electrical quantum engineering with superconducting circuits · p. bertet & r. heeres spec, cea...

101
P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00 01 switching probability swap duration (ns) 10 Electrical quantum engineering with superconducting circuits

Upload: others

Post on 15-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

P. Bertet & R. HeeresSPEC, CEA Saclay (France),

Quantronics group

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

11

00

01

switc

hing

pro

babi

lity

swap duration (ns)

10

Electrical quantum engineering with superconducting circuits

Page 2: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

1) Introduction: Hamiltonian of an electrical circuit2) The Cooper-pair box3) Decoherence of superconducting qubits

1) Readout using a resonator2) Amplification & Feedback3) Quantum state engineering

1) Coupling schemes2) Two-qubit gates and Grover algorithm3) Elementary quantum error correction

Page 3: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

CIRCUIT QED

Rationale for the hybrid way

Page 4: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Rationale for the hybrid way

COMBINING QUANTUMSYSTEMS

FOR NOVELQUANTUMDEVICES

CIRCUIT QED

Page 5: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Rationale for the hybrid way

G. Kurizki et al., PNAS (2015)

Page 6: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

This lecture : spins / superconducting circuits

SUPERCONDUCTINGCIRCUITS SPINS IN SOLIDS+

Page 7: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

These lectures : spins / superconducting circuits

• Superconducting circuits to improve spin detection• Superconducting circuits to mediate interaction between spins• Spins to store quantum information from superconducting qubits• Spins to convert superconducting qubit state into optical photons

Superconducting qubits- Macroscopic circuits (100s µm)- Easily controlled, entangled, readout- Ultimate microwave detectors

Spins in crystals- Long coherence times (1s – 6hrs)- Optical transitions

Page 8: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

1) Introduction: Hamiltonian of an electrical circuit2) The Cooper-pair box3) Decoherence of superconducting qubits

1) Readout using a resonator2) Amplification & Feedback3) Quantum state engineering

1) Coupling schemes2) Two-qubit gates and Grover algorithm3) Elementary quantum error correction

1) Spins for hybrid quantum devices2) Circuit-QED-enabled high-sensitivity magnetic resonance3) Spin-ensemble quantum memory for superconducting qubit

Page 9: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

• Long coherence times

Electron spin

Nuclear spins

Nuclear-spin-free host crystal

Nuclear spin bath

Decoherence

• Carbon : 12C has no nuclear spins, 13C has spin ½ but 1.1% nat. Abundance• Silicon : 28Si has no nuclear spins, 29Si has spin ½ but 4.7% nat. Abundance• Both materials can be isotopically purified : magnetically silent crystals

Page 10: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

• Long coherence times

• Low dc magnetic field for compatibility with superconducting circuits

Spins 𝜔𝜔𝑠𝑠(𝐵𝐵0)

Superconducting resonator / circuit 𝜔𝜔0

Need 𝜔𝜔𝑠𝑠 𝐵𝐵0 = 𝜔𝜔0….

But large 𝐵𝐵0 causes vorticesMicrowave losses ! (even w. parallel field)

Aluminum : 𝐵𝐵0 ≤ 100 GsNiobium : 𝐵𝐵0 ≤ 1 TNbTiN : 𝐵𝐵0 ≤ 5 T

Circuits with Josephson junctions ? Probably 𝐵𝐵0 ≤ 100 Gs

Nuclear-spin-free host crystal

Page 11: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spins for hybrid quantum devices

Which spin systems ???

Desired features :

• Long coherence times

• Low dc magnetic field for compatibility with superconducting circuits

Nuclear-spin-free host crystal

Nitrogen-vacancy centersin diamond

Bismuth donorsin silicon

209Bie-

Page 12: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Nitrogen-Vacancy (NV-) centers in diamond

V

Conduction

Valence

NV ground

NV excited • Excite in green

• Fluorescence in red (637nm)

Gruber et al., Science 276, 2012 (1997)1 µm

Single NV

Detection at the single emitter level at 300K using confocal microscopy

637nm

Page 13: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spin-dependent photoluminescence

Ground state is spin triplet, solid-state spin-qubit

3E

3A2.88 GHz

Optical pumping leads to strong polarization in ms=0

Spin-dependent photoluminescence : Optical detection of magnetic resonance (ODMR)

1A

Dm=0

Page 14: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

In all these lectures, we use dimensionless spin operators

�𝑺𝑺 = �𝓢𝓢/ℏSpin ½

��𝑆𝑧𝑧 =12

1 00 −1 =

12�𝜎𝜎𝑧𝑧

��𝑆𝑥𝑥 =12

0 11 0 =

12 �𝜎𝜎𝑥𝑥

��𝑆𝑦𝑦 =12

0 −𝑖𝑖𝑖𝑖 0 =

12 �𝜎𝜎𝑦𝑦

Spin 1

��𝑆𝑧𝑧 =1 0 00 0 00 0 −1

��𝑆𝑥𝑥 =12

0 1 01 0 10 1 0

��𝑆𝑦𝑦 =12

0 −𝑖𝑖 0𝑖𝑖 0 −𝑖𝑖0 𝑖𝑖 0

Magnetization of a spin : �𝑴𝑴 = 𝛾𝛾ℏ�𝑺𝑺

GYROMAGNETIC RATIO𝛾𝛾𝑒𝑒2𝜋𝜋

= 28 GHz/T for a free electron

Spin Hamiltonian : Notations

Page 15: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spin Hamiltonian

ω-

ω+

D/2π = 2.878 GHz

ω- ω+

D/2π=2.878 GHz

B0 (mT)

