electricity - the magic medium

201
Electricity The Magic Medium L' electricite trl trl trl n § cette prodigieuse energie e-: ::s " l'T> 'G. 0 = + IEEE Canadian Region .. j ,

Upload: xanabras

Post on 09-Aug-2015

89 views

Category:

Documents


4 download

DESCRIPTION

Radio, IEEE Canada

TRANSCRIPT

Page 1: Electricity - The Magic Medium

ElectricityThe Magic Medium

~ L'electricitetrltrltrln§

cette prodigieuse energie~e-:~::s~ "l'T>

'G.0

=

+ IEEE Canadian Region ..

j,

Page 2: Electricity - The Magic Medium

ElectricityThe Magic Medium

L'electricitecette prodigieuse energie

Today we rely on, and take for granted, thesilent energy of electricity for instant commun­ication with places near and far, for lightingand heating our homes, driving our machinesof production, transporting our people andproduce, operating our office buildings, light­ing our streets, controlling our traffic move­ments, calculating our scientific problems,doing our accounting, carrying out a great va­riety of medical treatments, and educating andentertaining ourselves. A century ago the ap­plication of electricity to these purposes wasonly just beginning.

Six authors, with diverse background experi­ences, tell a remarkable story. They tell aboutthe time when a broken sidewalk board in awestern city dumped a lumber merchant into aprairie mud puddle and launched one of Can­ada's great electric power utilities, about howwater falls and fuels in all parts of the countryhave been harnessed to support the growthand comfort of our cities, about a graduate ofQueen's University who revolutionized thestudy of transmission systems through his sym­metrical components method, about a greatCanadian engineer who demonstrated"beyond refute his sterling abilities as a diplo­mat, scientist and politician", about Marconi'swork in Canada, about the Canadian whomade the first radio broadcast of a Christmasprogram, about the origin and spread of elec­trical engineering training across Canada, andabout hundreds of other people and events inour country's electrical progress.

This book is a centennial project of theCanadian Region of the Institute of Electricaland Electronics Engineers, a bilingual publica­tion, commemorating 100 years of outstandingachievement by the entire electrical industry ofCanada.

List Price:$40.00

ISBN 0-9692316-0-1The Institute of Electricaland Electronics Engineers

Canadian Region Office:7061 Yonge Street

Thornhill, Ontario L3T 2A6(416) 881-1930

Page 3: Electricity - The Magic Medium

ElectricityThe Magic Medium

L'electricitecette prodigieuse energie

Aujourd'hui, sans meme Ie realiser, nouscomptons sur l'electricite, cette energie silen­cieuse, pour assurer nos telecommunications,eclairer et chauffer nos demeures, actionnernos equipements de production, transporternos gens et nos produits, assurer la gestion denos immeubles a bureaux, eclairer nos rues,regler la circulation automobile, calculer nosproblemes scientifiques, faire notre comptabi­lite, executer une grande variete de traite­ments medicauJ;" nous instruire et nous diver­tiT. Pourtant, il y a a peine un siecle, on nefaisait que commencer a utiliser l'electricite aces fins.

Six auteurs ont conjugue leur talent pournous faire un recit remarquable. lis nous di­sent entre autre, comment, apres avoir fait unemalencontreuse chute sur Ie trottoir brised'une rue non eclairee d'une ville des Prairies,un marchand de bois du Wisconsin a fondel'une des plus grandes entreprises d'electricitedu Canada et comment ['exploitation des coursd'eau et des combustibles, dans toutes lesregions du pays, a permis d'assurer la crois­sance de nos villes et Ie confort de leurs habi­tants. I1s nous parlent de ce diplome de l'Uni­versite Queen's qui a revolutionne l'etude desreseaux de transport d'energie grace a samethode des composants symetriques et de cegrand ingenieur canadien qui a excelie dansles sphere diplomatique, scientifique et politi­que. lis nous relatent les travaux importants deMarconi au Canada, la premiere diffusionradio, par un Canadien, d'une emission deNoel ainsi que les origines et l'essor de l'ensei­gnement du genie electrique au Canada. lisnous citent aussi des centaines d'autres person­nes et evenements qui ont marque Ie deveIop­pement de I'industrie de l'electricite au pays.

Cet ouvrage bilingue a ete realise par laRegion du Canada de \'Institute of Electricaland Electronics Engineers afin de souligner lesrealisations exceptionnelles de l'industrie cana­dienne de l'electricite au cours des centdernieres annees.

Prix courant:40 $

ISBN 0-9692316-0-1The Institute of Electricaland Electronics Engineers

Canadian Region Office:7061 Yonge Street

Thornhill, Ontario L3T 2A6(416) 881-1930

Page 4: Electricity - The Magic Medium

hi

ElectricityThe Magic Medium

L'electricitecette prodigieuse energie

IEEE CiP1adian Region ..

.I

Page 5: Electricity - The Magic Medium

Photo: Dust Jacket and Title Page:Courtesy of Ontario Hydro

Photo: Jaquette de livre et page de titre:qntario Hydro

Page 6: Electricity - The Magic Medium

----~

ElectricityThe Magic Medium

L'electricitecette prodigieuse energie

IEEE Canadian Region +-

Page 7: Electricity - The Magic Medium

© Copyright 1985THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC.

Published by/publie par: IEEE, Canadian Region

7061 Yonge Street/rue YongeThornhill, OntarioCanada L3T 2A6

All rights reservedTous droits reserves

ISBN 0-9692316-0-1

Production Credit/production:Planning, Design, Typesetting, Printing/la planification, la conception, la composition, I'impression:General Printers, Oshawa, Ontario(Barry Bowers, Robert Donald, Stu Rivoire, Mike Schofield)

I_~~ -

Page 8: Electricity - The Magic Medium

Electricity~The Magic MediumL'electricite, cette prodigieuse energiePublished by IEEE, Canadian RegionPublie par I'IEEE, Region duCanadaAdministrative Organization, as established in 1983Structure administrative, comme prevue en 1983

Preliminary Planning Committee

Chairman: W. Harry Prevey-EditorMembers: George G. Armitage, IEEE Region 7

Giuseppe G. Bonadie, Ontario HydroWilliam F. Choat retired, (Westinghouse Canada Ltd.)Ian R. Dutton, Ryerson Polytechnical InstituteClifford S. Hand, Lakeview Publications Inc.Fred J. Heath, IEEE Region 7Joseph A. Kamas, Ryerson Polytechnical InstituteFred J. Kee, Ontario HydroDouglas Peck, Bell CanadaErnie A. Welling, Electrical and Electronic Manufacturers Association of CanadaWilfred B. Whalley, retired

Centennial Project CommitteeChairman: W. Harry Prevey, Prevey Consulting Services Ltd. North York, ant.Canadian Region Rep: Fred J. Heath, Director (1982-1983), Toronto, Ont.Eastern Council Rep: Michel L. Fossiez, Systemes informatiques Univac, Dorval, Que.Western Council Rep: Gordon L. Hedberg, Underwood McLellan Ltd., Calgary Alta.Central Council Rep: W. Harry Prevey, Prevey Consulting Services Ltd, North York, ant.Financial Admin: George G. Armitage, IEEE Canadian Office, Thornhill, ant.

Editorial BoardEditor:Consulting Editors:

Advisory Committee:Chairman:Members:

W. Harry Prevey, Prevey Consulting Services Ltd. North York, ant.J. L. Boulet, Vice-president executif, Technologie et affairesinternationales, Hydro-Quebec, Montreal, Que.Gordon F. MacFarlane, Chairman and Chief Executive Officer, BritishColumbia Telephone Company, Burnaby, B.C.Harold A. Smith, formerly Vice-president, Engineering andOperations, Ontario Hydro, Mississauga, ant.

Gordon R. SIemon, Dean of Engineering, University of Toronto, ant.J.J. Archambault, Director-Region 7 (1980-1981). Bureau duPresident, Hydro-Quebec, Montreal

J.L. Boulet, Vice-president executif technologie et affairesinternationales, Hydro-Quebec, Montreal, Que.Wm. A. Cumming, Executive Vice President, National ResearchCouncil, Ottawa, ant.Roland Dore, Doyen et Directeur, Ecole Polytechnique, Montreal, Que.

A.J. Degrandpre, President du Conseil d'administration et Chef de ladirection, Bell Canada, Montreal, Que.

v

Page 9: Electricity - The Magic Medium

E.F. Glass, Director-Region 7 IEEE (1978-1979). Utility Sales,Westinghouse Canada Inc., Winnipeg, Man.FredJ. Heath, Director-Region 7 IEEE (1982-1983). Toronto, Ont.

Larkin Kerwin, President, National Research Council, Ottawa, Ont.H.S. Lunan, President, IEEE Conferences Montreal Inc., ManagerApparatus Service, Canadian General Electric Company, Verdun, Que.

