electrical urban mass transport - rev final - i part

56
Electrical urban mass transport: metrotransit systems Semester 1 Power systems for sustainable transporta6on Lecturer: Maria Carmen Falvo Interna6onal Master In Sustainable Transporta6ons and Electrical Power Systems Universidad de Oviedo

Upload: sm-ferdous

Post on 18-Jul-2016

215 views

Category:

Documents


2 download

DESCRIPTION

Electric Transport System

TRANSCRIPT

Electrical  urban  mass  transport:    metro-­‐transit  systems  

Semester  1  -­‐    Power  systems  for  sustainable  transporta6on  

Lecturer:  Maria  Carmen  Falvo  

Interna6onal  Master  In  Sustainable  Transporta6ons  and  Electrical  Power  Systems  

Universidad  de  Oviedo  

Outline  

}  An  introduc6on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  

}  Power  systems  for  metro-­‐transit:  }  Supplying  architecture,  trac6on  line  and  electrical  sub-­‐sta6ons  

}  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  

}  Design&sizing  basics  and  some  6ps  on  simula6on  soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

  2  

Outline  

}  An  introduc<on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  

}  Power  systems  for  metro-­‐transit:  }  Supplying  architecture,  trac6on  line  and  electrical  sub-­‐sta6ons  

}  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  

}  Design&sizing  basics  and  some  6ps  on  simula6on  soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

  3  

4  

Urban  mass  transport  systems  

}  A  must   for   the  mobility   systems:  energy  and  environmental  sustainability.  

}   Transport  in  Europe  is  responsible  for:  }  about  30%  of  total  energy  consump6ons    }  for  27%  of  total  Green-­‐House  Gas  (GHG)  emissions.  

}  Objec6ve  of  sustainability  in  terms  of  urban  mobility:  }  to  promote  the  public  mass  transport,  instead  of  private  one;    }  to   make   it   effec6ve   and   of   high   quality   in   terms   of   energy  efficiency  and  environmental  impact.  

Urban  mass  transport  systems:    electric  solu<ons  

}  Necessity   of   more   energy-­‐efficient   and   environmental  sustainable   transport   solu<ons:   electrical   transport   revival  versus  internal  combus6on  engine  (ICE)  vehicles.  

}  Different   types   of   Electric   Vehicles   (EVs)   as   solu6on,   with  diverse   quality   of   service,   in   terms   of   poten6al   vehicles  frequency   (fleet   size),   commercial   speed,   level   of   regularity,  level  of  security  and  safety.  

5  

Electric  urban  mass  transport  systems:    common  requirements  for  different  solu<ons  

}  High   reliability   to   guarantee:   regularity   of   service   and   lower  opera6onal  costs.  

}  Good   power-­‐to-­‐weight   ra<o   to   ensure:   less   wear,   lower  energy  costs,   lower  maintenance  costs,  smaller  size  of  power  systems.  

}  Safety  to  ensure  protec6on  of  passengers  from  accidents.  

}  Comfort  for  passengers.  

}  Easiness   in  maintenance   to   guarantee   service’s   con6nuity   in  case  of  fault.  

}  Low  costs  in  construc<on  and  opera<on.  6  

Electric  urban  mass  transport  systems:    classifica<on  

}  A   possible   classifica6on   of   public   mobility   systems   based   on  

Electric   Vehicles   (EVs)   can   be   referred   to   the   type   of  

infrastructure:  

}  EVs  on  road:  electric  cars,  electric  buses,  electric  trolley-­‐buses.    

}  EVs  by  rail:  electric  trams,  electric  light  rail  and  electric  metro-­‐

transit.    

}  Each  transport  system  has  its  own  par6cular  field  of  using,  as  a  

func6on   of   the   poten<al   transporta<on   demand   and   local  

condi<ons.     7  

Electric  urban  mass  transport  systems:    classifica<on  

Type  of  mass  transport  Capacity    

[n.  of  passengers/h  per  way]  

Bus  and  trolley-­‐bus   2.000÷  4.000  

Tram   6.000÷  15.000    

Light  rail   6.000÷  15.000    

Automa6c  light  rail     10.000÷25.000    

Tradi<onal  metro-­‐transit     20.000÷45.000    

8  

Buses   and   trolley-­‐buses   line   can   have   the   same   transport   capacity,  measured  as  number  of  passengers/h  per  way.  This  value  can  be  increased  choosing  trams,  light  rails  and  metro-­‐transit  systems.  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

•  The  choice  of  the  urban  mass  mobility  system  is  strictly  linked  to  the   service   to   offer   and   to   energy   efficiency   aspects,   the  planning  is  also  very  influenced  by:  }  level   of   integra<on   of   the   transport   system   with   the   other  city’s  infrastructures  (territory  “compa<bility”);  

}  environmental  aspects  (air  and  noise  pollu<on);  

}  economic  features.    

