elctronica de potencia circuito dc

Upload: jaronjer

Post on 01-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 elctronica de potencia circuito dc

    1/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions45

    8.1.7. The low-Q approximation

    G(s) =   11 + a1s + a2s

    2   G(s) =   1

    1 +   s

    Q0+   s

    0

    2

    Given a second-order denominator polynomial, of the form

    or

    When the roots are real, i.e., when Q < 0.5, then we can factor the

    denominator, and construct the Bode diagram using the asymptotes

    for real poles. We would then use the following normalized form:

    G(s) =   1

    1 +   s

    1

    1 +   s

    2

    This is a particularly desirable approach when Q  

  • 8/9/2019 elctronica de potencia circuito dc

    2/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions46

    An example

    A problem with this procedure is the complexity of the quadratic

    formula used to find the corner frequencies.

    R-L-C network example:

    + – 

     L

    C    Rv1(s)

    +

    v2(s)

     – 

    G(s) = v2(s)

    v1(s)=   1

    1 + s L R

     +  s2 LC 

    Use quadratic formula to factor denominator. Corner frequencies are:

    1,  2 =  L / R !

      L / R

      2

     – 4 LC 2 LC 

  • 8/9/2019 elctronica de potencia circuito dc

    3/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions47

    Factoring the denominator

    1,  2 = L / R  !   L / R

      2 – 4 LC 

    2 LC 

    This complicated expression yields little insight into how the cornerfrequencies ω1 and ω2 depend on  R,  L, and C .

    When the corner frequencies are well separated in value, it can be

    shown that they are given by the much simpler (approximate)

    expressions

    1   R L

    ,   2    1 RC 

    ω1 is then independent of C , and ω2  is independent of  L.

    These simpler expressions can be derived via the Low-Q Approximation.

  • 8/9/2019 elctronica de potencia circuito dc

    4/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions48

    Derivation of the Low-Q Approximation

    G(s) =   1

    1 +   sQ0

    +   s0

    2

    Given

    Use quadratic formula to express corner frequencies ω1 and ω2 interms of Q and ω0 as:

    1 = 0

    Q

    1 – 1 – 4Q2

    2  2 =

      0

    Q

    1 + 1 – 4Q2

    2

  • 8/9/2019 elctronica de potencia circuito dc

    5/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions49

    Corner frequency ω2

    2 = 0

    Q

    1 + 1 – 4Q2

    2

    2 =  0

    Q F (Q)

    F (Q) = 12

      1 + 1 – 4Q2

    2  0

    Q  for   Q 

  • 8/9/2019 elctronica de potencia circuito dc

    6/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions50

    Corner frequency ω1

    F (Q) = 12

      1 + 1 – 4Q2

    F(Q)

    0 0.1 0.2 0.3 0.4 0.5

    Q

    0

    0.25

    0.5

    0.75

    1

    can be written in the form

    where

    For small Q, F(Q) tends to 1.

    We then obtain

    For Q < 0.3, the approximation F(Q) 

    1 iswithin 10% of the exact value.

    1 = 0

    Q

    1 – 1 – 4Q2

    2

    1 =  Q 0

    F (Q)

    1   Q  0   for   Q 

  • 8/9/2019 elctronica de potencia circuito dc

    7/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions51

    The Low-Q Approximation

     f 2 =   f 0F (Q)Q

     f 0Q

     –40dB/decade

     f 0

    0dB

    || G ||dB

     –20dB/decade

     f 1 =  Q f 0F (Q)

     Q f 0

  • 8/9/2019 elctronica de potencia circuito dc

    8/8

    Fundamentals of Power Electronics Chapter 8: Converter Transfer Functions52

    R-L-C Example

    1   Q  0 = R  C  L

    1

     LC =  R L

    2  0

    Q =   1

     LC 1

     R

      C 

     L

    =   1 RC 

    G(s) = v2(s)

    v1(s)=   1

    1 + s L R

     +  s 2 LC 

     f 0 =  0

    2=   1

    2   LC 

    Q = R

      C 

     L

    For the previous example:

    Use of the Low-Q Approximation leads to