Gordon F. MacFarlane, Chairman and Chief Executive Officer, BritishColumbia Telephone Company, Burnaby, B.C.

Eric H. Marrin, Executive Vice-President, Operations, British ColumbiaHydro, Vancouver, B.C.

Milan Nastich, Chairman and President, Ontario Hydro, Toronto, Ont.

J.L. Olsen, Chairman of the Board, Electrical and ElectronicManufacturers Association of Canada. President and Chief ExecutiveOfficer, Phillips Cables Limited, Brockville, Ont.

L. Claude Simmonds, Chairman of the Board, IEEE Inc. President and_Chief Executive Officer, A.C. Simmoncis& Sons Limited, Pickering,Ont. . - -

M.G. Williams, President, Association of Consulting Engineers ofCanada (1983-1984), Vice President, Business Development, C.B.C.L.Limited, Halifax, N .S.

Marshall M. Williams, President, Canadian Electrical Association(1982-1983). President and Chief Executive Officer, TransAlta UtilitiesCorporation, Calgary, Alta.

VI

Page 10: Electricity - The Magic Medium

Wallace S. Read

Preface

The electrical phenomenon has fascinated sci­entists, engineers and the general public sincethe publication of Dr. Gilbert's theories onelectricity and magnetism in 1600. Those ofus who have been fortunate enough to workclosely with this amazing energy form-edu­cators, manufacturers, utility and industryworkers alike-have grown to respect and ad­mire its capacity and versatility to meet man­kind's insatiable appel'ite for improvement inhis lifestyle.

This book bears testimony to the ingenuityand dedication of Canadian contributors tothe advancement of electrical technology. It isfitting that such a record be produced to com­memorate the Centennial of the Institute ofElectrical and Electronics Engineers. It comesas a result of the efforts of many.

For those of us who have lived a part of thishistory the text and illustrations may wellspark the memory of personal involvement insome of the events. For younger readers thebook will be a reminder that the developmentof our technology and profession did notcome easily. For all of us there is the hiddenmessage that the age of discovery and inven­tion is never over and that, with like persever­ance, we can look forward to equally as greatsuccesses in the future.

Electricity truly is the "Magic Medium".

Wallace S. Read, Region 7 Director,IEEE (1984-85)

Preface

Depuis que Ie Docteur Gilbert a fait connaitreses theories sur l'electricite et Ie magnetisme,en 1600, Ie phenomene de I'electricite n'acesse de fasciner les scientifiques, lesingenieurs et Ie grand public. Ceux qui, parleur travail, ont eu la chance de mieuxconnaitre cette forme d'energie merveil­leuse-educateurs, fabricants, travailleurs deI'industrie et des entreprises d'electricite-ontappris a respecter et a admirer sa capacite desatisfaire Ie besoin insatiable de I'hommed'ameliorer son bien-etre.

Ce livre temoigne de I'ingeniosite et dudevouement des Canadiens qui ont contribuea l'avancement des techniques de l'electricite.II est Ie fruit des efforts conjugues d'un grandnombre de personnes, qui desiraient ainsisouligner Ie centenaire de I'IEEE.

Chez ceux qui ont vecu une partie de cettehistoire, les textes et les photos pourront eveil­IeI' Ie souvenir de leur participation a certainsevenements qui y sont relates. Quant aux lec­teurs plus jeunes, ce livre leur permettra derealiser que Ie developpement des techniqueset des professions de l'electricite ne s'est pasfait facilement. Par ailleurs, il" nous rappelleimplicitement a tous qu'il n'y a pas d'epoquepour les decouvertes et les inventions et quenous pouvons aspirer a des reussites futuresaussi grandes que celles du passe.

L'e!ectricite est remplie de promesses prodi­gieuses.

Wallace S. Read, Directeur de la Region 7,IEEE (1984-1985)

ix

Page 11: Electricity - The Magic Medium

Introduction

This book commemorates the achievements ofthe Electrical Industry in Canada over thepast 100 years and longer. The story is con­tained partly in text material and partly inphotographs. It has been undertaken by theCanadian Region of the Institute of Electricaland Electronics Engineers in support of theInstitute's centennial celebration which oc­curred in 1984.

ELECTRICITYl We call it the "MAGICMEDIUM" because it is a phenomenal forcewhich magically converts the energy of ourcountry's fossil fuels, the power of our waterfalls and the thermal content oLour- nuclearsources into-a form -in which this energy canbe transmitted to our farms, homes, factories,streets, public places and into space to per­form the tasks of our daily lives. We have notalways had this magical medium. A hundredyears ago or more Canada did not possess thecapability to use these wondrous forces of na­ture through the medium of electricity. Todaywe rely on, and take for granted, the silent en­ergy of electricity for instant communicationwith places or people near and far, for light­ing and heating our homes, driving our ma­chines of production, transporting our peopleand produce, operating our office buildings,lighting our streets, controlling our trafficmovements, calculating our scientific prob­lems, doing our accounting, carrying out agreat variety of medical treatments, and edu­cating and entertaining ourselves.

This is a story of people, institutions, publicbodies, private industries and organizationswho have been leaders in harnessing the en­ergy of nature for the benefit of Canadiansfrom one end of the country to the other. It isa story about invention, adventure, patience,courage, and persistence. It is not a completestory: it is only an illustrative one. It could notbe otherwise within a volume of this size.

Our growing electrical systems have been amajor contributing factor in Canada's century

x

of development and welfare of Canadians. Al­though we are a relatively small nation we rec­ognize ourselves, and we believe we are recog­nized around the world, as a country offreedom arid high standards of living. Ourfarms and cities are clean, productive, enjoy­able, and healthy places to live. Without ourample supply of electricity and our advancedelectrical machinery and devices we would notbe in this happy state. Without the continuingdevelopment of our electrical systems and ap­pliances we should not be cap;lble of-carrying'on in thenext'cen'tury as 'one of the most fa-vO~ll'Cd countries of the world. It is with these W. Harry Prevey

thoughts that this book has been undertakenby the Canadian Region of the IEEE.

AcknowledgementsMany people and organizations have contri­buted to the development of this book. Thosewho have assisted through their financial sup­port are listed on page 183. Others have givenfreely of their time and expertise during theplanning stages by contributing or gatheringbackground material including treasured pho­tographs or by advice on graphics and print­ing. It is quite certain that we will omit somebut feel obliged to acknowledge our debt ofgratitude to all our contributors and to men­tion them to the extent that we have succeededin maintaining our record.

Our success in gaining a broad interest inthis project from all parts of the country andfrom all segments of this industry is due tothe early work and support of the IEEE Re­gional Director, Council Representatives, Ad­visory Board and Editorial Board-all ofwhom are listed on page v. Then the PlanningCommittee, also listed on page v, establishedthe format and laid the ground work for gath­ering source material.

Various Sections of the IEEE across Canadahave participated financially & have contri-

Page 12: Electricity - The Magic Medium

#-

Introduction

Ce livre retrace, par des textes et des photos,l'histoire de I'industrie canadienne de l'eIectri­cite depuis plus de cent ans. Sa realisation a eteentreprise par les responsables canadiens de!'IEEE dans Ie cadre du centenaire de cette or­ganisation, qui a ete celebre en 1984.

L'Elatriciti! N'est-il pas en effet prodigieuxque cette energie puisse ctre tin~e des combus­tibles fossiles, des cours d'eau et des particulesnuc1eaires pour ctre transportee jUSqU'~1 nosfermes, nos maisons, nos usines et nos ruesainsi que dans I'espace pour accomplir destaches de notre vie quotidienne? Mais cetteforce phenomenale n'a pas toujours existe. II ya a peine un siec1e, Ie Canada n'avait aucunmoyen pour exploiter ainsi les ressources de lanature. Aujourd'hui, nous faisons continuelle­ment appel it cette energie silencieuse pourechanger des communications, ecIairer etchauffer nos residences, actionner nos machi­nes industrielles, transporter nos gens et nosproduits, eclairer nos rues, contr61er la circula­tion automobile, n~soudre des problems scien­tifiques, faire notre comptabilite, executer unegrande variete de traitements medicaux, nouseduquer et nous distraire.

Cette histoire est celie des gens et des organi­sations privees et publiques qui ont joue desr61es de pionniers dans l'exploitation de l'ener­gie de la nature et qui en ont fait beneticiertous les Canadiens. Elle se veut une illustrationde I'esprit d'invention et d'aventure de ces gensainsi que de leur patience et de leur courage.

L'expansion de nos reseaux electriques ajoue un r61e important dans Ie deveIoppementdu Canada et dans I'amelioration du bien-co'ede ses citoyens au cours des cent dernieresannees. Meme s'il est reIativement petit, Ie Ca­nada n'en est pas moins considere, autant parses citoyens que par ceux des autres pays,comme un pays de liberte jouissant d'un n.i­veau de vie Cleve. Nos campagnes et nos villessont propres, productives ainsi qu'agreables etsaines a habiter. Sans nos abondantes sources

d'electricite et les machines perfectionneesqu'elles permettent d'exploiter, nous ne pour­rions beneficier d'un tel niveau de bien-eu'e.Sans les progres constants que nous avons con­nus dans ce domaine, nous ne pourrions nouspretendre, au sortir du vingtieme siecle, unedes nations les plus favorisees du monde. C'estdans cet esprit qu'a ete realise ce livre.