S=1

ZERO-FIELD SPLITTING

ZEEMAN SPLITTING

𝐻𝐻ℏ

= 𝐷𝐷𝑆𝑆𝑧𝑧2 − 𝛾𝛾𝑒𝑒𝑩𝑩𝟎𝟎 ⋅ 𝑺𝑺 + 𝐸𝐸 𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2 + 𝐴𝐴𝑺𝑺 ⋅ 𝑰𝑰 + 𝑄𝑄𝐼𝐼𝑧𝑧2

STRAIN-INDUCED SPLITTING

HYPERFINE INT. WITH 14N

Quadrupole14N

Page 16: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spin Hamiltonian

ω-

ω+

D/2π = 2.878 GHz

ω- ω+

D/2π=2.878 GHz

B0 (mT)

S=1

ZERO-FIELD SPLITTING

ZEEMAN SPLITTING

𝐻𝐻ℏ

= 𝐷𝐷𝑆𝑆𝑧𝑧2 − 𝛾𝛾𝑒𝑒𝑩𝑩𝟎𝟎 ⋅ 𝑺𝑺 + 𝐸𝐸 𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2 + 𝐴𝐴𝑺𝑺 ⋅ 𝑰𝑰 + 𝑄𝑄𝐼𝐼𝑧𝑧2

STRAIN-INDUCED SPLITTING

HYPERFINE INT. WITH 14N

Quadrupole14N

Page 17: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spin Hamiltonian

ω-

ω+

D/2π = 2.878 GHz

ZERO-FIELD SPLITTING

ZEEMAN SPLITTING

𝐻𝐻ℏ

= 𝐷𝐷𝑆𝑆𝑧𝑧2 − 𝛾𝛾𝑒𝑒𝑩𝑩𝟎𝟎 ⋅ 𝑺𝑺 + 𝐸𝐸 𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2 + 𝐴𝐴𝑺𝑺 ⋅ 𝑰𝑰 + 𝑄𝑄𝐼𝐼𝑧𝑧2

B0 (mT)

STRAIN-INDUCED SPLITTING

S=1

I=1

HYPERFINE INT. WITH 14N

ω- ω+

D/2π=2.878 GHz

Quadrupole14N

Page 18: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Hyperfine ODMR spectrum

14N

14N

13C+

14N13C+13C+

zoom

Page 19: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Decoherence mechanisms in spins (1) : energy relaxa

| ↑⟩

| ↓⟩Γ1 = 1/𝑇𝑇1

Γ1 = Γ1,𝑟𝑟𝑟𝑟𝑟𝑟 + Γ1,𝑝𝑝𝑝≃ Γ1,𝑝𝑝𝑝

Page 20: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Decoherence mechanisms in spins (1) : energy relaxa

| ↑⟩

| ↓⟩Γ1 = 1/𝑇𝑇1

Γ1 = Γ1,𝑟𝑟𝑟𝑟𝑟𝑟 + Γ1,𝑝𝑝𝑝≃ Γ1,𝑝𝑝𝑝

In free space, and at X-band frequencies (7 − 9GHz), Γ1,𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 10−16𝑠𝑠−1

For NV in diamond: @300K Γ1,𝑝𝑝𝑝 ∼ 300𝑠𝑠−1 i.e. 𝑇𝑇1 = 3𝑚𝑚𝑠𝑠@20mK Γ1,𝑝𝑝𝑝 ≪ 10−2𝑠𝑠−1 i.e. 𝑇𝑇1 ≫ 100𝑠𝑠

AT LOW TEMPERATURES, ENERGY RELAXATION IS IN GENERAL NEGLIG

Page 21: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Decoherence mechanisms in spins (2) : dephasing

| ↑⟩

| ↓⟩𝜔𝜔𝑠𝑠 = −𝛾𝛾𝑒𝑒(𝐵𝐵0+𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙)

𝐵𝐵0𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙2

SPIN-BATH : paramagnetic impurities or nuclear spins

• Due to spin bath, spins of same species have slightly different frequenc(inhomogeneous broadening)

𝜌𝜌(𝜔𝜔)

𝜔𝜔

Page 22: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Decoherence mechanisms in spins (2) : dephasing

| ↑⟩

| ↓⟩𝜔𝜔𝑠𝑠(𝑡𝑡) = −𝛾𝛾𝑒𝑒(𝐵𝐵0+𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))

𝐵𝐵0𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙2(t)

SPIN-BATH : paramagnetic impurities or nuclear spins

𝜌𝜌(𝜔𝜔)

𝜔𝜔

• Due to spin bath, spins of same species have slightly different frequenc(inhomogeneous broadening)

• Dephasing is due to the slow evolution of the spin-bath underflip-flop events

Page 23: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Various coherence times

π/2π/2

MEASURE ⟨𝑆𝑆𝑧𝑧⟩

Ramsey pulse sequenceSensitive to inhomogeneous broadening + slow noiseT

𝑆𝑆𝑥𝑥 = 𝑒𝑒− 𝑇𝑇𝑻𝑻𝟐𝟐∗

𝛼𝛼

𝛼𝛼 ∼ 2

ππ/2

MEASURE ⟨𝑆𝑆𝑧𝑧⟩

Hahn-echo pulse sequenceInsensitive to static noise

T

𝑆𝑆𝑥𝑥 = 𝑒𝑒−2𝑇𝑇𝑻𝑻𝟐𝟐

𝜷𝜷

π/2

T

𝛽𝛽 ∼ 2 − 3

ππ/2

MEASURE ⟨𝑆𝑆𝑧𝑧⟩

Dynamical decoupling pulse sequencInsensitive to low-frequency noise

𝑆𝑆𝑥𝑥 = 𝑒𝑒−𝑁𝑁𝑇𝑇𝑻𝑻𝟐𝟐𝟐𝟐𝟐𝟐

𝜸𝜸

π/2T

𝛾𝛾 ∼ 2 − 3

π

…T T T

Because spin-bath is slow, in general 𝑇𝑇2∗ ≪ 𝑇𝑇2 ≪ 𝑇𝑇2𝐷𝐷𝐷𝐷

Page 24: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Hahn echo on NVs in isotopically purified diamond

