electric power substation

72
ELECTRIC POWER SUBSTATION An assembly of equipment in an electric power system through which electric energy is passed for transmission, transformation, distribution, or switching. Also known as substation. Electric power substation An assembly of equipment in an electric power system through which electrical energy is passed for transmission, distribution, interconnection , transformation, conversion, or switching. See also Electric power systems . Specifically, substations are used for some or all of the following purposes: connection of generators, transmission or distribution lines, and loads to each other; transformation of power from one voltage level to another; interconnection of alternate sources of power; switching for alternate connections and isolation of failed or overloaded lines and equipment; controlling system voltage and power flow; reactive power compensation; suppression of overvoltage ; and detection of faults, monitoring, recording of information, power measurements, and remote communications. Minor distribution or transmission equipment installation is not referred to as a substation. Substations are referred to by the main duty they perform. Broadly speaking, they are classified as: transmission substations, which are associated with high voltage levels; and distribution substations, associated with low voltage levels. See also Electric distribution systems . Substations are also referred to in a variety of other ways: 1. Transformer substations are substations whose equipment includes transformers.

Upload: qwerty25ty

Post on 06-May-2015

74.869 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Electric power substation

ELECTRIC POWER SUBSTATION

An assembly of equipment in an electric power system through which electric energy is passed for transmission, transformation, distribution, or switching. Also known as substation.

Electric power substation

An assembly of equipment in an electric power system through which electrical energy is passed for transmission, distribution, interconnection, transformation, conversion, or switching. See also Electric power systems.

Specifically, substations are used for some or all of the following purposes: connection of generators, transmission or distribution lines, and loads to each other; transformation of power from one voltage level to another; interconnection of alternate sources of power; switching for alternate connections and isolation of failed or overloaded lines and equipment; controlling system voltage and power flow; reactive power compensation; suppression of overvoltage; and detection of faults, monitoring, recording of information, power measurements, and remote communications. Minor distribution or transmission equipment installation is not referred to as a substation.

Substations are referred to by the main duty they perform. Broadly speaking, they are classified as: transmission substations, which are associated with high voltage levels; and distribution substations, associated with low voltage levels. See also Electric distribution systems.

Substations are also referred to in a variety of other ways:

1. Transformer substations are substations whose equipment includes transformers.2. Switching substations are substations whose equipment is mainly for various

connections and interconnections, and does not include transformers.

3. Customer substations are usually distribution substations on the premises of a larger customer, such as a shopping center, large office or commercial building, or industrial plant.

4. Converter stations are complex substations required for high-voltage direct-current (HVDC) transmission or interconnection of two ac systems which, for a variety of reasons, cannot be connected by an ac connection. The main function of converter stations is the conversion of power from ac to dc and vice versa. The main equipment includes converter valves usually located inside a large hall, transformers, filters, reactors, and capacitors.

5. Most substations are installed as air-insulated substations, implying that the bus-bars and equipment terminations are generally open to the air, and utilize

Page 2: Electric power substation

insulation properties of ambient air for insulation to ground. Modern substations in urban areas are esthetically designed with low profiles and often within walls, or even indoors.

6. Metal-clad substations are also air-insulated, but for low voltage levels; they are housed in metal cabinets and may be indoors or outdoors.

7. Acquiring a substation site in an urban area is very difficult because land is either unavailable or very expensive. Therefore, there has been a trend toward increasing use of gas-insulated substations, which occupy only 5–20% of the space occupied by the air-insulated substations. In gas-insulated substations, all live equipment and bus-bars are housed in grounded metal enclosures, which are sealed and filled with sulfur hexafluoride (SF6) gas, which has excellent insulation properties.

8. For emergency replacement or maintenance of substation transformers, mobile substations are used by some utilities.

An appropriate switching arrangement for “connections” of generators, transformers, lines, and other major equipment is basic to any substation design. There are seven switching arrangements commonly used: single bus; double bus, single breaker; double bus, double breaker; main and transfer bus; ring bus; breaker-and-a-half; and breaker-and-a-third. Each breaker is usually accompanied by two disconnect switches, one on each side, for maintenance purposes. Selecting the switching arrangement involves considerations of cost, reliability, maintenance, and flexibility for expansion.

A substation includes a variety of equipment. The principal items are transformers, circuit breakers, disconnect switches, bus-bars, shunt reactors, shunt capacitors, current and potential transformers, and control and protection equipment. See also Bus-bar; Circuit breaker; Electric protective devices; Electric switch; Relay; Transformer; Voltage regulator.

Good substation grounding is very important for effective relaying and insulation of equipment; but the safety of the personnel is the governing criterion in the design of substation grounding. It usually consists of a bare wire grid, laid in the ground; all equipment grounding points, tanks, support structures, fences, shielding wires and poles, and so forth, are securely connected to it. The grounding resistance is reduced enough that a fault from high voltage to ground does not create such high potential gradients on the ground, and from the structures to ground, to present a safety hazard. Good overhead shielding is also essential for outdoor substations, so as to virtually eliminate the possibility of lightning directly striking the equipment. Shielding is provided by overhead ground wires stretched across the substation or tall grounded poles. See also Grounding; Lightning and surge protection.

INTERCONNECTION

Page 3: Electric power substation

A link between power systems enabling them to draw on one another's reserves in time of need and to take advantage of energy cost differentials resulting from such factors as load diversity, seasonal conditions, time-zone differences, and shared investment in larger generating units.

OVERVOLTAGE

A voltage greater than that at which a device or circuit is designed to operate. Also known as overpotential.

What is a substation transformer? What is the difference between current transformer and voltage transformer? Why substation is called so ? What is the difference between a power station and a substation ? What is the difference between isolation transformer and step up or step down

transformer? Can you use a step down transformer as step up transformer by reversing the

primary voltage as a secondary voltage? What is pulse transformer ? What is a booster transformer ? What is isolation transformer ? How transformer works ? What is the uses of core transformer ? What is transformer turns ratio ? What happens when DC supply is given to transformer ? How do you identify a liquid transformer ? How did the Transformer franchise begin ? Operation of an isolation transformer ? What is the difference between amplifier and transformer ? How do you measure core loss in a transformer ? What is the input side of a transformer called ? How many bushing do you get on delta to star transformer ? What is the differnce of a two winding transformer and autotransformer ? What is the difference between electronic and magnetic transformer ? What is the name of the company that makes all of the Transformer toys ? Explain center-tapped transformer ? What is the disadvantage of using dry type transformer ? How do you work out the volt-amp in a transformer ? Will a transformer within a light make a buzzing sound ? Does Megatron have weapons in the 2007 Transformer movie ? How do you calculate the length of the wire conductor in a transformer ? Turns ratio of a single phase transformer ?