RemerciementsPlusieurs personnes et organisations ont con­tribue it la realisation de cet ouvrage. Certainsont donne de I'argent (voir la liste, page 183) etd'autres ont consacre gratuitement du temps,au cours de la periode de planification, a four­nil' ou it rechercher des documents et des pho­tos ou encore a apporter des conseils enmatiere de graphisme et d'impression. Noustenons, en guise de remerciement, a mention­ner leurs noms dans ce livre. Nous nous excu­sons aupres de ceux que nous aurions oublies,meme si nous avons fait tout notre possiblepour bien tenir nos dossiers.

Si ce projet a souleve un grand interet danstoutes les regions du pays et dans toutes lesspheres de l'industrie, c,est grace au travailsoutenu du Directeur regional de l'IEEE, auxrepresentants des Conseils, au Comite consul­tatif et au Comite editorial (voir la Iiste desnoms, page v).

Soulignons egalement que la Comite de pla­nification, dont les noms des membres appa­raissent a la page v, a etabli Ie format de I'ou­vrage et a organise Ie travail de recherche desdocuments.

Differentes sections ont contribue fi­nancierement et fourni des documents dereference necessaires a' la realisation du livre.

Nous desirons aussi remercier Ie Bureauregional de !'IEEE il Toronto ainsi que Ie siegesocial de I'organisation, a New York. Lors dulancement du projet, M. Fred Heath occupaitIe poste de Directeur regionalet M. GeorgeArmitage, celui de Chef du Bureau regional.

Xl

Page 13: Electricity - The Magic Medium

buted background material for the book.We are also indebted to both the IEEE Re­

gional Office in Toronto and the Institute'sHeadquarters in New York. When this Cen­tennial Project was first undertaken FredHeath was Regional Director and George Ar­mitage was Regional Office Manager. LaterWallace Read was elected Regional Directorand Fred Heath was appointed Regional Of­fice Manager. Throughout, Mrs. PamelaWoodrow has served as Assistant Manager.These officials have steadfastly carried outmyriad tasks associated with planning, com­municati9ns, publicity, financial management,and record keeping for this undertaking. Wealso extend our thanks to Dave Staiger, StaffDirector-Publishing Services-IEEE Head­quarters, New York, for his most valued guid­ance regarding procedures for printing.

Then there are the authors who have con­tributed the text of the various parts. LarryCollins has provided the story of ElectronicCommunications and Control, Fred Kee re­searched and provided the story of the Devel­opment of Electric Power in Canada. RayFindlay wrote the story of Electrical Engineer­ing and Technology Education. George Armi­tage and Fred He~th produced the acccnint ofthe Institufein Canada while Dean GordonSIemon, of the University of Toronto, hascontributed his commentary: "Past, Presentand Future".

We are especially indebted to those whohave provided us with the French languagetext translations-essential to the productionof a truly national Canadian publication. The

xii

portion on the Development of Electric Powerin Canada is the contribution of the Hydro­Quebec organization. Other portions havebeen translated by Gerry Matteau of Ottawa­with editorial assistance by Bell Canada (in theCommunications portion) and Ecole Polytech­nique (in the part on Education). The balanceof the translations are contributed by theCanadian Electrical Association, through theassistance of Murray Phillips and GeorgesPortelance.

Regarding photographs: we have received agreat many from all across Canada. Some areof modern-day accomplishments. Others areof the early days. We are grateful for theseand regret that we have been able to only in­clude a part of those which have been sokindly provided for our use. To the extentpossible we acknowledge the contributor inthe caption of each photograph.

The list which follows gives the names ofthe individual contributors of the various cate­gories which we have summarized in'the fore­going acknowledgement-other than thosewho have already been listed in the boarcls_and committees on ,e<irlier pages: We extendour most 'grateful thanks to each individualand organization who has assisted us to bringthis publication through to its completion.

W. Harry Prevey-Editor

Page 14: Electricity - The Magic Medium

MM. Wallace Read et Fred Heath ont ensuiteete respectivement elus aces deux postes, alorque Mme Pamela Woodrow assumait Ie postede Chef adjoint. Ces personnes ont accomplid'innombrables t~lChes dans les domaines de laplanification, des communications, de la publi­cite, de la gestion financiere et de la tenue de li­vres. Nous remercions egalement M. DaveStaiger, Directeur du Personnel au service desPublications, au siege social de !'IEEE, a NewYork, qui nous a apporte une aide precieuse ence qui concerne l'impression.

Cinq redacteurs ont ecrit les differentes par­ties du livre. M. Larry Collins a redige la partieintitulee L'electronique, moyen de communi­cation et de controle. M. Fred Kee est l'auteurde L'histoire de l'electricite au Canada etM. Ray Findlay a ecrie L'enseignement dugenie et de la technologie dectrique. MM.George Armitage et Fred Heath ont decrit Iefonctionnement de l'IEEE au Canada et IeDoyen Gordon Siemon, de l'universite de To­ronto, a redige Ie commentaire intitule: Passe,present et avenir.

Nous tenons aussi a exprimer notre recon­naissance envers ceux qui ont effectue la tra­duction de ces textes en fran\=ais, critere essen­tiel a la realisation d'une publication vraimentnationale. La partie traitant de l'histoire del'electricite au Canada a ete traduite par Ie per­sonnel d'Hydro-Quebec. Les autres partiesmentionnees au paragraphe precedent ont ete

traduites par M. Gerry Matteau, d'Ottawa, aidepar Ie personnel de Bell Canada (en ce qui con­cerne la partie touchant les communications) etde I'Ecole Polytechnique (pour la partie trai­tant de l'enseignement). L'Association cana­dienne de l'electricite s'est chargee de' latraduction des alltres textes grace a la colla­boration de MM. Murray Phillips etGeorges Portelance.

Nous avons re\=u un grand nombre de pho­tographies de toutes les \-egions du pays. Cer­taines illustrent des realisations recentes, d'au­tres datent des premieres decennies deI'histoire de l'e1ectricite. NOlls remercions ceuxqui nous les ont fournies et nous nous excu­sons de n'en publier qu'une partie. Dans la me­sure du possible, nous mention nons Ie nom dela personne qui l'a envoyee, au bas de chaquephotographie.

On trouvera, dans les pages qui suivent, lesnoms de ceux qui ont contribue ~l <:livers titresau present ouvrage. Nous desirons exprimernotre gratitude envers toutes les personnes ettoutes les organisations qui nous ont permisd'executer integralement notre projet.

W. Harry Prevey, Editeur

xiii

Page 15: Electricity - The Magic Medium

ContributorsIndividual Contributors of Source Material,Photographs, Suggestions and Planning. Note:this list is supplementary to the listing of boardand committee members on earlier pages.

IEEE Components/Membres de.I'IEEEK.A. Butt-Newfoundland and Labrador SectionCenter for the History of Electrical Engineering, New YorkB. Charlton-Saskatchewan SectionT.P. Conrod-New Brunswick SectionWallas H. Khella-Toronto SectionT.H. Lee-New Brusnwick SectionJohn S. MacKelvie-Bay of Quinte SectionDon G. McFarlane-Vancouver SectionMiguel A. Marin-Montreal SectionHarold J. Page-Victoria SectionR.F. Peacock-Toronto SectionRichard L. Punshon-Saskatchewan SectionMalcolm Redding-New Brunswick SectionGeorge Sinclair-Past Director, Canadian RegionDave H. Thorne-New Brunswick SectionJack White-New Brunswick SectionAdam Zielinski-Newfoundland and Labrador Section

ContributeursListe des personnes et des organisatioris qui,outre les membres de comites et de conseilsenumeres dans les pages preeedentes, ont eon­tribue de diverses manihes a la realisation deeet ouvrage.