Ramsey fringe sequence

G. Balasubramyan et al., Nature Materials (2008)

Hahn echo

𝑇𝑇2∗ = 7𝜇𝜇𝑠𝑠 𝑇𝑇2 = 2𝑚𝑚𝑠𝑠

Typical : ⁄𝑇𝑇2 𝑇𝑇2∗ ∼ 100

Page 25: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Summary : NV centers for hybrid quantum devices

• Single electron trapped in a diamond lattice

• Can be operated in 𝐵𝐵0 ∼ 0 − 10Gs because of zero-field splitting

• Long coherence times possible in ultra-pure crystals

• Can be optically reset in its ground state

• Individual NVs / ensembles can be characterized at 300K with ODMR

Page 26: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Bismuth donors in silicon

Bi+

e-

209Bi

Page 27: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Bismuth donors in silicon

Bi+

e-

209Bie-

Same Hamiltonian as P:Si (cf M. Pioro lectures)

𝐻𝐻ℏ = 𝑩𝑩𝟎𝟎 ⋅ (−𝛾𝛾𝑒𝑒𝑺𝑺 − 𝛾𝛾𝑛𝑛𝑰𝑰) + 𝐴𝐴𝑰𝑰 ⋅ 𝑺𝑺

ZEEMAN EFFECTHYPERFINE

Two differences : • Nuclear spin I=9/2• Large hyperfine coupling 𝐴𝐴

2𝜋𝜋= 1.4754GHz

• Useful to introduce 𝑭𝑭 = 𝑰𝑰 + 𝑺𝑺 the total angular momentum• Note : 𝐻𝐻,𝐹𝐹𝑧𝑧 = 0 so that energy eigenstates are always states with

well-defined 𝑚𝑚𝐹𝐹 = 𝑚𝑚𝑆𝑆 + 𝑚𝑚𝐼𝐼

Page 28: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

0.1 0.2 0.3 0.4 0.5 0.6B0

10

5

0

5

10frequency GHz

Bi:Si energy levels

|1⟩

|9⟩

|10⟩

|20⟩

𝐻𝐻ℏ = 𝑩𝑩𝟎𝟎 ⋅ −𝛾𝛾𝑒𝑒𝑺𝑺 − 𝛾𝛾𝑛𝑛𝑰𝑰 + 𝐴𝐴𝑰𝑰 ⋅ 𝑺𝑺

Page 29: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

0.1 0.2 0.3 0.4 0.5 0.6B0

10

5

0

5

10frequency GHz

LOW-FIELD 𝛾𝛾𝑒𝑒𝐵𝐵0 ≪ 𝐴𝐴Eigenstates of ∼ |𝑭𝑭,𝒎𝒎𝑭𝑭⟩

F=5

F=4

|1⟩

|9⟩

|10⟩

|20⟩

Hybridized eletro-nuclear spin states𝛼𝛼 −1/2,𝑚𝑚𝐼𝐼 + 𝛽𝛽| + ⁄1 2 ,𝑚𝑚𝐼𝐼 − 1⟩

𝐻𝐻ℏ = 𝑩𝑩𝟎𝟎 ⋅ −𝛾𝛾𝑒𝑒𝑺𝑺 − 𝛾𝛾𝑛𝑛𝑰𝑰 + 𝐴𝐴𝑰𝑰 ⋅ 𝑺𝑺The low-field limit

11 states

9 states

Page 30: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

0.1 0.2 0.3 0.4 0.5 0.6B0

10

5

0

5

10frequency GHz

F=5

F=4

|1⟩

|9⟩

|10⟩

|20⟩

𝐻𝐻ℏ = 𝑩𝑩𝟎𝟎 ⋅ −𝛾𝛾𝑒𝑒𝑺𝑺 − 𝛾𝛾𝑛𝑛𝑰𝑰 + 𝐴𝐴𝑰𝑰 ⋅ 𝑺𝑺The low-field limit

11 states

9 states

10 « allowed » transitions at low field

Page 31: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Summary : Bismuth donors in Silicon for hybrid quantum device

• Single electron trapped in a silicon lattice

• Can be operated in 𝐵𝐵0 ∼ 0 − 10Gs because of large hyperfine interaction

• Long coherence times in isotopically purified silicon

• Rich level diagram (naturally occurring λ transitions)

Bie-

Page 32: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

B0

Spin-LC resonator coupling

SPIN

L

C/2 C/2

�𝑩𝑩𝟏𝟏 = 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

𝜔𝜔0 = 1/ 𝐿𝐿𝐿𝐿

Page 33: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

B0

Spin-LC resonator coupling

SPIN

L

C/2 C/2

𝜔𝜔0 = 1/ 𝐿𝐿𝐿𝐿

𝑩𝑩𝟏𝟏(𝒕𝒕) = 𝜹𝜹𝑩𝑩𝟏𝟏(𝛼𝛼𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡 + 𝛼𝛼∗𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡)Pin

𝑩𝑩𝟏𝟏

Classical drive

𝛼𝛼 = �𝑛𝑛 =𝑃𝑃𝑖𝑖𝑛𝑛𝜅𝜅ℏ𝜔𝜔0

𝜅𝜅

PHOTON NUMBER

Page 34: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : 𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1

Spin-LC resonator coupling

Page 35: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : 𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1= −𝛾𝛾ℏ �𝑺𝑺 ⋅ 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

Spin-LC resonator coupling

Page 36: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : 𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1= −𝛾𝛾ℏ �𝑺𝑺 ⋅ 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,∥��𝑆𝑧𝑧 �𝑎𝑎 + �𝑎𝑎+ − 𝛾𝛾𝛾𝛾𝐵𝐵1,⊥��𝑆𝑥𝑥( �𝑎𝑎 + �𝑎𝑎+)