Page 4: Electric power substation

How do you figure out maximum current of a 240V transformer circuit ? Can you use a 120V to 240V step up transformer for an electric range ? How to determine the right transformer in three phase system say it should be

delta or wye? Why do a Voltage transformer give me a CLIPPED output signal ? What is the best transformer to purchase to operate a sewing machine purchased

in the US in the UK? How do you calculate transformer turns ratio given primary and secondary

winding voltage? Is it possible to use a 120-240V step up transformer with an electric range when a

house is only wired for 120V and if so how? Can you use the NTSC selectable option on the European television and a step up

transformer to make it work in the US? Do you have parts for a wall furnance Transformer part no AT30 Model s7035st

wr62? Will a 240V water heater operate normally with a 120V 208V service coming off

a three phase transformer? How do you wire a boost transformer for 240v with 32v boostwhat is x1 x4 h1

h4? If you live in Israel can you use a transformer to step down the 240V power to

120V and then use an American appliance or do you also have a cycle problem and if so can it be cured?

Does varying the resistance in the secondary circuit cause a change in both the input and output currents to keep the power on both sides equal on a transformer?

Can a transformer autobot or decepticon survive falling throught the Earths atmosphere or would the heat and friction instantly kill them?

Could you run your in-house electricity on a 12V system since all your appliances and radios and tvs mostly have a built-in transformer to reduce the current to a much lower voltage?

How do you produce 120V lines from 240V lines without using a transformer ? Is it safe to run a 220volt ac- 12volt dc step down transformer in a 110v outlet-

will it transform it to 6v or will it run fine? If you have a 120V Sony stereo amplifier that you plugged into a wall transformer

to step down from 240V in Denmark and it worked fine then zapped can you replace the fried component to accept 240V?

How many turns do you need on a ferrite core transformer with a 1cm by 1cm square center leg at 14 volts and 100Khz switching speed to maintain a Tesla equal to or less than 0.15?

What is the difference between a step up and a step down transformer ?

1. It is a large encased group of metal plates about the size of a small house with 2 sets of insulated copper wires wrapped around the plates -an input and output - to convert a very high supply line voltage - maybe 44 thousand volts to a lower voltage of 2200 volts that runs down the power line poles in your neighborhood. Look at your street's power poles and you will see a mini substation that converts he 2200 volt to 220 volts and may supply several homes.

Page 5: Electric power substation

2. Actually...NONE. A transformer is a device that steps up, or steps down voltage. During this process current is also stepped up or down, however, voltage and current are inversely proportional ( meaning an increase in voltage results in a decrease in current and vice versa ) As an example: A step up transformer of 10:1 ratio with 12 volts and 10 ampere of current applied to the primary will have ten times the voltage ( 120 volts ) and ten times less current ( 1 ampere ) at the secondary...and a step down transformer with the same turns ratio with 120 volts and 1 ampere applied to the primary will have 12 volts and ten ampere available at the secondary. The electricity supplied into homes and business uses wires carrying very high voltage and low current over long distances, then uses step down transformers to step down the voltage and step up the current.

3. The noun substation has one meaning - a subsidiary station where electricity is transformed for distribution by a low-network.

4. Power station is where they actually generate the electricity on an industrial scale. Substation is a subsidiary of a power station typically used to step down the voltage for more local use of electricity.

5. Isolation transformer: is a transformer with two separate windings, the primary and the secondary. There is an electrical isolation between the primary and the secondary. There are also transformers with one winding and connections for input and output. If the input is low and the output high you can say STEP Up. If the input is high and the output low you can say STEP DOWN. This transformers can not by used where safety necessary.

6. If the transformer has two separate windings, then, YES a step-down can be used as a step-up, and vice-versa.

It is more correct to say you are reversing the high and low sides.

By definition Primary is the "IN" side and Secondary is the "OUT" side.

The Primary could be the high voltage side if it is a step-down, or it could be the low voltage side, if it is a step-up.

Design Considerations

Care must be taken when reversing the operation of a step-down transformer to insure that it does not exceed the ratings of the transformer. For example, let's say we have a 12 VA step-down transformer that takes 120Vac in and is rated to provide 12V at 1 amp at the secondary. If we were to reverse it and apply 12Vac to the new primary (the old secondary), we would have 120Vac at the new secondary, but to keep within the original ratings it could only be loaded to 0.1A @ 120Vac.

Page 6: Electric power substation

As long as you treat the output rating of the step-down transformer as the input rating as a step-up transformer, and don't try to draw current beyond what would normally have been applied to the high voltage primary, you should be fine. Potentially one could push up the voltage on such a transformer beyond what its stated application specified, while making sure not to exceed the power rating of the transformer and not exceeding the breakdown voltage of the transformer's insulation, for example driving the above transformer at 24V to get 0.05A @ 240Vac. It is important to realize though that the rated input voltage for a step-down transformer will likely not be a safe input voltage if you use it as a step-up transformer - for example, applying 120V to the above transformer with the windings reversed would generate 1.2KV!

7. A transformer not intended for power conversion, but for galvanically isolating electrical signals - usually digital, therefore "pulse".

8. Normally used in public address systems, where the audio have to travel long distances and have to drive more than one speaker then a booster transformer is inserted in the audio line, also called audio transformer

9. An isolation transformer does not have a direct electrical path from the power input side to the power output side. The term is also used to define how much electrical isolation exists between the input and output windings. For example when using line-voltage input transformers to power low volatge device handled by humans, a high degree of isolation is required for safety.

Isolated transformers often use separate bobbins for the primary and secondary coil windings, but usually the windings are just wound on top of each other with insulation in between.

Non-Isolated transformers are becoming rare. A common example is the "Variac" which is a non-isolated variable transformer. Usually the term "auto-transformer" is used to describe non-isolated transformers. They are rarely found in consumer products.

10. #1...Wire produces a magnetic field when current is passed through it. If you wrap the wire around something (a core) to make a coil, it concentrates that field. The core isn't actually necessary but it helps concentrate the field and make the transformer more effecient.