Universities and Technical Colleges/Universites et colleges techniquesJohn Ahern, Laval University, Quebec, QuebecIan F. Blake_University of Waterloo, OntarioLeonard Casciato-University of Toronto, OntarioH.W. Dommel-University of British Columbia, VancouverClaude Doucet-Ryerson Polytechnical Institute Archives, Toronto, OntarioNicole Forest-Ecole Polytechnique, Montreal, QuebecJ.G. Forth-Carleton University, Ottawa, OntarioR.E. Gander-University of New Brunswick, FrederictonNicolas Georganas-University of Ottawa, OntarioY. Gervais-Ecole Polytechnique, Montreal, QuebecJ .A. Karnas-Ryerson Polytechnical Institute, Toronto, OntarioJ.D. Katzberg-University of Regina, SaskatchewanLome Kersey-University of British Columbia, VancouverAdrien Leroux-University of Sherbrooke, QuebecEugene Lewis-University of New Brunswick, FrederictonLorraine MacBride-Ecole Polytechnique, Montreal, QuebecShirley McKinley-Ryerson Polytechnical Institute Archives, Toronto, OntarioP.N. Nikiforuk-University of Saskatachewan, SaskatoonHeinz Peper-Conestoga College, Kitchener, OntarioJ .S. Riot'don-Carleton University, Ottawa, OntarioNaresh K. Sinka-McMaster University, Hamilton, OntarioHelen Smith-University of Waterloo, OntarioG.D, Theophilus-Acadia University, Wolfville, Nova ScotiaThomas Fisher Rare Book Library-University of Toronto, OntarioA.R. Webster-University of Western Ontario, LondonP.H. Wittke-Queen's University, Kingston, OntarioA. Zielinski-Memorial University, Sf. John's, Newfoundland

Electric Power and Communications Utilities/Fournisseurs d'eIectricite et de communicationsStephanie Sykes-Bell CanadaHeather M. Brown-Bell Canada Telephone Historical CollectionAndre Bolduc-Hydro-Quebec

XIV

Page 16: Electricity - The Magic Medium

W.W. Brown-Maritime Electric CompanyKeith R. Buck-Ontario HydroReg Burnard-Ontario HydroIan Clark-Canadian Electrical AssociationEven Flude-Saskatchewan TelecommunicationsR.M. Fraser-Manitoba HydroMonica Gallagher-Ontario HydroHugh J. Goldie-British Columbia Hydro and Powel' AuthorityRobert C. Jefferies-Toronto Hydm Electric SystemW.O. Kennedy-Saskatchewan Power CorporationBrian Kilgour-CN/CP TelecommunicationsDon G. McFarlane-BI"itish Columbia Hydro and Power AuthOl'ityW. Nieboer-TransAlta Utilities CorporationJeff I. Nish-TransAlta Utilities CorporationMrs. Eilecn Pilby-Ontario HydroCarol Riel-Manitoba Telephone SystemCarolyn Rickie-Manitoba Telephonc SystemB.H. Stephenson-Winnipeg HydroTCrTi Taylor-Edmonton P()werC. R. Vivian-Newfoundland Light and Power CompanyV.L. Young-Newfoundland and Labrador Hydro

Industrial Companies and Organizations/Entreprises industriellesJoan Bruce-Aluminum Company (Alcan)Canadian Pacific Corponlte AI"chivesJ .K. Carman-Westinghouse Canada LimitedSharon J. Curley-Canadian General Electric CompanyR.F.J. Dcakin-Polygon Industries LimitedDofasco IncOl-poratedJanka Dvornik-Canadian Marconi CompanyJudie Foster-Alcan Aluminium LimitedGrant K. Free-Canadian Gcneral Elcctric CompanyBetty Geraghty-Northern Telccom LimitedAbe J. Gleibennan-AM&P Services, New YorkPeter Godfree-Canadian Impel"ial Bank of CommelTeCecil Halsey-Canadian PacificDennis Heeny-Honeywell LimitedArchie M. Johnson-Canadian Genel'al Electric CompanyMurray Lester-Aluminum Company (Alcan)Tom Lucey-Canadian General Electric CompanyStewart A. McLaren-Canadian General Elcctric CompanyMontl"eal Engincering Company Ltd.Horst Roth-Alcan Aluminium LimitedGeorge Runciman-Canadian Imperial Bank of CommerceLome H. Walls-Alcan Aluminium LimitedJoan Russell- Wells-Canadian Mal'coni CompanySpar Aerospace LimitedDick Wertheim-Nol·thern Telecom Limited

Medical Institutions and Specialists/Institutions medicalesJudy Biggar-Toronto General HospitalSandy Dcpira-Foothills Hospital, CalgaryAlfrcd M. Dolan-Canadian Medical Engineers, Consultant, Belfountain, OntarioGeorge Horn-Hospital for Sick Children, Tomnto, OntarioA.M. House-Memorial Univel"sity Faculty of Medicine, St. John's, NewfoundlandR.N. Scott-Bio Engineering Institute, University of Ncw Bmnswick, Federicton

Government Departments/Services gouvernementauxGrace Brickcll-Department of Communications, Federal GovernmentNational Aeronautics Space Administration, U.S.National Research Council, Federal Govcrnment

Miscellaneous/AutresMaurice Chaplin-Hamilton, OntarioJane Logan, Telesat CanadaJonathon, Lynn and Joe Rector-Saint John, New BrunswickDiane Sibbett, Canadian Education Association, Toronto, Ontario

xv

Page 17: Electricity - The Magic Medium

Table of ContentsCommittees v

Preface by Wallace S. Read IX

Introduction and Acknowledgementsby W. Harry Prevey

Contributors

X

XIV

Part One:

Part Two:

Part Three:

Part Four:

Historical HighlightsCommunications and Controlby Larry Collins

Electric Power in Canadaby Fred j. Kee

Electric Utilities across Canadaby Fre~J__ Kee _

Electrical Manufacturingby Fred]. Kee

Electrical Engineering and Technology Educationby Raymond D. Findlay

Past, Present and Futureby Dean Gordon R. Siemon

The IEEE-Canadian Regionby Fred]. Heath and George G. Armitage

2

48

_54

112

122

164

170

Acknowledgement of Financial Contributions

XVI

183

Page 18: Electricity - The Magic Medium

i_~5 .. %§._ • ·f -

Table des ll1atieres

Comites v

Preface par Wallace S. Read IX

/Introduction et remerciements

par W. Harry Prevey

Contributeurs

XI

XIV

Premiere partie:

Deuxieme partie:

Troisieme partie:

Quatrieme partie:

Faits saillants historiquesCommunication et contr61epar Larry Collins

L'histoire de l'electricite au Canadapar Fred]. Kee

Les entreprises d'electricite au Canadapar Fred J. Kee

Les fabricants d'equipements electriquespar Fred]. Kee

L'enseignement du genie et de la technologie electriquepar Raymond D. Findlay

Passe, present et avenirpar le Doyen Gordon R. Slemon

La region du Canada de l'IEEEpar Fred]. Heath et George G. Armitage

3

49

55

113

123

165

171

Remerciements pour les contributions financieres 183

XVII

Page 19: Electricity - The Magic Medium

ConstruetiGn-Eastmain River, james Bay Power Project.Photo courtesy of Hydro-Quebec.

Construction-Riviere Eastmain, projet energetique de laBaic James. Photo courtoisie d'Hydro-Quebec.

Page 20: Electricity - The Magic Medium

PartOneHistorical Highlights

COllllllunications and ControlBy Larry Collins

C.R. (Cerry) Matteau-translator, has providedtranslation of variousportions of this book. MeMatteau graduated inChemical Science fromUniversity of Montreal in1943 and retired fromAtomic Energy of CanadaLtd. in 1983, where he didconsiderable translation andinterpretation work.

Larry Collins-author,newspaper writer andfree-lance contributor toCanadian publications.

Larry Collins, ecrivain,rcdacteur et pigiste pourdiverses publicationscanadiennes.

It was a U.S. entrepreneur, Cyrus Field,who finally__ brollght tb~ trclnscAtlanticcab\e_ashore at Heart's Content on the shores ofNewfoundland in 1866 after nearly 10 yearsof trying.

On the West Coast, Perry Collins forged850 miles of telegraph line northwest fromNew Westminster, B.C., in an attempt to linkOld World and New through Russia. Thencompletion of the trans-Atlantic cable madehis Overland Telegraph redundant.

In 1874, the Northwest Mounted Policerode west across the Prairies to keep law andorder. To keep in touch with them, the gov­ernment decided a telegraph line must bebuilt, along the route of the proposed Cana­dian Pacific Railway.

But telegrams, still arriving in dots anddashes, were running into competition. OnMarch 10, 1876, Alexander Graham Bell hadspoken the words, "Mr. Watson, come here, Iwant you," and his assistant had come run­ning from another room. The telephone hadbeen born.

Bell was in Boston, where he went everywinter to teach deaf children, when his his­toric message was heard. However, it was atthe family home near Brantford, Ontario,that he had conceived the idea of the tele­phone and it was there, in the summer of1876, that the device underwent its final test.On August 10, Bell set up a receiver in Paris,Ontario, and, over borrowed telegraph lines,listened to voices from the Dominion Tele-

One hundred years ago, -distance had alreadyshrunk more than men could once havedreamed. Scientists had learned that electricalimpulses could travel over wires. SamuelMorse; an artist-turned"inventor, had deviseda method of sending dots and dashes by wirewhich could be decoded into words. His im­mortal phrase, "What hath God wrought?"had been sent from Washington to Baltimorein 1845.