Spin-LC resonator coupling

�𝑺𝑺

𝜹𝜹𝑩𝑩𝟏𝟏𝛾𝛾𝐵𝐵1,∥

𝛾𝛾𝐵𝐵1,⊥

z

x

y

Page 37: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : 𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1= −𝛾𝛾ℏ �𝑺𝑺 ⋅ 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,∥��𝑆𝑧𝑧 �𝑎𝑎 + �𝑎𝑎+ − 𝛾𝛾𝛾𝛾𝐵𝐵1,⊥��𝑆𝑥𝑥( �𝑎𝑎 + �𝑎𝑎+)

Spin-LC resonator coupling

�𝑺𝑺

𝜹𝜹𝑩𝑩𝟏𝟏𝛾𝛾𝐵𝐵1,∥

𝛾𝛾𝐵𝐵1,⊥

z

x

y

Fast rotating term : neglected

Page 38: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : 𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1= −𝛾𝛾ℏ �𝑺𝑺 ⋅ 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,∥��𝑆𝑧𝑧 �𝑎𝑎 + �𝑎𝑎+ − 𝛾𝛾𝛾𝛾𝐵𝐵1,⊥��𝑆𝑥𝑥( �𝑎𝑎 + �𝑎𝑎+)

Spin-LC resonator coupling

�𝑺𝑺

𝜹𝜹𝑩𝑩𝟏𝟏𝛾𝛾𝐵𝐵1,∥

𝛾𝛾𝐵𝐵1,⊥

z

x

y

𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,⊥⟨0|��𝑆𝑥𝑥|1⟩(𝜎𝜎− + 𝜎𝜎+)( �𝑎𝑎 + �𝑎𝑎+)

Projection on{ 0 , |1⟩}

|0⟩

|1⟩∼ 𝜔𝜔0

Page 39: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

Interaction Hamiltonian : �𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡 = −�𝑴𝑴 ⋅ �𝑩𝑩1= −𝛾𝛾ℏ �𝑺𝑺 ⋅ 𝜹𝜹𝑩𝑩𝟏𝟏( �𝑎𝑎 + �𝑎𝑎+)

�𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,∥��𝑆𝑧𝑧 �𝑎𝑎 + �𝑎𝑎+ − 𝛾𝛾𝛾𝛾𝐵𝐵1,⊥��𝑆𝑥𝑥( �𝑎𝑎 + �𝑎𝑎+)

Spin-LC resonator coupling

�𝑺𝑺

𝜹𝜹𝑩𝑩𝟏𝟏𝛾𝛾𝐵𝐵1,∥

𝛾𝛾𝐵𝐵1,⊥

z

x

y

�𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ = −𝛾𝛾𝛾𝛾𝐵𝐵1,⊥⟨0|��𝑆𝑥𝑥|1⟩( �𝜎𝜎− + �𝜎𝜎+)( �𝑎𝑎 + �𝑎𝑎+)

Projection on{ 0 , |1⟩}

|0⟩

|1⟩∼ 𝜔𝜔0

�𝐻𝐻𝑖𝑖𝑛𝑛𝑡𝑡ℏ

= 𝑔𝑔 ( �𝜎𝜎− �𝑎𝑎+ + �𝜎𝜎+ �𝑎𝑎) 𝑔𝑔 = −𝛾𝛾𝛾𝛾𝐵𝐵1,⊥⟨0|��𝑆𝑥𝑥|1⟩Rotating-WaveApproximation

Page 40: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

�𝑩𝑩𝟏𝟏

𝛾𝛾𝐵𝐵1,⊥ ∼𝜇𝜇04𝜋𝜋𝑟𝑟

𝛾𝛾𝑖𝑖0 with 𝛾𝛾𝑖𝑖0 = 𝜔𝜔0ℏ2𝑍𝑍0

and 𝑍𝑍0 = 𝐿𝐿/𝐿𝐿

Coupling constant estimate (1) : Magnetic field fluctuatio

𝜹𝜹𝒊𝒊𝟎𝟎

CURRENT FLUCTUATIONS RESONATOR IMPEDANCE

For large coupling needresonators with

• High frequency 𝜔𝜔0 (but fixed by the spins !)• Low impedance i.e. low L and high C

In practice, for 2D resonators : 10Ω < 𝑍𝑍0 < 300Ω

Page 41: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Coupling constant estimate

r

𝜹𝜹𝒊𝒊𝟎𝟎

𝜹𝜹𝑩𝑩𝟏𝟏

Bi:Si (9-10) : 0 𝑆𝑆𝑥𝑥 1 = 0.47

NV centers : 0 𝑆𝑆𝑥𝑥 1 = 1/√2𝑔𝑔 = −𝛾𝛾𝑒𝑒𝛾𝛾𝐵𝐵1,⊥⟨0 ��𝑆𝑥𝑥 1⟩𝛾𝛾𝑒𝑒2𝜋𝜋 = −28𝐺𝐺𝐻𝐻𝐺𝐺/𝑇𝑇

𝛾𝛾𝐵𝐵1 ∼𝜇𝜇04𝜋𝜋𝜋𝜋

𝛾𝛾𝑖𝑖0

with 𝛾𝛾𝑖𝑖0 = 𝜔𝜔0ℏ

2𝑍𝑍0

NV centers 𝝎𝝎𝒔𝒔𝟐𝟐𝟐𝟐

=𝟐𝟐.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗

Bi:Si𝝎𝝎𝒔𝒔𝟐𝟐𝟐𝟐 = 𝟕𝟕.𝟒𝟒𝟗𝟗𝟗𝟗𝟗𝟗

𝑍𝑍0 = 50Ω, 𝜋𝜋 = 1𝜇𝜇𝑚𝑚 𝑔𝑔2𝜋𝜋

= 70Hz 𝑔𝑔2𝜋𝜋

= 120Hz

𝑍𝑍0 = 15Ω, 𝜋𝜋 = 20𝑛𝑛𝑚𝑚 𝑔𝑔2𝜋𝜋

= 6kHz 𝑔𝑔2𝜋𝜋

= 11kHz

Page 42: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

𝒈𝒈 < 𝜿𝜿 or even 𝒈𝒈 ≪ 𝜿𝜿 : « bad cavity » REGIME (≠ circuit QED)

Coupling regimes

Overall, spin-resonator coupling constant 𝑔𝑔2𝜋𝜋∼ 0.01 − 1 kHz

(up to 10kHz for extreme dimensions)

Comparison to resonator and spin damping rates ?