9  

}  The   “compa<bility”   with   the   territory   of   a   transport   solu6on   is  

strongly   related   to   the   infrastructure  and   supplying   system  of   the  

vehicles.    

}  Buses:  on  road  path  in  common  with  private  transport.  

}  Trolley-­‐buses:   on   road   path   and   presence   of   power   systems   for  

supplying.  

}  Trams,   light   rail   and   tradi<onal   metro-­‐transit:   presence   of   rails   and  

power  systems  for  supplying.  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

}  Another   important   feature   in   the   planning   of   the   public   mass   transport   is   the  environmental   impact,  which  affects  the  quality  of   life  of  ci6zens,   in  terms  of  air  pollu<on  and  noise  emission.  

}  An  EV  is  able  to  be  a  zero-­‐emission  vehicle  in  terms  of  local  air  pollu<on.  

}  Noise   pollu<on   is   not   only   responsible   for   the   degrada6on   of   the   urban   life  quality,   but   it   is   also   capable   of   producing   physical,   psychological   and   social  damage.  

Vehicle  Type   Noise  Level    [dB]  ICE  Bus   70-­‐80  

Trolley-­‐bus   60-­‐  78  Tram   78-­‐82  

Light  Rail   70-­‐80  Metro-­‐transit   75-­‐80  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

}  In   an   economic   comparison,   the   main   cost   items   that  have  to  be  considered  are:  }  fixed   costs   related   to   construc6on   of   specific   and   dedicated  infrastructure;  

}  fixed  costs  related  to  the  single  vehicle  and  to  the  fleet;  }  opera<ng  costs  related  to  the  energy  consump6ons;  }  opera<ng  costs  related  to  the  line  management  (including  the  drivers  salary,  insurance  charges,  vehicles  parking);  

}  opera<ng  costs  related  to  maintenance.  12  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

}  An   economic   comparison   is   really   hard   to   be   simply  shown  and  summarized.  

}  A   good   reference   with   a   complete   economical  assessment  for  different  transport  systems  is:  }  P.   M.   Condon   and   K.   Dow,   “A   Cost   Comparison   of  Transporta<on  Modes”   in   Founda;onal   Research   Bulle;n  On  Sustainability  By  Design,  No.  7,  November  2009.  

13  

Electric  urban  mass  transport  systems:    territory,  environmental  and  economic  issues  

}  The   capital   cost   of   a   metro-­‐transit   system   is   very   high   and   public  financing   is  usually   required:   capital   investments  are  oHen  financed  by  taxa6on  and  by  passenger  fares.  

}  Most   of   the  metro-­‐transit   systems   are  publicly   owned,   by   local   transit  authori6es,  and  operated  by  a  private  company  through  a  public  service  obliga<on.    

}  The  opera<on  cost  is  strongly  linked  to  the  energy  consump<on.  

}  Nevertheless   metro-­‐transit   seems   to   be   a   good   alterna<ve   to   an  extensive  road  ICE  transport  system  with  many  motorways:  the  metro-­‐transit  systems  allow  higher  capacity  with  minor  use  of  the  territory,  less  environmental  impact  and  a  lower  cost  for  a  given  transport  capacity.  

14  

Electric  urban  mass  transport  systems:    metro-­‐transit  lines  

}  In   the   last   years,   there   was   a   revival   of   aken6on   of   the  industries   and   research   centres   in   Europe   about   the  metro-­‐transit  transport  systems.  

}  Many  studies  and  projects,  dealing  with  proposals  on:  }  upgrading  ac6ons,    

}  new  technologies,  

}  new  management  techniques.    

}  Energy   efficiency   in  metro-­‐transit   systems   became   a   global  concern  and  a  key  topic.  

15  

Outline    

}  An  introduc6on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  

}  Power  systems  for  metro-­‐transit:  }  Supplying  architecture,  trac6on  line  and  electrical  sub-­‐sta6ons  

}  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  

}  Design&sizing  basics  and  some  6ps  on  simula6on  soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

16  

Metro-­‐transit  systems:    defini<ons  

}  A  metro-­‐transit   system   is   a   public   transport   in   urban   areas  with  high   capacity,   high   frequency,   high   speed   and   separated   from  other  traffic.  