#2...If you pass a magnetic field through a wire, it produces electron flow.

If you make a coil with 100 wraps and pass current through it, it will produce the magnetic field. If you have another coil close enough to be IN that magnetic field, and it has 10 turns, you will get about 1/10 the voltage from the second coil that you put into the first one.

It gets a lot more complicated than that with formulas and all kinds of mathematics, but that is the basics of a "step down" transformer.

Page 7: Electric power substation

13. Nothing noticeable. DC power is not transmitted between the coils of a transformer. There would be no current on the other side of the transformer, unless the power of the source was constantly modulated.

14. An amplifier is what increases a rock band's speaker sound output into a ear splitting experience and small radio signals in a radio until it makes it out to the speaker. A transformer converts AC electricity up or down to a desired level for a required project. Example: A battery charger plugged into a wall socket will transformed to about 18 volts to do the charging

15. Core loss is also called “No-Load” loss. To measure the core lose simply you need variable AC supply, Wattmeters, Ampere meters and Voltmeters. The basic principle to perform this measurement is to supply the transformer with its nominal voltage and then record the Watt or Kilo watt values. You will need precision current and voltage transformers to supply your wattmeters, voltmeters and ampere meters. There is a term called “Form Factor” which should be measured in order to identify how sinusoidal is your supply voltage and based on the value of this Form Factor you need to apply relevant corrections to the measured values. For power transformers normally we record no load values between 90% and 110% of rated voltage. Based on the test circuit configuration you may use “2 or 3 wattmeter” arrangements for 3 phase transformers. For further information you can check out my website at www.eonce.com and if you need more information you can simply fill the form in “Contact” page on the website. Hope this helps. B.M. Mirzaei, P.Eng.

Page 8: Electric power substation

Electricity distribution is the penultimate stage in the delivery (before retail) of electricity to end users. It is generally considered to include medium-voltage (less than 50 kV) power lines, electrical substations and pole-mounted transformers, low-voltage (less than 1000 V) distribution wiring and sometimes electricity meters.

Description

History

In the early days of electricity generation to about 1900, direct current DC generators were connected to loads at the same voltage. The generation, transmission and loads had to be of the same voltage because there was no way of changing DC voltage levels, other than inefficient motor-generator sets. Low DC voltages were used (on the order of 100 volts) since that was a practical voltage for incandescent lamps, which were then the primary electrical load. The low voltage also required less insulation to be safely distributed within buildings.

Page 9: Electric power substation

The losses in a cable are proportional to the square of the current, the length of the cable, and the resistivity of the material, and are inversely proportional to cross-sectional area. Early transmission networks were already using copper, which is one of the best economically feasible conductors for this application. To reduce the current and copper required for a given quantity of power transmitted would require a higher transmission voltage, but no convenient efficient method existed to change the voltage level of DC power circuits. To keep losses to an economically practical level the Edison DC system needed thick cables and local generators. Early DC generating plants needed to be within about 1.5 miles of the farthest customer to avoid the need for excessively large and expensive conductors.

Introduction of alternating current

The adoption of alternating current (AC) for electricity generation following the War of Currents dramatically changed the situation. Power transformers, installed at substations, could be used to raise the voltage from the generators and reduce it to supply loads. Increasing the voltage reduced the current in the transmission and distribution lines and hence the size of conductors required and distribution losses incurred. This made it more economical to distribute power over long distances. Generators (such as hydroelectric sites) could be located far from the loads.

In North America, early distribution systems used a voltage of 2200 volts corner-grounded delta. Over time, this was gradually increased to 2400 volts. As cities grew, most 2400 volt systems were upgraded to 4160/2400 volt, three-phase systems. Some city

Page 10: Electric power substation

and suburban distribution systems continue to use this range of voltages, but most have been converted to 7200/12470Y, 7620/13200Y, 14400/24940Y, and 19920/34500Y.

European systems used 3300 volts to ground, in support of the 220/380Y volt power systems used in those countries. In the UK, urban systems progressed to 6.6 kV and then 11 kV (phase to phase), the most common distribution voltage.

North American and European power distribution systems also differ in that North American systems tend to have a greater number of low-voltage, step-down transformers located close to customers' premises. For example, in the US a pole-mounted transformer in a suburban setting may supply 1-3 houses, whereas in the UK a typical urban or suburban low-voltage substation might be rated at 2 MW and supply a whole neighbourhood. This is because the higher voltage used in Europe (380 V vs 230 V) may be carried over a greater distance with acceptable power loss. An advantage of the North American setup is that failure or maintenance on a single transformer will only affect a few customers. Advantages of the UK setup are that the transformers may be fewer, larger and more efficient, and due to diversity there need be less spare capacity in the transformers, reducing power wastage. In North American city areas with many customers per unit area, network distribution will be used, with multiple transformers and low-voltage busses interconnected over several city blocks.

Rural Electrification systems, in contrast to urban systems, tend to use higher voltages because of the longer distances covered by those distribution lines (see Rural Electrification Administration). 7200, 12470 and 25000 volt distribution is common in the United States; 11 kV and 33 kV are common in the UK, New Zealand and Australia; 11 kV and 22 kV are common in South Africa. Other voltages are occasionally used.

In New Zealand, Australia, Saskatchewan, Canada, and South Africa, single wire earth return systems (SWER) are used to electrify remote rural areas.

While power electronics now allow for conversion between DC voltage levels, AC is still used in distribution due to the economy, efficiency and reliabilty of transformers. High-voltage DC is used for transmission of large blocks of power over long distances, or for interconnecting adjacent AC networks, but not for distribution to customers.

Distribution network configurations

Distribution networks are typically of two types, radial or interconnected (see Spot Network Substations). A radial network leaves the station and passes through the network area with no normal connection to any other supply. This is typical of long rural lines with isolated load areas. An interconnected network is generally found in more urban areas and will have multiple connections to other points of supply.

These points of connection are normally open but allow various configurations by the operating utility linemen carefully closing and opening switches. The benefit of the

Page 11: Electric power substation

interconnected model is that in the event of a fault or required maintenance a small area of network can be isolated and the remainder kept on supply.