On the morning of December 19, 1846, thefirst Canadian telegraph message was trans­mitted between Hamilton and Toronto. Thefirst chit-chat between the two telegraphersrevealed that the proper dignitaries were noton hand.

"Well", tapped Hamilton, "advise Mr. Gam­ble (the President of the Toronto, Hamilton,Niagara and St. Catharines Electro-MagneticTelegraph Co.) that Mr. Dawson will speak tohim at half-past one."

At the appointed time, the official exchangeoccurred. From there, telegraph spreadthrough Ontario, Quebec and the Maritimes.A young Englishman named Frederick New­ton Gisborne dreamed of a trans-Atlanticcable linking North America and Europe. Hewent broke trying to build a telegraph lineacross Newfoundland's rugged terrain. ButGisborne made history in 1852 by layingNorth America's first under-water cable fromNew Brunswick to Prince Edward Island.

The Early Days

I

L

Page 21: Electricity - The Magic Medium

Premiere partieFaits saillants historiques

COlllIIlunication et contr61ePar Larry Collins

G.R. (Gerry) Matteau,traducteur, a Llit latraduction de piusieurssections de ce livre. M.Maueau a re~u un diplomede chimie de I'Universite deMontreal en 1943. II a pris saretraite en 1983, alars qu'i!etait a l'emploi d'Energieatomique du Canada Limitee,Oll il a fait beaucoup detravail de traduction etd'interpretation.

II Ya plus de cent ans, les distances avaient dejadiminue au-dela des plus beaux I'eves de nosancetres. Les hommes de sciences avaientdecouvert que des impulsions electriques pou­vaient etre transmises par fils de metal. SamuelMorse, un artiste-fait-inventeur, avait mis aupoint un systeme de signaux, utilisant despoints et des traits envoyes par fils, qui pou­vaient etre convertis en mots. Son message:"What hath God wrought?" devenu immortel,avait ete envoye de Washington a Baltimore,en 1845. .

Au cours de l'avant-midi du 19 decembre1846, Ie premier message telegraphique auCanada a ete transmis de Hamilton a '1'0­ranto. Les premiers echanges entre les deuxoperateurs laisse deviner qu'il n'y avait pas dedignitaires presents: "Eh bien!", a tape Hamil­ton, "dis a Monsieur Gamble que MonsieurDawson lui parlera a 13h30". A l'heure fixee,I'echange officiel avait lieu entre les dignitai­res.

A compteI' de cette date, la telegraphie serepandit dans d'autres regions de l'Ontario, auQuebec et dans les Maritimes. Unjeunebritan­nique, Frederick Newton Gisborne, revaitd'installer un cable qui traverserait l'Atlantiquepour relier l'Amerique du Nord a l'Europe; ilperdit sa fortune en essayant de construire uneligne de telegraphe a travers Ie terrain acci­dente de Terre-Neuve. Neanmoins, il passa aI'histoire, quand, en 1852, il mit en place Ie

premier cable sous-marin en Amerique duNord entre Ie Nouveau-Brunswick et 1'IIe-du­Prince-Edouard.

En 1866, apres presque dix annees d'essaisinfructueux, un entrepreneur americain,Cyrus Field, reussissait a amener Ie cable trans­atlantique jusqu'a la cote de Terre-Neuve, aHeart's Content. A la meme epoque, sur la cotedu Pacifique, PelTY Collins constmisait 850milles de lignes teIegraphiques vel'S Ie nord­ouest, a partir de New Westminster, en Colom­bie Britannique, dans l'espoir de relier lesvieux pays avec Ie Nouveau Monde, en passantpar la Russie. Mais Ie parachevement du cabletransatlantique rendit sa ligne sur la terreferme redondante. En 1874, la Police Monteedu Nord-Ouest, poussait vel'S I'ouest, dans lesPrairies, pour y maintenir l'ordre public, et IeGouvernement, pour se tenir en contact avecelle, decida d'installer une ligne telegraphiquequi suivrait Ie trace de la voie ferree projetteepar Ie Canadien Pacifique.

Mais les telegrammes, toujours transmis enpoints et traits, comment;aient a rencontrer dela concurrence. Le 10 mars, 1876, AlexanderGI'aham Bell avait pranonce les mots suivants:"Monsieur Watson, venez ici, j'ai besoin devous." Et son assistant etait accouru d'unepiece voisine. Le telephone venait de naiu;e.Cet evenement historique avait eu lieu a Bos­ton, 011 Bell passait I'hiver a enseigner aux en­fants sourcIs. Mais c'est ason domicile familial,

3

Page 22: Electricity - The Magic Medium

II

I

I

1

I

I

1

Bell"s first electric speakingtelephone. constructed in1875. Photo courtesy of BellCanada Telephone HistoricalCollection.

Premier telephone :, signauxelectriques de Bell, fabriqueen 1875. Photo: Collectionhistorique du telephone deBell Canada.

I

I'

I

graph Company office in Brantford eightmiles away. It was the world's first, one-waylong distance call.

Canada's first telephone exchange was es­tablished in Hamilton in 1878 with seven linesand 50 subscribers. The phone itself was awooden, hand-held telephone with a circulardual-purpose mouthpiece projecting fromone side. The caller talked through themouthpiece, then put it to his ear to listen tothe reply.

That same year, telephones appeared inNewfoundland, New Brunswick, Winnipegand Victoria. In 1883, the NorthwestMounted Police used the first telephones inRegina.

Alex Bell was no businessman. In 1877, hehad turned over 75 per-cent of his patents tohis father, Melville Bell, and the rest to Bos­ton manufacturer Charles Williams, who wasto supply 1,000 telephones to the CanadianMarket. Then the younger Bell went back toteaching the deaf.

4

It was soon obvious that Williams couldnever supply Canada's need for phones. An­other Brandonl man, James Cowherd, set upCanada's first telephone factory and hadchurned out 2,398 of the instruments by188l.

In 1879, Melville Bell decided to sell hiscompany. Finding no Canadian takers, hesold to National Bell of the U.S. In 1880, BellTelephone Company of Canada was char­tered and Charles Fleetford Sise, a hard­nosed former ship's captain from Boston, wasstIll to Montreal to run it.

By 1884, telephone and telegraph mes­sages, carried by electricity on strands of wirestrung on wooden poles, had almost lillkedCanada from Atlantic to Pacific. Canadians, asthey would always be, were in the forefront ofcommunications technology. But who couldknow that less than 100 years iater, messageswould be bounced off satellites high above theearth and circle the globe in a fraction of asecond?

Page 23: Electricity - The Magic Medium

pres de Brantford, en Ontario, qu'il avaitconc;:u J'idee du telephone et c'est la, au coursde J'ete de 1876, qu'il mit l'appareil a l'essai.Le 10 aout, Bell avait installe un recepteur aPal-is, en Ontario, et sur les !ignes teIegraphi­ques qu'il avait empruntees, il entendit desvoix venant du bureau de la Dominion Tele­graph Company, it Brantford, situe it huit mil­les de lao C'etait Ie premier appel interurbainunidirec;tionnel au monde.

Le premier central telephonique au Canadaa etc installe a Hamilton, en 1878. II compre­nait 7 lignes et desservait 50 abonnes. L'appa­reil lui-meme etait en bois, et se tenait dans lamain. II portait sur Ie c6te une embouchureronde qui servait aux deux fonctions: la per­sonne qui appelait parlait dans I'embouchure,puis portait celle-ci ason Ol-eille pour entendrela reponse. La meme annee, Ie telephone futintroduit ~l Terre-Neuve, au Nouveau-Bruns­wick, a Winnipeg et a Victoria. En 1883, la Po­lice Montee du Nord-Ouest uti!isait les pre­miers telephones installes a Regina.

Alexander Bell n'etait pas un homme d'af­faires. En 1877, il avait remis 75% de ses bre­vets d'invention a son pere, Melville Bell, et Ierestant, au manufacturier bostonnais, CharlesWilliams, qui avait promis de fournir 1000telephones au marche canadien. Puis Ie jeuneBell retourna a I'enseignement aux sourds. IIdevint bient6t evident que Williams ne pour­rait pas satisfaire les besoins du Canada. Unautre citoyen de Brantford, James Cowherd,etablit la premicl-e manuhtcture de telephonesau Canada et, dcs 1881, il avait fabrique 2398appareils.

En 1879, Melville Bell decida de vendre sacompagnie. Comme il ne trouvait pas d'ache­teurs canadiens, ilIa vendit ~l National Belldes Etats-Unis. En 1880, Bell TelephoneCompany of Canada obtenait ses lettres pa­tetHes et Charles Fleetford Sise, un ancien ca­pitaine de bateau de Boston, de caractel-efenne, etait depeche a Montreal pour la diri­ger.