}  It   is   unchallenged   in   its   ability   to   transport   large   amounts   of  people  quickly  over  short  distances  with  a  limited  use  of  land.    

}  Metro-­‐transit   systems   typically   use   electric   trains   on   rail   tracks.  Only   few   systems  use  other   systems,   like  guided   rubber   tyres  or  magne<c  levita<on.  

17  

Metro-­‐transit  systems:  defini<ons  

}  Metro-­‐transit   and   Rapid-­‐transit   are   the   most   common  names.    

}  Metro-­‐transit   systems   are   typically   located   in  underground   tunnels   or   elevated   levels   above   street  (viaducts):   the   use   of   tunnels   inspires   names   such   as  subway,  underground,  while  the  use  of  viaducts  inspires  names  such  as  elevated  ,  sky-­‐train  or  over-­‐ground.    

18  

Metro-­‐transit  systems:  history  

}  The   first   metro-­‐transit   system   was   the  Metropolitan   Railway  opened   in   1863,   as   part   of   London   Underground.   Its   oldest  sec6ons  has  been  completed  150  years  later  (January  2013).  

}  In  1868  New  York  opened  the  elevated  West  Side  and  Yonkers  Patent  Railway.  

}  The  technology  quickly  spread  to  other  ci6es  in  Europe  and  the  United   States   with   some   lines   converted   from   steam   to   be  electric.    

}  There  were  19  systems  by  1940  and  66  by  1984.    

}  On   April   2014,   there   are   168   metro-­‐transit   systems   in   55  countries  in  the  world.     19  

Metro-­‐transit  systems:  some  worldwide  <ps  

}  The  world's  largest  metro-­‐transit  system:  }  by   length   of   routes   and   number   of   sta<ons,   is   New   York  City  Subway;    

}  by   length  of   lines,   are   Seoul  Metropolitan   Subway,  Beijing  Subway,  Shanghai  Metro  and  London  Underground;  

}  by   daily   and   annual   ridership,   are   Tokyo   subway   system,  Seoul  Metropolitan  Subway  and  Moscow  Metro.    

20  

Metro-­‐transit  systems:  safety  and  security  

}  Compared   to   other   modes   of   transport,   rapid   transit   has   a  good  safety  record,  with  few  accidents.    

}  Rail   transport   is   subject   to   severe   safety   regula6on,   with  requirements   for   opera6on   and   maintenance   procedures   to  minimize  risk.    

}  Head-­‐on   collisions  are   rare  due   to  use  of  double   tracks,   and  low   opera6ng   speeds   reduce   the   occurrence   and   severity   of  rear-­‐end  collisions  and  derailments.  

}   Fire  is  one  of  the  first  dangers  (underground  environment).    21  

Metro-­‐transit  systems:  safety  and  security  

}  Rapid   transit   facili6es   are   public   spaces   and   may   suffer   from  security  problems:  peky  crimes,  such  as  pickpocke6ng  and  baggage  theH,  and  more  serious  violent  crimes.    

}  Rapid   transit   systems   have   been   subject   to   terrorism   with   many  casual6es,  such  as  the  1995  Tokyo  subway  Sarin  gas  akack  and  the  2005  terrorist  bombings  on  the  London  Underground.  

}  Security  measures  include  video  surveillance,  security  guards,  etc.  In  some  countries  a  metro-­‐transit  police  may  be  established.    

}  The   security   measures   are   normally   integrated   with   measures   to  protect   revenue   by   checking   that   passengers   are   not   travelling  without  paying.  

22  

Metro-­‐transit  systems:  tracks  and  crew  

}  Metro-­‐transit   trains  are   electric   vehicles   composed  by  mul6ple  units  with  lengths  from  three  to  over  ten  cars.  

}  Metro-­‐trains  generally  run  on  conven<onal  steel  railway  tracks.  

}  Some   metro-­‐lines   use   rubber   <res   for   specific   issues   (i.e.  Montreal  Metro   and  Mexico   City  Metro   and   some   lines   in   the  Paris  Métro):   Rubber   6res   allow   steeper   gradients   and   a   soHer  ride,   but   have   higher   maintenance   costs   and   are   less   energy  efficient.   They   also   miss   trac6on   when   weather   condi6ons   are  wet  or  icy.  

}  Crew   sizes   have   decreased   throughout   history,   with   some  modern  systems  now  running  completely  unstaffed  trains.    