Within these networks there may be a mix of overhead line construction utilizing traditional utility poles and wires and, increasingly, underground construction with cables and indoor or cabinet substations. However, underground distribution can cost as much as 11 times as much as overhead construction. In part to reduce this cost, underground power lines are sometimes colocated with other utility lines in what are called Common utility ducts. Distribution feeders emanating from a substation are generally controlled by a circuit breaker or fuse which will open when a fault is detected. Automatic Circuit Reclosers may be installed to further segregate the feeder thus minimising the impact of faults.

Long feeders experience voltage drop requiring capacitors or voltage regulators to be installed, and the phase physical relationship to be interchanged.

Characteristics of the supply given to customers are generally mandated by contract between the supplier and customer. Deviations from the normal usage pattern usually invoke monthly surcharges. Variables include:

AC or DC - Virtually all public electricity supplies are AC today. Users of large amounts of DC power such as some electric railways, telephone exchanges and industrial processes such as aluminium smelting either operate their own or have adjacent dedicated generating equipment, or use rectifiers to derive DC from the public AC supply

Voltage , including tolerance (usually +10 or -15 percentage) Frequency , commonly 50 & 60 Hz, 16-2/3 Hz for some railways and, in a few

older industrial and mining locations, 25 Hz Phase configuration (single phase, polyphase including two phase and three

phase) Maximum demand (usually measured as the largest amount of power delivered

within a 15 or 30 minute period during a billing period) Load Factor, expressed as a ratio of average load to peak load over a period of

time. Load factor indicates the degree of effective utilization of equipment (and capital investment) of distribution line or system.

Power factor of connected load Earthing arrangements - TT, TN-S, TN-C-S or TN-C Maximum prospective short circuit current Maximum level and frequency of occurrence of transients

See List of countries with mains power plugs, voltages and frequencies.

Modern Distribution Systems

The modern distribution system begins as the primary circuit leaves the sub-station and ends as the secondary service enters the customers meter socket. A variety of methods,

Page 12: Electric power substation

materials, and equipment are used among the various utility companies across the U.S., but the end result is similar. First, the energy leaves the sub-station in a primary circuit, usually with all three phases.

The most common type of primary is known as a wye configuration (so named because of the shape of a "Y".) The wye configuration includes 3 phases (represented by the three outer parts of the "Y") and a neutral (represented by the center of the "Y".) The neutral is grounded both at the substation and at every power pole. In a typical 12470Y/7200 volt system, the pole mount transformer's primary winding is rated for 7200 volts and is connected across one phase of power and the neutral. The primary and secondary (low voltage) neutrals are bonded (connected) together to provide a path to blow the primary fuse if any fault occurs that allows primary voltage to enter the secondary lines. An example of this type of fault would be a primary phase falling across the secondary lines. Another example would be some type of fault in the transformer itself.

Electric distribution substations transform power from transmission voltage to the lower voltage used for local distribution to homes and businesses.

The other type of primary configuration is known as delta, this method is older and less common. Delta is so named because of the shape of the Greek letter delta, a triangle. Delta has only 3 phases and no neutral. In delta there is only a single voltage, between two phases (phase to phase), while in wye there are two voltages, between two phases and between a phase and neutral (phase to neutral). Wye primary is safer because if one phase becomes grounded, that is makes connection to the ground through a person, tree, or other object, it should trip out the fused cutout similer to a household circuit breaker tripping. In delta, if a phase makes connection to ground it will continue to function normally. It takes two or three phases to make connection to ground before the fused cutouts will open the circuit. The voltage for this configuration is usually 4800 volts. Transformers are sometimes used to step down from 7200 or 7600 volts to 4800 volts or to step up from 4800 volts to 7200 or 7600 volts. When the voltage is stepped up, a neutral is created by bonding one leg of the 7200/7600 side to ground. This is commonly

Page 13: Electric power substation

used to power single phase underground services or whole housing developments that are built in 4800 volt delta distribution areas. Step downs are used in areas that have been upgraded to a 7200/12500Y or 7600/13200Y and the power company chooses to leave a section as a 4800 volt setup. Sometimes power companies choose to leave sections of a distribution grid as 4800 volts because this setup is less likely to trip fuses or reclosers in heavily wooded areas where trees come into contact with lines.

Economic and Political

In the United States, Electric industry "deregulation" reform, started in the mid-1990s, has led to the creation of electricity markets through the elimination of the former natural monopoly of generation, transmission, and distribution. As a consequence, electricity has become more of a commodity. The separation has also led to the development of new terminology to describe the business units, e.g. line company, wires business and network company.

Electric Power Distribution

A distribution system originates at a distribution substation and includes the lines, poles, transformers and other equipment needed to deliver electric power to the customer at the required voltages. Customers are classed as:

Industrial Customer Commercial Customer Residential Customer Transportation Customer

 

Distribution SystemsTOP

A distribution system consists of all the facilities and equipment connecting a transmission system to the customer's equipment.

A typical distribution system can consist of: Substations Distribution Feeder Circuits Switches Protective Equipment

Page 14: Electric power substation

Primary Circuits Distribution Transformers Secondaries , and Services

Figure 1. Energy flow through a typical substation

The following are examples of distribution systems components. Collectively they constitute a typical distribution system. These typically deliver voltages as high as 34,000 volts (34 kV) and as low as 120 volts.

Figure 2. Typical residential service drop Figure 3. Substation pull-off structure

Page 15: Electric power substation

Figure 4. Substation pull-off structure (connects substation busswork to overhead

lines)

Figure 5. Substation underground distribution bus

Figure 6. Distribution primaries and secondaries

on subtransmission pole Figure 7. Distribution underbuild

Additional information: The Lineman's and Cableman's Handbook, Shoemaker, T. M., Mack, J. E.,

Tenth Edition 2002, McGraw-Hill.

Industrial Customer

Page 16: Electric power substation

TOP

Most industries need 2,400 to 4,160 volts to run heavy machinery and usually their own substation or substations to reduce the voltage from the transmission line to the desired level for distribution throughout the plant area. They usually require 3-phase lines to power 3-phase motors. 

Figure 8. Industrial facility distribution transformer

Additional information: The Lineman's and Cableman's Handbook, Shoemaker, T. M., Mack, J. E.,

Tenth Edition 2002, McGraw-Hill.

Commercial Customer

TOP

Commercial customers are usually served at distribution voltages, ranging from 14.4 kV to 7.2 kV through a service drop line which leads from a transformer on or near the distribution pole to the customer's end use structure. They may require 3-phase lines to power 3-phase motors.