• Resonators : Highest quality factor reported @1photon level is Q=106

i.e. energy damping rate 𝜅𝜅 = 𝜔𝜔0𝑄𝑄≥ 3 ⋅ 104𝑠𝑠−1 ≫ 𝑔𝑔

• Spins : in isotopically pure crystals, possible to obtain 𝑇𝑇2∗ = 100 − 500𝜇𝜇𝑠𝑠i.e. dephasing rate ∼ or even lower than g

Page 43: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

1) Introduction: Hamiltonian of an electrical circuit2) The Cooper-pair box3) Decoherence of superconducting qubits

1) Readout using a resonator2) Amplification & Feedback3) Quantum state engineering

1) Coupling schemes2) Two-qubit gates and Grover algorithm3) Elementary quantum error correction

1) Spins for hybrid quantum devices2) Circuit-QED-enabled high-sensitivity magnetic resonance3) Spin-ensemble quantum memory for superconducting qubit

Page 44: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

𝐻𝐻ℏ = −

𝜔𝜔𝑠𝑠2 𝜎𝜎𝑧𝑧 + 𝜔𝜔0𝑎𝑎+𝑎𝑎 + 𝑔𝑔(𝑎𝑎+𝜎𝜎− + 𝑎𝑎𝜎𝜎+)

g

ω0κ

+ drive at ω0 𝐻𝐻 𝑡𝑡 = 𝑖𝑖ℏ 𝜅𝜅𝛽𝛽(−𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡𝑎𝑎 + 𝑒𝑒𝑖𝑖𝜔𝜔0𝑡𝑡𝑎𝑎+)

In rotating frame at ω0 : 𝐻𝐻ℏ = −𝛾𝛾𝜎𝜎𝑧𝑧 + 𝑔𝑔 𝑎𝑎+𝜎𝜎− + 𝑎𝑎𝜎𝜎+ + 𝛽𝛽(−𝑎𝑎 + 𝑎𝑎+)

Damping terms (taken into account in Lindblad form) : - energy in cavity at rate 𝜅𝜅 = 𝜔𝜔0/𝑄𝑄- Spin dephasing at rate 𝛾𝛾2∗

drive

𝑎𝑎𝑙𝑙𝑜𝑜𝑡𝑡

A. Blais et al., PRA 69, 062320 (2004)J. Gambetta et al., PRA 77, 012112 (2008)

Spins in a « bad cavity »: the model

Page 45: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

��𝑎 = −𝜅𝜅2𝑎𝑎 + 𝜅𝜅𝛽𝛽 − 𝑖𝑖𝑔𝑔 𝜎𝜎−

𝜎𝜎− = −(𝑖𝑖𝛾𝛾 + 𝛾𝛾2∗) 𝜎𝜎− + 𝑖𝑖𝑔𝑔 𝜎𝜎𝑧𝑧𝑎𝑎

𝜎𝜎+ = −(−𝑖𝑖𝛾𝛾 + 𝛾𝛾2∗) 𝜎𝜎+ − 𝑖𝑖𝑔𝑔 𝜎𝜎𝑧𝑧𝑎𝑎

𝜎𝜎𝑧𝑧 = −2𝑖𝑖𝑔𝑔 𝜎𝜎+𝑎𝑎 − 𝜎𝜎−𝑎𝑎+

Approximations : « bad cavity limit » 𝑔𝑔 ≪ 𝜅𝜅

Field-spin correlations are neglected𝜎𝜎+𝑎𝑎 = 𝜎𝜎+ ⟨𝑎𝑎⟩ 𝜎𝜎𝑧𝑧𝑎𝑎 = 𝜎𝜎𝑧𝑧 ⟨𝑎𝑎⟩ 𝜎𝜎−𝑎𝑎 = 𝜎𝜎− ⟨𝑎𝑎⟩

To find spin steady-state operators : 1) Solve for field <a> without spin2) Take stationary values of spin operators for spin driven by cavity field(classical Rabi oscillation in field <a> in the cavity),with additional decay channel provided by the cavity 𝜸𝜸𝑷𝑷

Adiabatic elimination of the cavity field, see B. Julsgaard et al., PRA 85, 032327 (2012)C. Hutchison et al., Canadian Journ of Phys. 87, 225 (2009)

Spins in a « bad cavity »: the model

Page 46: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

The Purcell effect

𝜔𝜔0,𝑄𝑄

g| ↑⟩

| ↓⟩

ℏ𝜔𝜔𝑠𝑠

𝛾𝛾𝑃𝑃

𝜅𝜅 = 𝜔𝜔0/𝑄𝑄

𝛾𝛾𝑃𝑃 =4𝑔𝑔2

𝜅𝜅1

1 + 2 𝜔𝜔𝑠𝑠 − 𝜔𝜔0𝜅𝜅

2

- New way to initialize spins in ground state ?- Can be tuned by changing spin/resonator detuning 𝜔𝜔𝑠𝑠 − 𝜔𝜔0