23  

Outline    

}  An  introduc6on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  

}  Power  systems  for  metro-­‐transit:  }  Supplying  architecture,  trac<on  line  and  electrical  sub-­‐sta<ons  

}  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  

}  Design&sizing  basics  and  some  6ps  on  simula6on  soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

24  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  For   metro-­‐trains,   conven6onally   running   on   steel   railway   tracks,  supplying  power  system  at  1.500,  750  or  600  V  DC  can  be  achieved  with:  }  Overhead  line  (trac<on  line);  

}  Third  rail.  

}  In  both  cases  the  track  rail  is  used  as  return  circuit  for  the  trac6on  current.  

}  In  few  cases  (London  Underground  at  630  V,  or  Milan  Metro-­‐line  1  at  750  V)  a  dedicated  fourth  rail  is  employed  as  return  circuit.  

}  Some  special  system  of  supplying  (lateral  guide  bars)  are  employed  for  metro-­‐transit  with  rubber  <res  (Paris,  Mexico,  Montreal).  

25  

Power  systems  for  metro-­‐transit:  supplying  architecture  

26  

Voltage   Current   Supplying  systems   Loca<on  

750  DC  

Lateral  guide  bars  

Paris  

Montreal  

Mexico  City  

Third  and  fourth  rail  Milan  

630   London  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  The   third   rail   is   a  ground-­‐level  power  supply  system  instead  of  the  overhead  line.  

}  In   opera6ng   terms,   the   third   rail  routes   need   special   protec<on   to   be  completely   safe,   because   of   the    greater   risk   of   it   being   touched   at  ground  level.  

}  The  same  considera6ons  are  worth  for  the  fourth  rail.  

27  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  The  overhead  line  (trac<on  line)  is  the  most  common  system  for   supplying   metro-­‐trains   and   is   used   to   transmit   electrical  energy   to   metro-­‐trains   at   a   distance   from   the   main   supply  points,   that   are   the   trac<on   electrical   sub-­‐sta<ons   (ESSs),  usually   fed   from  a  main  electrical   grid,  operated  by   the   local  u6lity.  

}  Trac<on  line  is  composed  by  one  or  more  wires  situated  over  rail   tracks,   raised   to   a   DC   voltage   by   Electrical   Sub-­‐Sta<ons  (ESSs).    

28  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  To   achieve   good   current   collec6on   from   the  overhead  line,  it  is  necessary  to  keep  the  contact  wire  geometry  within  defined  limits.    

}  This  is  usually  achieved  by  suppor6ng  the  contact  wire  by  a  second  wire,  known  as  the  messenger  wire  (US  &  Canada)  or  catenary  (Europe).    

}  The  messenger   wire   is   akached   to   the   contact  wire  at  regular  intervals  by  ver<cal  wires,  known  as  droppers  or  drop  wires.    

}  The   messenger   wire   is   supported   regularly   at  structures   by   pulleys,   links   and   clamps.   The  whole   system   is   then  subjected   to  a  mechanical  tension.   29  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  For  high  values  of  current  it   is  possible  to  have  a  double  contact  wire,  a  double   messenger   or   an   addi<onal   wire,   known   as   feeder   that   is  generally   located   on   the   same   pole   and   operated   in   parallel   with   the  others.    

}  It  is  used  just  to  increase  the  global  sec6on  of  the  forward  circuit.    }  For  high  values  of  the  trac6on  current,  the  overhead  line  can  be  replaced  by  a  thick  bar.  

30  30

(1)  Contact  wire  (2)  Messenger  (3)  Addi6onal  wire  (feeder)  

(4)  Rail  (5)  Lightning  protec6on  system  (op6onal)  (6)  Ground  wire  

(1)  (2)  (5)  

(6)  

(3)  

(4)  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  Electric  trains  use  as  device  to  collect  power   from   the   overhead   line   a  system  named  pantograph.    

}  The   current   collectors   are  electrically  conduc6ve  and  allow  current  to  flow  through  to  the  train  and  back  to  the  feeder   sta<on   through   the   steel  wheels  on  one  or  both  running  rails.    

}  The   device   presses   against   the  underside   of   the   lowest   wire   of   the  overhead  line.  

31  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  A   trac<on  electrical   sub-­‐sta<on   (ESS)   is   a   system   that   converts  electric   power,   provided   by   the   public   u6lity   service,   to   the  appropriate  voltage  and  current  type  (DC)  to  supply  the  trac6on  line,  for  the  feeding  of  metro-­‐trains.  

}  It   has   to   be   equipped  with   all   the   items   necessary   to   decrease  the  voltage  level  (commonly  1.5  kV)  and  to  rec6fy  AC  into  DC.  

}  The  main  components  are  the  power  transformer  and  the  solid-­‐state  rec<fier  system.  