Figure 10. Commercial service drop

Page 17: Electric power substation

Figure 9. Distribution transformer to 3-phase service - commercial facility

Residential CustomerTOP

The distribution electricity is reduced to the end use voltage (120/240 volts single phase) via a pole mounted or pad-mounted transformer. Power is delivered to the residential customer through a service drop line which leads from the distribution pole transformer to the customer's structure, for overhead lines, or underground. 

Figure 11. Residential distribution transformer and service drop Figure 12. Pad-mounted residential

distribution transformer

Transportation CustomerTOP

Currently the only electric transportation systems are light rail and subway systems. A small distribution substation reduces the local distribution voltage to the transportation system requirements. The overhead lines supply electric power to the transportation system motors and the return current lines are connected to the train tracks.  

Page 18: Electric power substation

Figure 13. Public transit train powered by overhead electric lines

Figure 14. Substation where electricity is conditioned for powering commuter trains

Page 19: Electric power substation

Figure 15. Power runs from the substation underground to the poles where power is delivered to the power lines. The circuit is

completed through the train tracks, with lines returning to the substation.

Figure 16. Electric cables carry electricity to power the train's motors

 

Illustrated Glossary: Substations

A substation is a high-voltage electric system facility. It is used to switch generators, equipment, and circuits or lines in and out of a system. It also is used to change AC voltages from one level to another, and/or change alternating current to direct current or direct current to alternating current. Some substations are small with little more than a transformer and associated switches. Others are very large with several transformers and dozens of switches and other equipment. There are three aspects to substations:

Page 20: Electric power substation

Figure 1. Typical substation Substation Types: Although, there are generally four types of substations there are substations that are a

combination of two or more types. Step-up Transmission Substation Step-down Transmission Substation Distribution Substation Underground Distribution Substation Substation Functions Substation Equipment

Step-up Transmission Substation

A step-up transmission substation receives electric power from a nearby generating facility and uses a large power transformer to increase the voltage for transmission to distant locations. A transmission bus is used to distribute electric power to one or more transmission lines. There can also be a tap on the incoming power feed from the generation plant to provide electric power to operate equipment in the generation plant.

A substation can have circuit breakers that are used to switch generation and transmission circuits in and out of service as needed or for emergencies requiring shut-down of power to a circuit or redirection of power.

The specific voltages leaving a step-up transmission substation are determined by the customer needs of the utility supplying power and to the requirements of any connections to regional grids. Typical voltages are:  TOP

High voltage (HV) ac: 69 kV, 115 kV, 138 kV, 161 kV, 230 kVExtra-high voltage (EHV) ac: 345 kV, 500 kV, 765 kVUltra-high voltage (UHV) ac: 1100 kV, 1500 kV

Page 21: Electric power substation

Direct-current high voltage (dc HV): ±250 kV, ±400 kV, ±500 kV

Direct current voltage is either positive or negative polarity. A DC line has two conductors, so one would be positive and the other negative.

Figure 2. Step-up AC transmission substation

  

Figure 3. Step-up transmission substation to

AC transmission lines

Step-down Transmission Substation

Step-down transmission substations are located at switching points in an electrical grid. They connect different parts of a grid and are a source for subtransmission lines or distribution lines. The step-down substation can change the transmission voltage to a subtransmission voltage, usually 69 kV. The subtransmission voltage lines can then serve as a source to distribution substations. Sometimes, power is tapped from the subtransmission line for use in an industrial facility along the way. Otherwise, the power goes to a distribution substation.  TOP

Page 22: Electric power substation

Figure 4. Step-down transmission substation

Figure 5. Step-down power transformer

Distribution Substation

Distribution substations are located near to the end-users. Distribution substation transformers change the transmission or subtransmission voltage to lower levels for use by end-users. Typical distribution voltages vary from 34,500Y/19,920 volts to 4,160Y/2400 volts.

34,500Y/19,920 volts is interpreted as a three-phase circuit with a grounded neutral source. This would have three high-voltage conductors or wires and one grounded neutral conductor, a total of four wires. The voltage between the three phase conductors or wires would be 34,500 volts and the voltage between one phase conductor and the neutral ground would be 19,920 volts.

From here the power is distributed to industrial, commercial, and residential customers.TOP

Page 23: Electric power substation

Figure 6. Distribution substation

Figure 7. Distribution substation

Figure 8. Distribution substation

Figure 9. Distribution substation

Underground Distribution Substation

Underground distribution substations are also located near to the end-users. Distribution substation transformers change the subtransmission voltage to lower levels for use by end-users. Typical distribution voltages vary from 34,500Y/19,920 volts to 4,160Y/2400 volts.

An underground system may consist of these parts: TOP

Page 24: Electric power substation

Conduits               

  Duct Runs

  Manholes

  High-Voltage Underground Cables

  Transformer Vault

  Riser

  Transformers

From here the power is distributed to industrial, commercial, and residential customers.

Substation Functions

Substations are designed to accomplish the following functions, although not all substations have all these functions: TOP

Change voltage from one level to another 

Regulate voltage to compensate for system voltage changes 

Switch transmission and distribution circuits into and out of the grid system 

Measure electric power qualities flowing in the circuits 

Connect communication signals to the circuits 

Eliminate lightning and other electrical surges from the system 

Connect electric generation plants to the system 

Figure 10. Underground Distribution Substation

Page 25: Electric power substation

  Make interconnections between the electric

systems of more than one utility 

Control reactive kilovolt-amperes supplied to and the flow of reactive kilovolt-amperes in the circuits

Additional information: The Lineman's and Cableman's Handbook,

Shoemaker, T. M., Mack, J. E., Tenth Edition 2002, McGraw-Hill.

Substation Equipment

The major components of a typical substation are:TOP

Air Circuit Breaker

Distribution Bus Potheads

Batteries Duct Runs Power-line Carrier  

Bus Support Insulators

Frequency Changers

Power Transformers

Capacitor Bank Grounding Resistors

Rectifiers

Circuit Switchers Grounding Transformers

Relays

Concrete Foundation

High-Voltage Underground

SF6 Circuit Breakers

Page 26: Electric power substation

Cables

Conduits High-Voltage Fuses

Shunt Reactors

Control House Lightning Arresters

Steel Superstructures

Control Panels Manholes Supervisory Control

Control Wires Metal-clad Switchgear

Suspension Insulators

Converter Stations

Meters Synchronous Condensers

Coupling Capacitors  

Microwave Transmission Bus

Current Transformers

Oil Circuit Breakers

Vacuum Circuit Breakers

Disconnect Switches

Potential Transformers

 

Additional information: The Lineman's and Cableman's Handbook,

Shoemaker, T. M., Mack, J. E., Tenth Edition 2002, McGraw-Hill.