B. Julsgaard et al., PRA 85, 032327 (2012)C. Hutchison et al., Canadian Journ of Phys. 87, 225 (2009)

Page 47: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Steady-state value of the cavity field

𝑎𝑎 =2𝛽𝛽√𝜅𝜅

− 𝑖𝑖2𝑔𝑔𝜅𝜅

𝜎𝜎−

Cavity fieldw/o spin

Field radiatedby spin in cav

Field radiated by the spins

Spin signal proportional to ⟨𝜎𝜎−⟩

Output signal from N identical spins

𝑎𝑎 𝑙𝑙𝑜𝑜𝑡𝑡 = 𝑖𝑖2𝑁𝑁𝑔𝑔𝜅𝜅

𝜎𝜎−

Page 48: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Conventional Pulsed “Inductive Detection” Electron Spin Resonance (ESR)

Echo emissionExcite spins

B0

ττ

π/2 π echotime

π/2

π

SensitivityMinimal number

of spins 𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛detected with

a SNR = 1in a single echo ?

Page 49: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Sensitivity of an inductive detection spectrometer

B0

𝜔𝜔0,𝑄𝑄

resonator

𝑇𝑇𝐸𝐸

𝑔𝑔

L.O.

I

Q

𝑆𝑆𝑖𝑖𝑔𝑔𝑛𝑛𝑎𝑎𝑆𝑆 = ∫ 𝑎𝑎𝑙𝑙𝑜𝑜𝑡𝑡 𝑑𝑑𝑡𝑡 ≈𝑇𝑇2∗𝑁𝑁𝑔𝑔𝜅𝜅

𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒 = ∫ 𝑎𝑎𝑛𝑛𝑙𝑙𝑖𝑖𝑠𝑠𝑒𝑒,𝐼𝐼2𝑑𝑑𝑡𝑡 = 𝑇𝑇2∗𝑛𝑛𝐼𝐼

Number of noise photonsin the detected quadrature bandwidth

𝑛𝑛𝐼𝐼 =𝑆𝑆𝐼𝐼(𝜔𝜔)ℏ𝜔𝜔

Page 50: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Sensitivity of an inductive detection spectrometer

B0

𝜔𝜔0,𝑄𝑄

resonator

𝑇𝑇𝐸𝐸

𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛~𝑛𝑛𝐼𝐼

𝑝𝑝 𝐿𝐿

Spin polarizationFor spin ½ at T

𝑝𝑝 = tanhℏ𝜔𝜔02𝑘𝑘𝑇𝑇

Number of noise photonsin the detected quadrature bandwidth

𝑛𝑛𝐼𝐼 =𝑆𝑆𝐼𝐼(𝜔𝜔)ℏ𝜔𝜔

A.Bienfait et al., Nature Nano (2015)

Single-spin signalCooperativity

𝐿𝐿 = 𝑔𝑔2𝑇𝑇2∗

𝜅𝜅

𝑔𝑔

L.O.

I

Q

Page 51: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Sensitivity of an inductive detection spectrometer

B0𝑛𝑛𝑟𝑟𝑚𝑚𝑝𝑝

𝑛𝑛𝑒𝑒𝑒𝑒

50Ω @ T𝑛𝑛𝐼𝐼 = 𝑛𝑛𝑒𝑒𝑒𝑒,𝐼𝐼 + 𝑛𝑛𝑟𝑟𝑚𝑚𝑝𝑝,𝐼𝐼

0 1 2 30.0

0.5

1.0

1.5

𝑇𝑇/(ℏ𝜔𝜔0/𝑘𝑘)

𝑛𝑛𝑒𝑒𝑒𝑒,𝐼𝐼

𝑛𝑛𝑒𝑒𝑒𝑒,𝐼𝐼 =12 coth

ℏ𝜔𝜔02𝑘𝑘𝑇𝑇

QUANTUM LIMIT

Using a « noiseless »Josephson Parametric Amplifier

𝑛𝑛𝑟𝑟𝑚𝑚𝑝𝑝,𝐼𝐼 = 0

Quantum limit for magnetic resonance𝑛𝑛𝐼𝐼 = 0.25

Page 52: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

1E-12 1E-10 1E-8 1E-6 1E-4 0.010.1

1

10

100

1000

𝑝𝑝√𝐿𝐿

𝑛𝑛𝐼𝐼

Commercial ESRspectrometer

(300K)

Sigillito et al., APL 2014

(1.7K)

EPR spectroscopy : state-of-the-art

QUANTUM LIMIT

Page 53: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Quantum limited ESR with Parametric Amplifier

2D lumped elementSuperconducting Al

resonator

1.4 mm

5µm

B1 field𝑔𝑔2𝜋𝜋

= 55𝐻𝐻𝐺𝐺

Page 54: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Quantum limited ESR with Parametric Amplifier

Copper box ω0/2π = 7.24 GHz Q = 3 105

1.4 mm

2D lumped elementSuperconducting Al

resonator

Page 55: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Quantum limited ESR with Parametric Amplifier

Josephson Parametric Amplifier• 23 dB @7.2 GHz• 3MHz BW (freq. tunable)Zhou et al. PRB 89, 214517 (2014).

pump

Sig in Sig out

Page 56: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Quantum limited ESR with Parametric Amplifier

2-axis coilw. sample

JPA

Circulators

Attenuators

20mK plate

Page 57: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

The Spins: Bi donors in 28Si

• mF = 4 -> mF = 5, @~50 G• mF = 3 -> mF = 4, @~70 Gs

Implanted Bi

10 allowed ESR-like transitions @ low B

Resonator

Page 58: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spin echo detection

A. Bienfait et al., Nature Nano (2015)

π/2 π echo

300 µs 300 µs

2.5µs 5µs

Page 59: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Coherence time

T2e = 9.3 ms

Aπ/2 Aπ

A. Bienfait et al., Nature Nano (2015)

T2=9ms : typical for Bi:28Si

Page 60: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spectrometer single-shot sensitivity