32  

alla linea di contatto

alle rotaie

+

-

+

-

SATp Ig gT Sm

R

Rp

Cp Cf

L f Sp Sa JL Sa

Sn

}  SATP:  disconnector  in  input  on  the  primary  HV  or  MV  line  ;  

}  Ig:  circuit  breaker  for  the  protec6on  of  the  ESS  from  overcurrent:  compressed  air,  oil  or  SF6.  

}  Transforma6on/rec6fier  group,  consis6ng  of  transformer  Tg,  disconnector  Sm,  rec6fier  R  (capacitor  Cp  and  resistance  Rp  for  the  protec6on  in  case  of  inser6ons/disconnec6on  of  loads);  

}  F:  filter  for  harmonics  due  to  rec6fier  (inductance  Lf  and  capacitance  Cf);  

}  Sp  and  Sn:  posi6ve  and  nega6ve  disconnectors;  

}  JL:  line  circuit  breaker  (DC  special  circuit  breaker)  with  disconnectors  Sp    and  Sa;  

}  (+)  posi6ve  terminals  connected  to  the  contact  line  (-­‐)  nega6ve  terminals  connected  to  the  rails.  

Power  systems  for  metro-­‐transit:  supplying  architecture  

alla linea di contatto

alle rotaie

+

-

+

-

SATp Ig gT Sm

R

Rp

Cp Cf

L f Sp Sa JL Sa

Sn

}  SATP:  disconnector  in  input  on  the  primary  HV  or  MV  line  ;  

}  Ig:  circuit  breaker  for  the  protec<on  of  the  ESS  from  overcurrent:  compressed  air,  oil  or  SF6.  

Power  systems  for  metro-­‐transit:  supplying  architecture  

45

alla linea di contatto

alle rotaie

+

-

+

-

SATp Ig gT Sm

R

Rp

Cp Cf

L f Sp Sa JL Sa

Sn

}  Transforma<on/rec<fier  group,  consis<ng  of  transformer  Tg,  disconnector  Sm,  rec<fier  R  (capacitor  Cp  and  resistance  Rp  for  the  protec<on  in  case  of  inser<ons/disconnec<on  of  loads);  

}  F:  filter  for  harmonics  due  to  rec<fier  (inductance  Lf  and  capacitance  Cf).  

Power  systems  for  metro-­‐transit:  supplying  architecture  

alla linea di contatto

alle rotaie

+

-

+

-

SATp Ig gT Sm

R

Rp

Cp Cf

L f Sp Sa JL Sa

Sn

}  JL:  line  circuit  breaker  (DC  special  circuit  breaker)  with  disconnectors  Sp    and  Sa;  

}  (+)  posi<ve  terminals  connected  to  the  contact  line  (-­‐)  nega<ve  terminals  connected  to  the  rails.  

Power  systems  for  metro-­‐transit:  supplying  architecture  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  For   reliability   reasons,  more  than   1   group   is   present   in  each  ESS.  

}  Special   connec<on   of   the  p o w e r   t r a n s f o r m e r  secondary   windings   and  power   converters   are   used  for  reducing  harmonics.    

37  

alla linea di contatto

alle rotaie

+

-

+

-

SATp Ig gT Sm

R

Rp

Cp Cf

L f Sp Sa JL Sa

Sn

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  Upgrading  ac6on  on  ESS:  to  make  it  reversible,   for   giving   them   the  possibility   to   give   back   to   the  main  grid  the  power  recovered  during  the  braking  of  the  metro-­‐trains.  

}  Solu6ons   with   two   converters:   an  AC/DC  (more  powerful  rec<fier)  and  a  DC/AC  (less  power  inverter).  

}  Another  possibility:  storage  systems  in  ESS.  

38  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  Each  EES  is  operated  in  parallel  to  the  previous  and  the  next  one.  

}  Each  branch  of  trac6on  line  is  supplied  by  the  two  ESSs  at  its  terminals:  }  On  each  the  double-­‐end  fed  sec6on  low  voltage  drops  (and  so  low  voltage  

fluctua6on   on   the   main   grid   of   the   public   u6lity)   and   low   power   losses  (higher  efficiency)  are  guaranteed.  

}  In  addi6on  some  points  of  parallel  between  the  two  routes  are  made  along  the  line.    

39  

Power  systems  for  metro-­‐transit:  supplying  architecture  

}  To  guarantee  the  right  management  of   the  system  also  during  a   fault  occurrence  in  ESS  or  along  the  line,  suitable  switching  and  protec<on  devices  have  to  be  provided.      