Air Circuit Breakers

Air circuit breakers are used to interrupt circuits while current flows through them. Compressed air is used to quench the arc when the connection is broken.

Figure 1. Air circuit breaker

  Batteries

Page 27: Electric power substation

Batteries are used in the substation control house as a backup to power the control systems in case of a power blackout.

Figure 1. Backup batteries in the control house

Bus Support Insulators

Bus support insulators are porcelain or fiberglass insulators that serve to isolate the bus bar switches and other support structures and to prevent leakage current from flowing through the structure or to ground. These insulators are similar in function to other insulators used in substations and transmission poles and towers.

Figure 1. Bus support insulators

  Capacitor Bank

Page 28: Electric power substation

Capacitors are used to control the level of the voltage supplied to the customer by reducing or eliminating the voltage drop in the system caused by inductive reactive loads.

Figure 1. Capacitor bank, end view Figure 2. Capacitor bank, side view

Circuit Switchers

Circuit switchers provide equipment protection for transformers, lines, cables, and capacitor banks. They also are used to energize and deenergize capacitor banks and other circuits.

Page 29: Electric power substation

Figure 1. Circuit switchers Figure 2. Circuit switcher

Control House

The substation control house contains switchboard panels, batteries, battery chargers, supervisory control, power-line carrier, meters, and relays. The control house provides all weather protection and security for the control equipment. It is also called a doghouse.

Figure 1. Control house

Page 30: Electric power substation

Figure 2. Substation control house Figure 3. Control house

Control Panels

Control panels contain meters, control switches and recorders located in the control building, also called a doghouse. These are used to control the substation equipment, to send power from one circuit to another or to open or to to shut down circuits when needed.

Figure 1. Substation control panel Figure 2. Substation control panel, detail

Converter Stations

Converter stations are located at the terminals of a DC transmission line. Converter stations can change alternating current into direct current or change direct current to alternating current. Sometimes converter stations are located at a generation power plant or at

Page 31: Electric power substation

transmission substations. Two unsynchronized AC transmission systems can be connected together with converter stations.

Converter stations are also found in most substations for converting the emergency battery back-up system to AC power for use in an emergency.

Figure 1. Converter station in battery room

Coupling Capacitors

Coupling capacitors are used to transmit communication signals to transmission lines. Some are used to measure the voltage in transmission lines. In signal transmission the coupling capacitor is part of a power line carrier circuit as shown in the schematic below. A coupling capacitor is used in this circuit in conjunction with a line trap. Line traps can be installed at the substation or on a transmission line tower.

Figure 1. Power line carrier schematic showing use of coupling capacitors

Page 32: Electric power substation

Figure 2. Primary coupling capacitor

Figure 3. Substation line traps

Current Transformers

Current transformers can be used to supply information for measuring power flows and the electrical inputs for the operation of protective relays associated with the transmission and distribution circuits or for power transformers. These current transformers have the primary winding connected in series with the conductor carrying the current to be measured or controlled. The secondary winding is thus insulated from the high voltage and can then be connected to low-voltage metering circuits.

Current transformers are also used for street lighting circuits. Street lighting requires a constant current to prevent flickering lights and a current transformer is used to provide that constant current. In this case the current transformer utilizes a moving secondary coil to vary the output so that a constant current is obtained.

Page 33: Electric power substation

Figure 1. Metering current transformers

Figure 2. Pole type constant

current transformer

Figure 3. 400 kV current transformer

Disconnect Switches

Disconnect switches or circuit breakers are used to isolate equipment or to redirect current in a substation. Many different types of disconnect switches are shown below.

Page 34: Electric power substation

Figure 1. Disconnect switches on an outgoing distribution circuit

Figure 2. Motorized disconnect switch (circuit breaker)

Figure 3. Motorized circuit breaker – control box Figure 4. Motorized circuit breaker - switch detail

Page 35: Electric power substation

Figure 5. Substation motorized grounding switches

Distribution Bus

A distribution bus is a steel structure array of switches used to route power out of a substation.

Page 36: Electric power substation

Figure 1. Distribution bus

Figure 2. Distribution bus

Frequency Changers

A frequency changer is a motor-generator set that changes power of an alternating current system from one frequency to one or more different frequencies, with or without a change in the number of phases, or in voltage. Sometimes a converter is used to accomplish this.

Figure 1. Frequency changers at a transportation substation

Grounding Resistors

Grounding Resistors are designed to provide added safety to industrial distribution systems

Page 37: Electric power substation

by limiting ground fault current to reasonable levels. They are usually connected between earth ground and the neutral of power transformers, power generators or artificial neutral transformers. Their main purpose is to limit the maximum fault current to a value which will not damage generating, distribution or other associated equipment in the power system, yet allow sufficient flow of fault current to operate protective relays to clear the fault.

Figure 1. Grounding resistor

Grounding Transformers

A grounding transformer is intended primarily to provide a neutral point for grounding purposes. It may be provided with a delta winding in which resistors or reactors are connected.

Figure 1. Grounding transformer - front view Figure 2. Grounding transformer - back view

Page 38: Electric power substation

High-Voltage Underground Cables

High-Voltage underground cables are constructed in many different ways, but are usually shielded cables. They are made with a conductor, conductor-strand shielding, insulation, semi-conducting insulation shielding, metallic insulation shielding, and a sheath. The sheath can be metallic and may then serve as the metallic insulation shielding and be covered with a nonmetallic jacket to protect the sheath. This sheath helps to reduce or eliminate inductive reactance. Such cables are commonly used in circuits operating at 2400 volts or higher.

Figure 1. High-voltage underground cables Figure 2. High-voltage underground cables

High Voltage Fuses

High voltage fuses are used to protect the electrical system in a substation from power transformer faults. They are switched for maintenance and safety.