Δ𝑆𝑆𝑧𝑧 = 1.2 104A. Bienfait et al.,

Nature Nano (2015)

SNR=7

Sensitivity : 𝑵𝑵𝟏𝟏𝟏𝟏 = ⁄𝟏𝟏.𝟐𝟐 ⋅ 𝟏𝟏𝟎𝟎𝟒𝟒 𝟕𝟕 = 𝟏𝟏.𝟕𝟕 𝟏𝟏𝟎𝟎𝟑𝟑 spins per echo

• Gain ∼ 𝟏𝟏𝟎𝟎𝟒𝟒 comp. to state-of-the-art (Sigillito et al., APL , 2014)

• Consistent with expectations from formula 𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛~ 1𝑝𝑝

𝑛𝑛𝜔𝜔0𝑄𝑄𝑇𝑇𝐸𝐸

1𝑔𝑔

Page 61: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

1E-12 1E-10 1E-8 1E-6 1E-4 0.010.1

1

10

100

1000

𝑝𝑝√𝐿𝐿

𝑛𝑛𝐼𝐼

EPR sensitivity : summary

QUANTUM LIMIT

Commercial ESRspectrometer

(300K)

𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛 ≈ 1013

Sigillito et al., APL 2014

(1.7K)

𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛 ≈ 107

𝑵𝑵𝒎𝒎𝒊𝒊𝒎𝒎 = 𝟐𝟐 ⋅ 𝟏𝟏𝟎𝟎𝟑𝟑

A.Bienfait et al.,Nature Nano (2015)

𝑵𝑵𝒎𝒎𝒊𝒊𝒎𝒎 = 𝟑𝟑𝟎𝟎𝟎𝟎S. Probst (2017)

B0

• 104 improvementover state-of-the-art

C. Eichler et al.,arxiv(2016)

Page 62: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Absolute sensitivity and spin relaxation time 𝑇𝑇1

• Spectrometer absolute sensitivity : 1700 spin/√𝐻𝐻𝐺𝐺• « Short » T1 due to spontaneous emission in the cavity (Purcell effect)

AQ

T1 = 0.35 s

𝑻𝑻 → ∞𝑇𝑇 = 0

Repetition rate ?? Limited by time 𝑇𝑇1 needed for spins to reach thermal equilibr

Page 63: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Observing the Purcell effect for spins

A. Bienfait et al., Nature (2016)

𝜔𝜔0,𝑄𝑄

𝜸𝜸𝑷𝑷𝑔𝑔

𝜸𝜸𝑷𝑷 =4𝑸𝑸𝒈𝒈2

𝜔𝜔01

1 + 4𝑄𝑄2 𝜔𝜔𝑠𝑠 − 𝜔𝜔0𝜔𝜔0

2

𝟏𝟏𝑻𝑻𝟏𝟏

= 𝜸𝜸𝑷𝑷 + 𝚪𝚪𝑵𝑵𝑵𝑵

Page 64: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Outline

Lecture 1: Basics of superconducting qubits

Lecture 2: Qubit readout and circuit quantum electrodynamics

Lecture 3: Multi-qubit gates and algorithms

Lecture 4: Introduction to Hybrid Quantum Devices

1) Introduction: Hamiltonian of an electrical circuit2) The Cooper-pair box3) Decoherence of superconducting qubits

1) Readout using a resonator2) Amplification & Feedback3) Quantum state engineering

1) Coupling schemes2) Two-qubit gates and Grover algorithm3) Elementary quantum error correction

1) Spins for hybrid quantum devices2) Circuit-QED-enabled high-sensitivity magnetic resonance3) Spin-ensemble quantum memory for superconducting qubit

Page 65: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Interest :

1) Long coherence time2) Economical in processing qubits

3) Intrinsic low-crosstalk in gates and qubitreadout

N-qubit memoryFew-qubit quantum processor

Hybrid quantum processor

Few-qubit processor + N-qubit memory : N-qubit computer

QUANTUM MEMORY

…. ….𝜓𝜓1 𝜓𝜓𝑖𝑖 𝜓𝜓𝑁𝑁

Page 66: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. 0 00 …. 00

Memory operations

Page 67: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. 0 00 …. 00

𝜓𝜓1 𝜓𝜓2 𝜓𝜓𝑁𝑁

Memory operations

WRITE1

Page 68: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. ….𝜓𝜓1 𝜓𝜓2 𝜓𝜓𝑖𝑖 𝜓𝜓𝑁𝑁

Memory operations

WRITE….

1

Page 69: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. ….𝜓𝜓1 𝜓𝜓2

𝜓𝜓𝑖𝑖

0

Memory operations

𝜓𝜓𝑁𝑁

WRITE….

READ

1

2

Page 70: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. 0 00 …. 00

Memory operations

WRITE….

READRESET

1

23

Page 71: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

QUANTUM MEMORY

…. ….

WRITE….