}  They  are  generally   located  in  ESS  and  in  the  parallel  points  along  the  line,   and   are   equipped   with   maximum   current,   minimum   voltage,  current  gradient,  direc6onal  relays.    

40  

Outline    

}  An  introduc6on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  

}  Power  systems  for  metro-­‐transit:  }  Supplying  architecture,  trac6on  line  and  electrical  sub-­‐sta6ons  

}  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  

}  Design&sizing  basics  and  some  6ps  on  simula6on  soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

41  

Power  systems  for  metro-­‐transit:  train  features  

}  Trains  for  metro-­‐lines  can  be  equipped  with:  

}  DC  electric  drives:  DC  motors  with  chopper;  

}  AC  electric  drives:  AC  motors  with  inverter.  

}  Electric   drives   are   able   to   perform   a   dynamic   braking,   that   means   the  conversion   of   kine6c   energy   into   electricity,   based   on   the   capacity   of  electric  motors  to  also  act  as  generators.  

}  The  use  of  this  dynamic  braking  is  widely  spread  in  metro-­‐lines,  in  couple  with    fric<on  braking.    

}  The  main  advantages  are  to  not  generate  wear  and  tear,  dust,  smell,  heat  or  sound.  

}  Another  poten6al  advantage  could  be  the  energy  saving   in  case  of  reuse  of  regenerated  power  from  the  electric  braking.  

42  

Power  systems  for  metro-­‐transit:  train  features  

}  In  dynamic  braking,  the  regenerated  power  may  be:  }  dissipated  in  banks  of  variable  resistors,  controlled  by  a  braking  chopper  (dissipa<ve  rheosta<c  braking)    

}  reused   within   the   train   and   the   transport   network   itself  (regenera<ve  braking).    

43  

EESS EESS ETR  REC.ED

ETR  REC.BLE

ETR  REQ

Eloss_ESS

Power  systems  for  metro-­‐transit:  train  features  

}  Dissipa<ve   rheosta<c   braking   is   a   non-­‐efficient   way   to  manage   the   energy   produced   by   the   motors   during   the  braking  phase:  }  The  recoverable  energy  is  wasted  in  heat;  

}  The  heat  produc6on  is  a  problem  in  an  underground  environment,  like   most   of   the   metro   transit   systems:   with   the   aim   of  guaranteeing   a   good   level   of   comfort,   for   metro-­‐workers   and  passengers,   it   involves  an  over-­‐sizing  of  the  tunnel  and  sta6on  fan  plants  with  a  consequent  further  growth  in  power  consump6ons.    

}  The  presence  of  the  rheostat  on  board  implies  an  addi<onal  weight  and  costs,  and  is  also  a  poten<al  risk  of  fire.  

44  

Power  systems  for  metro-­‐transit:  train  features  

}  For   all   these   reasons   and   with   current   technology,   the  regenera<ve   braking   seems   to   be   a   beker   solu6on,   also   to  reduce  energy  consump6on  in  metro-­‐transit.  

}  Typically  the  recovered  energy  is  primarily  used  to  supply  the  auxiliary  and  comfort  func<ons  of  the  vehicle  itself.  Then,  the  energy  surplus  may  be  returned  into  the  power  supply  line  for  use  of  other  vehicles  within  the  same  line.      

45  

EESS EESS ETR  REC.ED

ETR  REC.BLE

ETR  REQ

Eloss_ESS

Power  systems  for  metro-­‐transit:  train  features  

}  However,   DC   trac<on   grids   could   not   be   always  recep<ve:   they   are   not   always   able   to   admit   the   recovered  braking  energy.    }  The   recovered   energy   can   be   sent   back   to   the   supply   network  only  when  a  simultaneous  consump6on  takes  place,  for   instance  when  another  train  is  accelera6ng  in  the  same  electric  sec6on.    

}  To   dissipate   the   regenerated   energy   that   cannot   be   used  within   the   system,   vehicles   are   anyway   equipped   with   on-­‐board   resistors.   So   the   braking   is   called   rheosta<c-­‐regenera<ve.  

46  

Power  systems  for  metro-­‐transit:  train  features  

}  This  solu6on   is   implemented   in  most  of   the  exis<ng  metro-­‐transit  systems  all  over  the  world.  

}  The   amount   of   recovered   energy   depends   on   service   frequency,  train   power   profiles,   electric   grid   configura<on,   track   profile   and  length  of  feed  sec<ons  and  train  auxiliary  power.  