Page 39: Electric power substation

Figure 1. High voltage fuses in a switch box

Figure 2. External switch for high voltage fuses

Lightning Arresters

Lightning arresters  are protective devices for limiting surge voltages due to lightning strikes or equipment faults or other events, to prevent damage to equipment and disruption of service. Also called surge arresters.

Lightning arresters are installed on many different pieces of equipment such as power poles and towers, power transformers, circuit breakers, bus structures, and steel superstructures in substations.

Page 40: Electric power substation

Figure 1. Lightning arresters on bus structuresFigure 2. Lightning arrester on distribution pole

transformer

Figure 3. Lightning arresters

Figure 4. Lightning arrester on substation power transformer

Manholes

Page 41: Electric power substation

A manhole is the opening in the underground duct system which houses cables splices and which cablemen enter to pull in cable and to make splices and tests. Also called a splicing chamber or cable vault.

Figure 1. Manholes

Figure 2. Manhole cover

Meters

Various types of meters are found in substation control houses. They all are measuring devices and can be an indicating meter or a recording meter. An indicating meter shows on a dial the quantity being measured. A recording meter makes a permanent record of the quantity being measured, usually by tracing a line on a chart or graph. Newer recording meters store the information electronically. The photo below left is an indicating amperage meter. On the right is a recording meter.

Figure 2. Recording power meter

Page 42: Electric power substation

Figure 1. An indicating AC amperes meter

Microwave

Substations commonly use microwave communication equipment for communication with local and regional electric power system control centers. This system allows for rapid communication and signaling for controlling the routing of power.

Electric power for microwave transmission comes from special transformers that reduce incoming transmission voltage to that required for the microwave system.

Figure 1. Substation microwave communication tower

Figure 2. Microwave power transformers

Oil Circuit Breakers

Oil circuit breakers are used to switch circuits and equipment in and out of a system in a substation. They are oil filled to provide cooling and to prevent arcing when the switch is activated.

Page 43: Electric power substation

Figure 1. Oil circuit breakers in a 41 kV circuit

Figure 2. Oil circuit breakers in a distribution circuit

Potential Transformers

Potential transformers are required to provide accurate voltages for meters used for billing industrial customers or utility companies.

Figure 1. Potential transformers Figure 2. Potential transformer

Page 44: Electric power substation

Potheads

A type of insulator with a bell or pot-like shape used to connect underground electrical cables to overhead lines. It serves to separate the bunched-up conductors from one another in the cable to the much wider separation in the overhead line. It also seals the cable end from the weather. Potheads are mounted on a distribution pole and the assembly is called a riser pole.

Figure 1. Three conductor potheads on pole

Figure 2. Three conductor pothead Figure 3. Potheads on pole

Page 45: Electric power substation

Power-line Carrier

A power line carrier is communication equipment that operates at radio-frequencies, generally below 600 kilohertz, to transmit information over electric power transmission lines.  A high frequency signal is superimposed on the normal voltage on a power circuit. The power line carrier is usually coupled to the power line by means of a coupling capacitor in conjunction with a line trap.

A device for producing radio-frequency power for transmission on power lines.

Figure 1. Power-line carrier schematic

Figure 2. Power-line carrier device in control house

Power Transformers

Power transformers raise or lower the voltage as needed to serve the transmission or distribution circuits.

Page 46: Electric power substation

Figure 1. Power transformer, back view

Figure 2. Large power transformers

Figure 3. Power Transformer, front view

Figure 4. Step-up transformer diagram

Rectifiers

A rectifier is a device used to convert alternating current to direct current.

Page 47: Electric power substation

Figure 1. Full wave rectifier circuit diagram Figure 2. Rectifier

Relays

A relay is a low-powered device used to activate a high-powered device. Relays are used to trigger circuit breakers and other switches in substations and transmission and distribution systems.

Figure 1. Substation control panel relays

Figure 2. Relay and control panel

Page 48: Electric power substation

SF6 Circuit Breakers

SF6 circuit breakers operate to switch electric circuits and equipment in and out of the system. These circuit breakers are filled with compressed sulfur-hexafluoride gas which acts to open and close the switch contacts. The gas also interrupts the current flow when the contacts are open.

Figure 1. SF6 gas power circuit breaker

Figure 2. SF6 gas power circuit breaker

Shunt Reactors

Shunt reactors are used in an extra high-voltage substation to neutralize inductive reactance in long EHV transmission lines. The photo shows an installation of both an older version and a newer version of the reactor.

Page 49: Electric power substation

Figure 1. Shunt reactors in a substation

Steel Superstructures

Steel superstructures are used to support equipment, lines, and switches in substations as well as transmission and distribution line towers and poles.

Figure 1. Steel superstructure for circuit breakers

Figure 2. Substation with many steel superstructures for equipment and connection supports

Page 50: Electric power substation

Supervisory Control

Supervisory control refers to equipment that allows for remote control of a substation's functions from a system control center or other point of control. Supervisory control can be used to:

operate circuit breakers, operate tap changers on power transformers, supervise the position and condition of equipment, and telemeter the quantity of energy in a circuit or in substation equipment.

Figure 1. Supervisory control room

Figure 2. Supervisory control panel

Suspension Insulators

An insulator type usually made of porcelain that can be stacked in a string and hangs from a cross arm on a tower or pole and supports the line conductor. Suspension insulators are used for very high voltage systems when it is not practical or safe to use other types of insulators. They have an advantage in that one or more of the insulators in a string can be changed out without replacing the entire string.

Figure 1. Suspension insulators

Page 51: Electric power substation

Figure 2. Suspension insulators Figure 3. Suspension insulators

Synchronous Condensers

A synchronous condenser is a synchronous machine running without mechanical load and supplying or absorbing reactive power to or from a power system. Also called a synchronous capacitor, synchronous compensator or rotating machinery.

In November 1995, the first static synchronous compensator began operating at a TVA substation in Knoxville, Tennessee. This compensator can regulate voltage without expensive external capacitors or reactors.

Figure 1. Synchronous condenser

Transmission Bus

Transmission buses are steel structure arrays of switches used to route power into a

Page 52: Electric power substation

substation.