En 1884, les messages telephoniques ettelegraphiques, transmis pal- electricite sur desbouts de fils attaches a des poteaux en bois,avaient presque complhe;nent relit': Ie pays, deI' Atlantique au Pacifique. Les Canadiens,comme ils Ie sont demeures, etaient ilIa finepointe de la technologic des communications.Mais, qui pouvait savoir que, moins de 100 ansplus tard, les messages rebondiraient sur dessatellites bien haut au-dessus de la terre et fe­raient Ie tour du globe en une fraction de se­conde?

D'WlR1l <{}Ce«lllffi ~ ll'«ll1!lltl:JreEn 1886, par un jour de decembre doux etpluvieux, un telegramme etait expedie deNew Westminster, en Colombie Britannique,a Canso, en Nouvelle-Ecosse. Le message neprit que trois minutes pour parcourir la dis­tance sur la ligne entierement canadienne,etablie par Ie Canadien Pacifique qui, l'anneeprecedente, avait termine la construction desa voie ferree trans-continentale. Malgrel'essor remarquable qu'avait pris Ie telephone,Ie telegraphe restait Ie principal moyen decommunications, au Canada. Durant lesannees 1870, Thomas Edison avait introduitIe quadruplex, systeme de transmission quipermettait d'expedier deux telegrammes dansles deux sens, en meme temps, sur un seul hI.Au debut des annees 1900, cette capacite avaitaugmente a six messages dans chaque direc­tion. A peu pres a la meme epoque, Ie teleim­primeur permettait de conserver un messagetape au moment de la reception.

La rivalite dans la prestation des servicestelegraphiques avait cause I'apparition et ladisparation de nombreuses compagnies. Versla fin des annees 1870, deux geants domi­naient, la Montreal Telegraph possedait20,000 milIcs de fils, de Halifax ~l Windsor etvcrs les Etats- Vnis tandis que son competi­teur, Dominion Telegraph, desscrvaitMontreal, Quebec, Ottawa, Saint John et Hali­fax. lis se livraient une concurrencecOllteuse-entrainant leur propre ruine-avecdes tarifs tres bas.

De l'autre c6te de la frontiere, un hommed'affaires, ne au Canada, Erasmus Wiman, quiavait d~ja transige dans plusieurs entrepl-ises,suivait cette lutte avec convoitise. Ce dernier sefit nomme President de la Creat North Wes­tern Telegraph Company dont Ie siege socialetait a Winnipeg. Peu de temps apres, il pritdes options sur les Iigne1 de la Dominion et dela Montreal, et, en 1881, Creat Westerncontr61ait toutes les lignes importantes du Ca­nada. C'est alars que Wiman essaya d'acheterIe systeme de telegraphe du CPR qui en etaitencore a ses debuts, mais, cette fois, il se butaaWilliam Van Horne, Ie Directeur Cenhal duCPR, qui refusa de vendre. En 1900, CP etaiten bonne voie de monopoliser la telegraphiequand il se heurta a la puissance de la presse.

Depuis les debuts du telegraphe, les journa­listes americains avaient reconnu son potentielpour recueillir rapidement les nouvelles. Du­rant les annees 1880, les reclacteurs-en-chefdes journaux canadiens dependaient aussi dutelegraphe pour la reception des nouvelles.

5

Page 24: Electricity - The Magic Medium

From Sea to SeaIn 1886, on a mild rainy day in December, atelegraph message was sent from New West­minster, B.C., to Canso, N.S. The messagetook only three minutes to traverse the all­Canadian route, established by Canadian Pa­cific, which had completed the trans-continen­tal railway a year earlier.

Despite the striking advances of the tele­phone, telegraph was still the main method ofcommunication in Canada. During the 1870s,Thomas Edison had produced the quadru­plex, a method of sending two telegrams eachway at the same time on one wire. By the early1900s, that load had been increased to sixmessages in each direction. About the sametime, the teleprinter made it possible to rip atyped message off the wire.

The fight to provide telegraph service hadseen many companies rise and disappear. Inthe late 1870s, two giants predominated.Montreal Telegraph had 20,000 miles of wirewith lines from Halifax to Windsor and intothe United States. The network of its competi­tor, Dominion Telegraph, included Montreal,Quebec, Ottawa;Sailit John anel Halifax.They were cutting each other's throats-andtheir own-with low rates. Casting a preda­tory eye upon this scene from across theborder was a Canadian-born business mannamed Erastus Wiman who had already beenwheeling and dealing in many enterprises.

Wiman got himself named president ofGreat North Western Telegraph Company,based in Winnipeg. He soon had options onDominion's and Montreal's lines and by 1881,Great North Western controlled all the impor­tant wires in Canada.

At that point, Wiman made a bid for thefledgling CPR telegraph system, the only op­position. But this time he ran into WilliamVan Horne, CPR general manager, who re­fused to sell. By 1900, CP was well on its ownway to a monopoly of telegraphy when it raninto the power of the press.

Since the early days of the telegraph, U.S.newspapers had been aware of its potentialfor fast news gathering. During the 1880s,newspaper editors in Canada also dependedon the telegraph for their news. After theCPR completed its coast-to-coast network itgot' exclusive rights to carry Associated Pressdespatches across Canada. A few years later,in 1907, it informed the three Winnipeg dai­lies they would no longer get a summary ofthe news from Montreal. They would have tobuy AP news by leased wire from Minnesota

6

and dip into their own pockets to bring mCanadian news from the east.

Enraged, the editors joined together toform their own Western Press Association.The CPR retaliated by increasing press rates.The editors went to Prime Minister WilfridLaurier who, in 1910, cancelled the newsgath­ering rights of telegraph companies. In 1911,the Canadian Press, a co-operative news gath­ering agency was formed, transmitting thenews along telegraph wires. That amicable ar­rangement would last for many years.

The"All Red Line"When C. F. Sise arrived in Montreal, in 1880,there were a number of telephone companiesin Canada. Under his leadership, Bell mergedwith some, gobbled up others, and soon be­came the dominant company. Sise dreamed ofa nationwide Bell telephone system, althoughhe did not think it wouln ever pay to stringwire through the Rockies. (The first Mon­treal-Vancouver call was made on February14, 1916, through Buffalo, Omaha, Salt LakeCity and Portland.)

Sise's dream never came ti'ue. Bell, well en­trenched in Quebec and Ontario, combinedwith local companies in Nova Scotia, NewBrunswick and Prince Edward Island, but wasshut out of Newfoundland where Anglo­American Telegraph had exclusive rights. Bythe early 1900s, ,the three Prairie Provinces

C,F, Sise, ship's captain fromBoston who was hired in1880 to run Bell TelephoneCompany of Canada. Photo'courtesy of Bell CanadaTelephone HistoricalCollection,

GF, Sise, capitaine de navirede Boston, qui a ete engagepour diriger Ja Compagniede telephone Bell du Canadaen 1880. Photo: Collectionhistorique du telephone deBell Canada.

Page 25: Electricity - The Magic Medium

Replique d'nn des premiersemetteurs de laboratoirefabriqnes par la societeMarconi. Photo: MarconiCanada.

Replica of early laboratoryt1'ansmitter built by Marconi.Photo cou rtesy of CanadianMarconi Company.

Une [ois son rt'seau acheve d'un ocean a!'autre, CPR obtint les droits exclusifs pour latransmission des depeches de la AssociatedPress pour tout Ie Canada. Quelques anneesplus tard, en 1907, CP notifia les trois quoti­diens de Winnipeg qu'ils ne recevraient plusles resumes des nouvelles de Montreal. AI'avenir, il leur faudra acheter les nouvelles deAP qu'ils recevront du Minnesota par lignelouee et puiser dans leurs propres fonds pouramener les nouvelles canadiennes en prove­nance de I'est. Furieux, les redacteurs-en-chefse grouperent pour former leur propre Wes­tern Press Association. CP riposta en augmen­tant les tarifs charges a la presse. Les redac­teurs-en-chef se plaignirent au PremierMinistre Wilfrid Laurier qui, en 1910, abolitIe droit des societes de telegraphie de recueil­IiI' les nouvelles. En 1911, naissait la PresseCanadienne, agence co-operative qui recueil­lait les nouvelles et les distribuait par telegra­phe. Ce compromis amical devait durer denombreuses annees.