}  Studies  have  pointed  out   that  up   to  40%  of   the   consumed  energy  could   be   fed   back   to   catenary   during   the   braking   and   however,  measurements  show  only  19%  is  effec<vely  recovered.    

}  The  effec6ve  line  ability  to  receive  the  recovered  energy  cannot  be  taken  for  granted.  

47  

Power  systems  for  metro-­‐transit:  train  features  

}  A  substan6al  share  of  the  braking  energy  to  be  dissipated  in  heat  by  means  of  on-­‐board  rheostats  has  as  a  first  consequence  the  high   reduc6on  of   the  energy   system  efficiency,  with   the   above  said   problem   of   heat   produc6on   in   an   underground  environment.  

}  For   these  reasons,  nowadays  a   lot  of  new  studies  and  research  about   efficiency   in   metro-­‐transit   systems   are   focused   on   the  possibility  to  take  a  full  advantage  of  the  energy  regenera<on  capability  of  the  trains.    

}  Many   proposals   regard   the  way   to  manage   the   trains’   energy  available  by  regenera<ve  braking.     48  

Outline    

}  An  introduc6on  on  electrical  urban  mass  transport  }  Metro-­‐transit  systems:  main  features  }  Power  systems  for  metro-­‐transit:  

}  Supplying  architecture,  trac6on  line  and  electrical  sub-­‐sta6ons  }  Metro-­‐trains  

}  Energy  saving  issues  in  metro-­‐transit  transport  }  Design&sizing   basics   and   some   6ps   on   simula6on  

soHware    }  Metro-­‐transit   system   in   Rome:   an   example   of   real  applica6on  

49  

Energy  saving  issues    in  metro-­‐transit  transport  

}  A  literature  review  on  the  topic  of  energy  efficiency   in  urban  metro   transit   systems   points   out   the   existence   of   different  approaches:  }  approaches  based  on  the  op<miza<on  in  the  design  and  sizing  of  the   electric   supplying   system   (sub-­‐sta6on   layout,   trac6on   line,  reversible  substa6ons,  storage  systems,  etc…);  

}  approaches   based   on   the   traffic   control   both   at   the   individual  train   level   (e.g.   train  performance  control   in  terms  of  speed  and  accelera6on  profiles)  and  at  fleet   level   (6metables,   coordina6on  of   individual   cinema6c   profiles),   and   on-­‐line   centralized   traffic  regula6on.  

50  

Energy  saving  issues    in  metro-­‐transit  transport  

}  The  proposals   dealing  with   the  braking  energy   recovering   issue   are  focus  on  different  possibili6es:  }  to  maximize   the   use   by   other   trains   running   on   the   same   line,   op6mising  

scheduled  6metables   so   as   to   synchronise   accelera6on  and  decelera6on  of  trains  as  far  as  possible  (ATO  systems)  ;  

}  to   improve  the  recep<vity  of  the   line,  equipping  ESS  with  DC/  AC   inverters  (reversible   ESS),   so   that   the   regenerated   energy   can   be   fed   back   to   the  distribu6on  network,  which   is   naturally   recep6ve:   special   contract  with   the  main  grid  u6lity;  

}  to   install   storage   devices   in   ESS   or   along   the   track   that   could   absorb   the  surplus   regenerated   energy   or   delivering   it   when   required   by   trains’  accelera6on:  used  for  lines  with  relevant  slopes  (i.e.  Naples,  Bilbao,  etc.);    

}  to  equip  vehicles  with  energy   storage   systems   that   accumulate   the  excess  regenerated  energy  and  release  it  for  the  next  accelera6on  phase.  

51  

Energy  saving  issues    in  metro-­‐transit  transport  

}  A.  Gonzalez-­‐Gil,  R.  Palacin,  P.  Baky,  “Sustainable  urban  rail  systems:  Strategies  and  technologies  for  op6mal  management   of   regenera6ve   braking   energy”,   Elsevier   Journal   on   Energy   Conversion   and  Management,  Vol.  75,  2013,  pp.  374–388.  

}  C.M.   P.   Leunga,   E:  W.M.   Lee,   “Es6ma6on   of   electrical   power   consump6on   in   subway   sta6on   design   by  intelligent  approach”,  Applied  Energy.  Vol.  101,  January  2013,  pp.  634–643.  

}  M.   Domínguez,   A.   Fernández-­‐Cardador,   A.P.   Cucala,   R.R.   Pecharromán,   "Energy   savings   in   metropolitan  railway  substa6ons  through  regenera6ve  energy  recovery  and  op6mal  design  of  ATO  speed  profiles",  IEEE  Transac;ons  on  Automa;on  Science  and  Engineering.  July  2012,  vol.  9,  no.  3,  pp.  496-­‐504.  