Figure 1. Transmission bus

Figure 2. Transmission bus from inside

Vacuum Circuit Breakers

A circuit breaker is a device used to complete, maintain, and interrupt currents flowing in a circuit under normal or faulted conditions. A vacuum circuit breaker utilizes a vacuum to extinguish arcing when the circuit breaker is opened and to act as a dielectric to insulate the contacts after the arc is interrupted. One type of circuit breaker is called a recloser. A vacuum recloser is designed to interrupt and reclose an AC current circuit automatically, and can be designed to cycle a set number of times before it must be reset manually.

Figure 1. Vacuum circuit breaker, inside

Page 53: Electric power substation

Figure 2. Vacuum circuit breaker, outside

Transformer Vault

A  transformer vault is a structure or room in which power transformers, network protectors, voltage regulators, circuit breakers, meters, etc. are housed. 

Figure 1. An underground transformer vault

Transformer - Underground

An underground transformer is essentially the same as an aboveground transformer, but is constructed for the particular needs of underground installation. Vault type, pad-mounted, submersible, and direct-buried transformers are used in underground systems. Pad-mounted transformers are installed on a concrete pad on the surface near the end-user.

Page 54: Electric power substation

Figure 1. Pad-mounted transformer for underground system

Figure 2. Transformer in underground vault

  DISTRIBUTION

Distribution Feeder Circuits

Distribution feeder circuits are the connections between the output terminals of a distribution substation and the input terminals of primary circuits. The distribution feeder circuit conductors leave the substation from a circuit breaker or circuit recloser via underground cables, called substation exit cables. The underground cables connect to a nearby overhead primary circuit outside the substation. This eliminates multiple circuits on the poles adjacent to the substations thereby improving the overall appearance of the substation.

Several distribution feeder circuits can leave a substation extending in different directions to serve customers. The underground cables are connected to the primary circuit via a nearby riser pole.

The distribution feeder bay routes power from the substation to the distribution primary feeder circuits.

In the photo of the distribution main feeder the primary circuit is fed underground to a nearby distribution system overhead line. The yellow cables are the primary feeder lines going underground.

Page 55: Electric power substation

Figure 1. 3-phase distribution feeder bay

Figure 2. Distribution main feeder 

Figure 3. Distribution feeder recloser

 

Distribution Transformers

Distribution transformers reduce the voltage of the primary circuit to the voltage required by customers. This voltage varies and is usually:

120/240 volts single phase for residential customers, 

480Y/277 or 208Y/120 for commercial or light industry customers.

Three-phase pad mounted transformers are used with an underground primary circuit and three single-phase pole type transformers for overhead service.

Network service can be provided for areas with large concentrations of businesses. These are usually transformers installed in an underground vault. Power is then sent via underground cables to the separate customers.

Page 56: Electric power substation

Figure 1. Air Distribution transformer - commercial facility

Figure 2. Industrial facility distribution transformer

Figure 3. Residential distribution transformer

Figure 4. Pad-mounted residential distribution transformer

 

Primary Circuits

Primary circuits are the distribution circuits that carry power from substations to local load areas. They are also called express feeders or distribution main feeders. The distribution feeder bay routes power from the substation to the distribution primary feeder circuits.

In the photo of the distribution main feeder the primary circuit is fed underground to a nearby distribution system overhead line. The yellow cables are the primary feeder lines going underground.

Page 57: Electric power substation

Figure 1. 3phase distribution feeder bayFigure 2. Distribution main feeder

Figure 3. Overhead primary feeder Figure 4. Distribution primary feeder underbuild

    Protective Equipment

Protective equipment in a distribution system consists of protective relays, cutout switches, disconnect switches, lightning arresters, and fuses. These work individually or may work in concert to open circuits whenever a short circuit, lightning strikes or other disruptive event occurs.

When a circuit breakers opens, the entire distribution circuit is deenergized. Since this can disrupt power to many customers, the distribution system is often designed with many layers

Page 58: Electric power substation

of redundancy. Through redundancy, power can be shut off in portions of the system only, but not the entire system, or can be redirected to continue to serve customers. Only in extreme events, or failure of redundant systems, does an entire system become deenergized, shutting off power to large numbers of customers.

The redundancy consists of the many fuses and fused cutouts throughout the system that can disable parts of the system but not the entire system. Lightning arresters also act locally to drain off electrical energy from a lightning strike so that the larger circuit breakers are not actuated.

Figure 1. Substation bus lightning arresters

Figure 2. Fused cut-out

Figure 4. Pole mounted type - lightning arrester

Figure 5. Air-break isolator switch

Page 59: Electric power substation

Figure 3. Substation disconnect switch

Figure 6. Non load-break fuse

Figure 7. Load-break fuse

 

Secondaries

Secondaries are the conductors originating at the low-voltage secondary winding of a distribution transformer. Secondaries for residential service are three-wire single-phase circuits. They extend along the rear lot lines, alleys, or streets past customer's premises. The secondaries can be overhead lines or underground lines. 

Overhead secondary lines are usually strung below the primary lines and typically in a vertical plane. When secondaries are strung in a vertical plane, they are directly attached to the support pole one above the other. This is in contrast to the primary lines which are often strung on a cross bar or other attachment in a horizontal or "V" shaped plane.

Page 60: Electric power substation

Figure 1. Cabled secondaries

Figure 2. Secondaries in a vertical plane

Figure 3. Cabled secondaries, primaries in a "V" plane

 

Services

The wires extending from the secondaries or distribution transformer to a customer's location are called a service. A service can be above or below ground. Underground services have a riser connection at the distribution pole. Commercial and residential services are much the same and can be either 120 or 220 or both.

Figure 1. Distribution system lines and associated equipment

Figure 2. Service line to residence

Page 61: Electric power substation

Figure 3. Commercial service

Figure 4. Secondary to underground service via a riser

 

Switches

Distribution systems have switches installed at strategic locations to redirect or cut-off power flows for load balancing or sectionalizing. Also, this permits repairing of damaged lines or equipment or upgrading work on the system. The many types of switches include:

circuit-breaker switches single-pole disconnect switches three-pole group-operated switches pad-mounted switchgear

Figure 1. Air circuit-breaker switches

Figure 2. Air-break isolator switch

Page 62: Electric power substation

Figure 3. Circuit switchers Figure 4. Single-pole disconnect switch combinedwith a fuse is called a fused cutout

 

Figure 5. Circuit breakers  

Figure 6. Pad mounted switchgear

Page 63: Electric power substation

Figure 7. Group-operated three-pole air break switch