Le "Reseau Tout~Rouge"

Quand C.F. Sise arriva a Montreal, en 1880, ilY avait plusieurs compagnies de telephone auCanada. Sous sa direction, Bell se fusionnaavec quelques unes, en absorda d'autres, et enpeu de temps devint la compagnie la plus im­pOl'tante. Sise revait d'un reseau de telephoneBell a la gl'andeur du pays, meme s'il necroyait pas rentable d'installer une ligne quitraverserait les Rocheuses. (Le premier appelentre Montreal et Vancouver eut lieu Ie 14fevrier 1916, en passant par Buffalo, Omaha,Salt Lake City et Portland.) Le reve de Sise nes'est jamais realise. Bell, qui etait solidementetablie au Quebec et en Ontario, s'etait fu­sionnee avec les compagnies locales de la Nou­velle-Ecosse, du Nouveau-Brunswick et de!,I1e-qu-Prince-Edouard, mais elle n'a pas pupenetrer a Terre-Neuve ou la Anglo-Ameri­can Telegraph avait les droits exclusifs. Au

debut des annees 1900, les trois provinces desPrairies avaient CHI bon de creer des societesde telephone provinciales, etant donne lesbarrieres geographiques et des differencesd'opinion qui existaient entre !'est et !'ouest.N'eut ete de Sise, Bell aurait fait faillite dansles dix premieres annees de son existence.L'achat d'autres compagnies avait absorbe lamajeure partie de son capital initial et lesclients etaient lents a s'abonner. Quand Ie ser­vice interurbain commen~a entre Ottawa etMontreal, en 1886, un appel coutait un dollar(1 $) tandis que Ie cout d'un telegrammen'etait que de 25 cents. La compagnie faisaitface a des crises financieres continuelles, aupoint ou Sise lui pretait de son propre argentpour la tenir a flot. Malgre tout, Ie telephonefaisait de rapides progres, du point de vuetechnique. Le transmetteur ayanl etcameliore, il n'etait plus necessaire de crierdans I'embouchure. Lc fil galvanise availdonne place a un fil de cuivre etire a froid.Les dbles pouvaient contenir des centaines defils. A Brantford, un electricien du nom deRomaine Callander inventa un appareil auto­matique avec quatre boutons qui pouvaient sedeplacer vel'S Ie hatH ou Ie bas dans des enco­ches numerotees. Ce modele fut utilise pen­dant plus de vingt ans.

Au fur et a mesure que la technologie et Iemarche se developpaient, un nombre de plusen plus grand de Canadiens commen~aientasouhaiter Ie raccordement d'ull reseau a lagrandeur du pays: la premiere etape futamorcee, en 1920, quand les dirigeants descompagnies'de telephone des quatre provincesde )'ouest se rencontrerent a Winnipeg pourparler de la possibilite d'etablir un reseau dansl'ouest. Quaml les administrateurs de Bell fu­rent invites, la discussion s'etendit au niveaunational. La reunion aboutit a la formation defa Canadian Telephone Convention qui devintplus tard fa Telephone Association of Canada(TAC).

Lors de sa premiere assemblee, l'annee sui­vante, la T AC s'attarda sur Ie besoin d'uneligne entierement canadienne. On l'appella la"All Red Line"-Ie Reseau Tout-Rouge-carles possessions anglaises etaient toujoursrepresentees en rouge sur les cartes geographi­ques. C'est avec Ie nouveau medium, la radio,qui avait ete inventee au debut du 20e siecle,que Ie "Reseau Tout-Rouge" prit toute son im­portance. Le IeI' juillet, 1927, Ie soixantiemeanniversaire de la Confederation, reporte de­puis I9 17 acause de la guerre, fut souligne parune emission transmise dans Ie pays lout en-

7

Page 26: Electricity - The Magic Medium

I

I

I

II

IL-_

Telephone Construction Line Gang in Ontario, 1902,complete with blacksmith, horses and teamster. Photocourtesy of Bell Canada Telephone Historical Collection.

had set up government-owned telephonecompanies, spurred by the east-west barriersof geography and viewpoint.

Had it not been for Sise, Bell might havegone under in its first decade. Buying upother companies had taken most of its initialcapital. Customers were slow to sign up.When Ottawa-Montreal long distance serviceopened in 1886, a call cost $1 where a tele­gram could be sent for 25¢. The company wasfaced with perpetual financial crises with Siseloaning it his own money to keep it going.Yet, the telephone was galloping ahead tech­nically.

An improved transmitter made it unneces­sary to shout any longer. Galvanized wire wasreplaced by hard-drawn copper. Cables couldcarry hundreds of strands of wire. In Brant­ford, an electrician named Romaine Callenderproduced ,an automatic phone with fourknobs which could be pulled up and down innumbered slots, a type which continued in usefor over 20 years.

As technology and the market developed,more and more Canadians began to yearn fora nation-wide hookup. The first step came in

8

Equipe de montage de ligne telephonique au complet,avec son marechal-fenant, ses chevaux et Ie conducteur,en Ontario, en 1902. Photo: Collection historique dutelephone de Bell Canada,

1920 when telephone company heads fromthe four Western provinces met in Winnipegto discuss the possibility of a western network.Bell officials were invited and the discussiontook on a national scope. The meeting formedthe Canadian Telephone Convention whichlater became the Telephone Association ofCanada (TAC).

At its first meeting the next year, the T ACdiscussed the need fQr an all-Canadian line. Itwas referred to as the "All Red Line" sinceBritish possessions on the map were alwaysred.

It was the new medium of radio, establishedin the early 1900s, that gave the All Red Lineits greatest boost. On July 1, 1927, the Dia­mond Jubilee of Confederation, postponedfrom 1917 because of war, was celebrated by anation-wide broadcast from Halifax to Van­couver over 10,525 miles of telephone wireand 8,965 miles of telt;graph line. This was anexcellent display of cooperation between thethree communications media. Summer heatoften caused wires to expand and short-cir­cuit, but linemen went to heroic lengths tokeep this from happening. One, west of Pem-

-------- --- - - -

Page 27: Electricity - The Magic Medium

Port Colborne, Ontario, 1907. Au tournalll du siecle lesmonteurs de lignes teIephoniques devinrent des herosaux yeux du public et ils aimaient parfois poser en hauLd'un poteau. Photo: Collection historique du telephonede Bell Canada.

tier, de Halifax aVancouver, sur un reseau de10,525 milles de fils telephoniques et 8965 mil­les de lignes de telegraphe. Cette realisationdemontrait de fa~on tangible que les troismedia de communications pouvaient coliabo­reI'. La chaleur de I'ete souvent faisait detendreles fils, entrainant des courts-circuits, mais lesmanoeuvres, pour I'occasion, furent a la hau­teur de la situation et tout se passa bien. L'und'eux, a I'ouest de Pembroke, re~ut I'ordre deson superieur de "rester dans Ie poteau et detenir Ie fil jusqu'a la fin de I'emission". On en­tendit Ie carillon de la Tour de la Paix, et Ie

Port Colborne, Ontario, 1907-~ltthe turn of the centurytelephone linemen became heroes to the inquisitive publicand sometimes liked to show off by posing at thepole-top. Photo courtesy of Bell Canada TelephoneHistorical Collection.

Gouverneur General, Viscount Willingdon, etIe Premier Ministre, W. L. MacKenzie King,prononcerent des discours. Ce fut un evene­ment memorable pour tous les Canadiens,mais plus specialement pour ceux qui habi­taient les regions eloignees.

Lors de sa reunion de 1928, la T AC de­manda a Bell de faire une etude de faisabilitesur Ie raccordement de toutes les lignes detelephone dans tout Ie Canada. L'etude futachevee I'annee suivante et un comite mis surpied pour coordonner I'installation d'unreseau telephonique pan-canadien. On com-

9

Page 28: Electricity - The Magic Medium

An early telephone central.Photo courtesy of BellCanada Telephone HistoricalCollection.

Un des premiers centrauxtelephoniques. Photo:Collection historique dutelephone de Bell Canada.

broke, was ordered by his supervisor to "stayup on the pole and hold up the wire until thebroadcast was finished". The Peace Towercarillon was rung. The Governor General, Vi-,scount Willingdon, and Prime Minister W. L.MacKenzie King made speeches. To all Cana­dians, especially those in outlying areas, it wasa momentous event.

10

When the TAC met in 1928, it asked Bell toundertake a feasibility study for a trans-Can­ada telephone hookup. The study was com­pleted the next year and a committee set up tocoordinate construction of a trans-Canada tele­phone system. By that time, the three big gapsin Canadian telephony-the Rockies, theCanadian Shield, and Saint John-Quebec-

Page 29: Electricity - The Magic Medium

Premier central telephonique de l'Empire britannique.erige en 1878 au coin des rues Main etJames, 11Hamilton. Photo: Collection historique du telephone deBell Canada.

Premier standard a batterie du Canada, installe a Ottawaen J900. Photo: Collection historique du telephone deBell Canada.

First telephone exchange in the British Empire, 1878.located at corner of Main and James Streets in Hamilton.Photo courtesy of Bell Canada Telephone HistoricalCollection.

Canada's first common battery switchboard, installed inOttawa, 1900. Photo courtesy of Bell Canada TelephoneHistorical Collection.

II

Page 30: Electricity - The Magic Medium

One of Canada's first commercial telephones, the typeused in Ottawa, in 1877, to connect Prime MinisterAlexander Mackenzie's office with the GovernorGeneral's residence. Photo courtesy of Bell CanadaTelphone Historical Collection.