}  W.S.  Lin,  J.W.  Sheu,  “Op6miza6on  of  Train  Regula6on  and  Energy  Usage  of  Metro  Lines  Using  an  Adap6ve-­‐Op6mal-­‐Control  Algorithm”,   IEEE  Transac;ons  on  Automa;on  Science  &  Engineering  2011,  vol.  8,   issue  4  pp.  855-­‐864.  

}  M.C.   Falvo,   R.   Lamedica,   R.   Bartoni,   G.   Maranzano,   “Energy   management   in   metro-­‐transit   systems:   An  Innova6ve  Proposal  Toward  an  integrated  and  sustainable  urban  mobility  system  including  plug-­‐in  electric  vehicles”,  Electric  Power  Systems  Research  Journal.  Volume  81,  Issue  12,  December  2011,  pp.  2127-­‐2138.  

}  M.   Miyatake,   H.   Ko,   “Op6miza6on   of   Train   Speed   Profile   for   Minimum   Energy   Consump6on”,   IEEJ  Transac;ons  on  Electrical  and  Electronic  Engineering,  2010  vol.  5  issue  3,  pp.  263-­‐269.  

}  F.   Ruelland,   K.   Al-­‐Haddad,   "Reducing   Subway's   Energy",   Proceedings   Electrical   Power   Conference,   2007.  IEEE  Canada  25-­‐26  October  2007.  

52  

Energy  saving  issues    in  metro-­‐transit  transport  

}  To   install   energy   storage  devices  on   the   train  or   at   ESS   can  make  the  system  beker  gathering  energy  saving  and  comfort  requirements.  

}  In   favour   of   these   solu6ons,   there   is   also   the   technological  evolu<on  of  the  energy  storage  equipment  that  nowadays  are  able  to  guarantee:  }  higher  values  of  specific  energy,  

}  higher  values  of  specific  power,    }  longer  life  cycle,    

}  reduced  environmental  impact  and  cost  and    }  beker  dynamic  performances.   53  

Energy  saving  issues    in  metro-­‐transit  transport  

}  In   addi6on,   sta<onary   storage   in   ESS   could   provide   further  benefits,  such  as:  }  to   increase   the   system   security,   being   an   external   source   in  

emergency  that  could  supply    trains,  for  reaching  the  nearest  sta6on,  in  case  of  failure  of  the  main  power  supply;  

}  to  shave  power  peaks  with  consequent  savings   in   investment  costs  on  the  power  system;  

}  to   get   stable   voltage   profile   on   power   line,   with   a   consequence  decreasing  in  losses  and  an  improvement  in  terms  of  power  quality.  

}  Only  one  drawback:   feeding  back   the   regenera6ve  energy   to  storage  devices  at  ESS  leads  to  addi<onal  transmission  losses.    

54  

Energy  saving  issues    in  metro-­‐transit  transport  

}  These   losses   are   avoided   placing   the   storage   device   on-­‐board  vehicles,   but   the   train   mass   is   increased   and   addi6onal   space   is  needed  in  the  vehicle.  

}  The  storage  devices  both  in  sta<onary  and  on  board  applica<on  can  be:  }  flywheels,   which   have   large   dimensions   and   are   usually   rejected   on-­‐board,    

}  baperies  which  have  a  limited  number  of  load  cycles,  

}  super-­‐capacitors,   preferred   due   to   the   dimensions   of   the   storage   and  easy   to   be   adapted   to   different   voltages,   power   and   energy   ranges  configuring  the  number  of  series  or  parallel  banks.  Moreover,  their  high-­‐power  density  makes  them  useful  only  in  few  cases.  

55  

Energy  saving  issues    in  metro-­‐transit  transport  

}  Concluding,   the   recovering   of   trains   braking   energy   in   storages  would  allow  a  global  energy  saving,  as  beker  as  it  is  a  good  total  consump6ons   percentage,   with   an   addi<onal   improvement   in  case  of  op<miza<on  of  the  same  storage  systems  design.    

}  Obviously   this   result   depends   on   the  main   characteris6c   of   the  metro-­‐line:  power  system  layout,  metro-­‐line  path,   type  of  train,  traffic  scenario,  etc...  

}  In   order   to   have   an   assessment   of   the   real   energy   saving  guaranteed   by   the   train   braking   recovering,   it   is   necessary   to  perform  specific  analysis  with  dedicated  soqware  on  the  single  cases.    

56