READRESET

1

23

Memory operations

| ⟩𝜓𝜓 = �𝑖𝑖1… 𝑖𝑖𝑁𝑁 = 0,1

𝑐𝑐𝑖𝑖1… 𝑖𝑖𝑁𝑁 𝑖𝑖1 … 𝑖𝑖𝑁𝑁

Entangled states

Page 72: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Sketch of hybrid quantum processor

Long coherence time (>s)

NV Bi:Si

Active reset possible

Page 73: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

𝐻𝐻/ℎ = �𝑘𝑘

𝑁𝑁

𝑔𝑔𝑘𝑘𝑎𝑎†σ−,𝑘𝑘 + ℎ𝑐𝑐 = 𝑔𝑔𝑒𝑒𝑛𝑛𝑠𝑠 𝑎𝑎†𝑏𝑏 + 𝑎𝑎𝑏𝑏†

𝑔𝑔𝑒𝑒𝑛𝑛𝑠𝑠 = �𝑘𝑘

𝑔𝑔𝑘𝑘2 ∝ 𝑁𝑁

Spin ensemble – resonator system

Coupling of the resonator to one collective spin mode

Bright mode 𝑏𝑏† = ∑ 𝑔𝑔𝑘𝑘𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒

σ+,𝑘𝑘 (1 excitation shared by N spins)

Page 74: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE step : Single-photon transfer

Page 75: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Frequency-tuning by flux

DC

ωSpins

ωQubit

WRITE step : Single-photon transfer

Page 76: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Frequency-tuning by flux

DC

ωSpins

ωQubit

WRITE step : Single-photon transfer

Page 77: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Frequency-tuning by flux

DC

Qubit drive

ωSpins

ωQubit

WRITE step : Single-photon transfer

Page 78: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Single-shot Qubit readout

Frequency-tuning by flux

DC

Qubit drive

ωSpins

ωQubit

WRITE step : Single-photon transfer

Page 79: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

30 mKrefrigerator

readout junction

Transmon Bus’ SQUID

WRITE step : Single-photon transfer

Page 80: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

SpectroscopyResonator transmission

2.62

2.57

Simulations

0.37 0.370.385 0.385

24/55

Page 81: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Duration t Readout

Pulse sequences

Rabi

T1qubit = 1.75 µsReadout π

wait time tT1

T2qubit = 2.2 µsReadout

π/2 with small detuning

evolution time tT2

(|g> + |e>)/√2

|e>

Qubit characterization

Page 82: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

0 1000,0

0,2

0,4

0,6

0,8

1,0

0 100 200 300 400 500

aSWAP

Pe

Interaction time, τ (ns)

SWAP

Adiabatic ramp duration, τ (ns)

qubit

bus

π Rτ

|e,0> |g,1>

π R

τ

|e,0>

|g,1>

qubit

bus

Transmon and quantum bus interaction : the SWAP gate

Resonant SWAP gate Adiabatic SWAP gate

|e,0>

|g,1>

Page 83: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

0 1000,0

0,2

0,4

0,6

0,8

1,0

0 100 200 300 400 500

aSWAP

Pe

Interaction time, τ (ns)

SWAP

Adiabatic ramp duration, τ (ns)

qubit

bus

π Rτ

|e,0> |g,1>

π R

τ

|e,0>

|g,1>

qubit

bus

Transmon and quantum bus interaction : the SWAP gate

Resonant SWAP gate Adiabatic SWAP gate

|e,0>

|g,1>

|e,0>

|g,1>

Page 84: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Prepare the Qubit in

WRITE step : Single-photon transfer

Page 85: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

DC

Transfer from Qubitto resonator

WRITE step : Single-photon transfer

Page 86: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

DC

Transfer from Qubitto resonator

WRITE step : Single-photon transfer

Page 87: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

DC

Transfer fromresonator to spins

WRITE step : Single-photon transfer

Page 88: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spins – ResonatorVacuum Rabi oscillation

WRITE step : Single-photon transfer

Page 89: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

DC

Transfer BACK fromspins to Qubit

WRITE step : Single-photon transfer

Page 90: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

DC

Transfer BACK fromspins to Qubit

WRITE step : Single-photon transfer

Page 91: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Qubit readout

WRITE step : Single-photon transfer

Page 92: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Spins – ResonatorVacuum Rabi oscillation

WRITE: storage of ⟩|1

Page 93: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE: storage of ⟩|1

Spins – ResonatorVacuum Rabi oscillation

Page 94: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE: storage of ⟩|1

Spins – ResonatorVacuum Rabi oscillation

τs

Page 95: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE: storage of ⟩|1

Spins – ResonatorVacuum Rabi oscillation

τrτs

Page 96: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

∆ω

Decay in T2∗ ≈ 100nsas expected from the linewidth

WRITE: storage of ⟩|1

Spins – ResonatorVacuum Rabi oscillation

𝑇𝑇2∗Bright state Dark state

τrτs

Page 97: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE efficiency

Spins – ResonatorVacuum Rabi oscillation

Spins damping

Resonator damping

EWRITE = f(τs)EWRITE = 95 %

τs

Page 98: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

WRITE: storage of ⟩|0 + ⟩|1 / 2

Spins – ResonatorVacuum Rabi oscillation

⟩|1

⟩|0

State tomography byno pulse (I), π/2(X), π/2(Y)

π/2(X)

π/2(Y)

Page 99: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

⟩|1

⟩|0

State tomography byno pulse (I), π/2(X), π/2(Y)

π/2(X)

π/2(Y)

τs τr

Coherence retrieved

Spins – ResonatorVacuum Rabi oscillation

WRITE: storage of ⟩|0 + ⟩|1 / 2

Page 100: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Hyperfine structure !bus

qubitX(π)

τ

spinreadout

τs/2 τs/2

( )1 ,0 0 ,1 / 2iB I B Ie δτ+

Spin-photon entanglement

δ

0 200 400 6000.2

0.3

0.4

0.5

τ (ns)

Pe

Oscillations in δτ : Evidence for spin-photon entanglement

Y. Kubo et al., PRL (2011)

Page 101: Electrical quantum engineering with superconducting circuits · P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group. 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 11 00

Lecture Conclusions

Fruitful marriage of circuit Quantum Electrodynamics and Magnetic Resonance

• Magnetic resonance detection reaching the quantum limit of sensitivity

• Quantum fluctuations of the field affect spin dynamics (Purcell effect)

• Use squeezing as a resouce to improve sensitivity even further

• Quantum memory applications within reach

Perspectives

• Reach single-spin detection sensitivity

• Build a platform for spin-based quantum computation