makes their dynamics ultraslow

For details see: J. A. Hoyos, C. Kotabage, T. Vojta, Phys. Rev. Lett. 99, 230601 (2007)

J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601 (2008)