Une des premiers telephones commerciaux du Canada,du genre de celui qui reliait Ie bureau du Premierministre Alexander MacKenzie a la residence duGouverneur general, a Ottawa, en 1877. Photo:Collection historique du telephone de Bell Canada.

The "Daffodil" telephone was popular by 1910. Photocourtesy of Bell Canada Telephone Histor'ical Collection.

L'appareil "Daffodil" etait tres populaire au debut dusiecle. Photo: Collection historique du telephone de BellCanada.

12

An early shoulder-held telephone set. Photo courtesy ofBell Canada Telephone Historical Collection.

Un despn'miers telephones i. support d'~paule. Ph~t~:Collection historique du telephone de Bell Canada.

This 1904 wall telephone, installed at Ottawa withoutbatteries or crank, depended on the common battery atthe exchange and was less than one-half the size of earlierwall sets, Photo courtesy of Bell Canada TelephoneHistorical Collection.

Ce telephone mural, qui a ete installe aOttawa en 1904 etqui ne comprenait ni batte"ie ni manivelle, etait alimentepar la batterie du central et etait deux fois plus petit queles modeles qui l'on precede. Photo: Collection historiquedu telephone de Bell Canada.

Page 31: Electricity - The Magic Medium

Un telephone muralautomatique Lorimer, en1913. Photo: Collectionhistorique du telephone deBell Canada.

Lorimer automatic walltelephone, 1913. Photocourtesy of Bell CanadaTelephone HistoricalCollection.

Les modeles stylises se repandirent durant les annees1930, alors que I'appareil mural carre a ete remplace.Photo: Collect.ion historique du telephone de BellCanada.

Telephone styling became extensive during the 1930s.The square box wall set was replaced. Photo courtesy ofBell Canada Telephone Historical Collection.

Telephone de tahle, en 1937, dont la cloche estdissimulee dans la socle. Photo: Collection histOl'ique dutelephone de Bell Canada.

1937 desk telephone with bell concealed in base. Photocourtesy of Bell Canada Telephone Historical Collection.

13

Page 32: Electricity - The Magic Medium

14

Glamour in the desk set, the1960 Princess telephone.Photo courtesy of BellCanada Telephone HistoricalCollection.

Un telephone de ~i!ble_plus-

-~stylise~lel'rincesse, qui estapparu sur Ie marche en1960. Photo: Collectionhistorique du telephone deBell Canada.

The Contempra telephone,1968, a Canadian design withmouthpiece, ear-phone anddial or Touch-Tone serviceintegrated in handset. Photocourtesy of Bell CanadaTelephone HistoricalCollection.

Le Contempra,commercialise en 1968, a etecon<;u au Canada; sonembouchure, son ecouteur etson cadran (ordinaire ouTouch-Tone) sont integresdans Ie combine. Photo:Collection historique dutelephone de Bell Canada.

Page 33: Electricity - The Magic Medium

Premier commutateurelectronique au Canada,inaugure ;1 Montreal durantl'Expo 67. Photo: Collectionhistorique du telephone deBell Canada.

Canada's first e1eGtronicswitching system opened inMontreal during Expo 67.Photo courtesy of BellCanada Telephone HistoricalCollection.

blerait alors les trois grands vides du systemetrans-Canada: les Rocheuses, Ie Bouclier cana­dien et Saint John a Quebec. Cependant, plu­sieurs segments devaient etre ameliores pourassurer les communications a longues distan­ces. Le Systeme trans-Canada devait etre com­pose entierement de fils de cuivre, d'unsixieme de pouce de diametre, assez fort pourlitteralement 1ier Ie pays. Le fil devait etre at­tache a des poteaux de cedre a ('ouest de Win­nipeg et a des poteaux de pin traites a lacreosote dans l'est. Sur presque tout Ie par­COUl'S, on utilisa de nouveaux isolants en pyrex.En Colombie Britannique, du verre de hautequalite rernpla<;a Ie pyrex qui devenait cassantpar temps froid, surtout au contact des chevil­les en acier dont on se servait alors. De fait,

c'est en Colombie Britannique que les condi­tions rendaient 1£1 construction plus difficile.Les equipes avaient ~l faire face a toutes sortesde difficultes: pluies torrentielles, avalanches,grands vents, feux de foret, meme des ours etdes serpents a sonnettes. Finalement, Ie travailfut termine comprenant 4,260 milles de !ignes,les meilleures erigees adate, Ie "Reseau Tout­Rouge" etait pret.

Le 25 janvier, 1932, Ie Comte dc Bessbo­rough, Gouverneur General du Canada, pro­clamait Ie Trans-Canada Telephone System of­ficiellement ouvert. Comme Ie CPR l'av"ait fait50 ans plus tot avec Ie teh~graphe, Ie reseau rc­liait Ie Canada tout entier en depit de tous lesobstacles.

15

Page 34: Electricity - The Magic Medium

had been bridged. However, many sectionshad to be upgraded for long distance use. Theentire trans-Canada route was to consist ofcopper wire, one-sixth of an inch in diameter,strong enough to literally bind the country to­gether. The wire would be strung on cedarpoles west of Winnipeg, creosoted pine in theeast. Over most of the route, a new pyrex insu­lator was used. In British Columbia, however,high-grade glass was substituted because pyrexbecame brittle in cold weather, particularlywhen affixed with the steel pins that wereused.

Indeed, it was in B.C. that the worst con­struction conditions prevailed. Crews experi­enced everything from heavy rai~l to snowslides, high winds and forest fires, bears andrattlesnakes. Eventually the job was done and4,260 miles of the strongest line yet built, theAll Red Line, was ready for service.

On January 25, 1932, the Earl of Bess­borough, governor-general of Canada, de­clared the official opening of the Trans-Can­ada Telephone System. As the CPR had donenearly 50 years earlier, it linked Canada to­getheragainst all odds.

Words Without WiresIt was 12.30 p.m., December 12, 1901, on ahilltop 600 feet above the harbor of St. John's,Newfoundland. A full gale raged. Hunched

.over a table in an abandoned barracks hospital,a young Italian pressed a telephone receiver tohis ear. Suddenly, Guglielmo Marconi beck­oned to an assistant who came over and tookthe receiver. The assistant confirmed whatMarconi thought he had heard-three distinctclicks for the three dots of the letter S in Morsecode. They had travelled 2,170 miles from atransmitter near Land's End in Cornwall, Eng­land.

Seven years before, Marconi had read of theexperiments of Heinrich Hertz, who hadfound that sparks transmitted across a gap be­tween two metal plates could be seen to jumpacross an open gap in a looped wire severalfeet away with no metallic connection back tothe two metal plates. Marconi began to conducthis own experiments, sending bigger sparksfor longer distances. Before long, he couldtransmit a spark the length of a room.

He developed a way of controlling thelength of his signals so he could transmit dotsand dashes. By this time, his father, a wealthybusiness man, could see the commercial possi­bilities of his son's work and gave him moneyto continue. Luck was also on Marconi's side.

16

One day, using two metal sheets as reflectors,he discovered that, by holding one high in theair, with the other on the ground, he couldgreatly increase the distance of his transmis­sIOn.

In 1896, Marconi sent a signal four milesduring a demonstration on the Salisbury Plainsin England. By 1900, he was already famous,but scientists thought radio waves, like light,must travel in straight lines. Therefore, itwould never be possible to transmit muchbeyond the horizon. Marconi knew this reason­ing must be false because he was already get­ting greater distances than that. It was time togamble with an attempt to bridge the Atlantic.

Marconi built his -transmitter in Cornwallwith the antenna system on 20 wooden masts,200 feet high. His receiver was set up at CapeCod but gales tore it down. He decided to trythe nearest landfall in North America and setsail for Newfoundland, arriving in St. John'SDec. 6, 1901.

Marconi set up his equipment in an old forton what is now calleel SignalI-lill. His antennawotildbe carried by a kite. Technicians inCornwall were instructed to start sending theletter S between 11 a.m. and 3 p.m. Newfound­land time. The letter S could be sent automati­cally and the transmitter could send short dotsfor longer periods than dashes. First attemptsDecember 11 failed due to high winds. Nextday, although the winds continued, a kite andantenna were sent to an altitude of 400 feet.Marconi, listening intently for an hour and ahalf, was beginning to have doubts when thethree dots came through.

Once again, the Anglo-American TelegraphCompany invoked its Newfoundland monop­oly. Marconi set up permanent headquarters atGlace Bay, N.S. What is now Canadian Mar­coni was founded in 1902.

Reginald Aubrey FessendenWhile the world was toasting Guglielmo Mar­coni a Canadian-uorn genius was working inrelative obscurity, despite having been the in~

ventoI' of radio-voice radio-as we know it.

Reginald Aubrey Fessenden was born in1866 near Sherbrook, Quebec, the son of anAnglican minister. A precocious student, hetaught himself all about telecommunicationstheory. In 1886 he went to work in the U.S. Hesubsequently taught at U.S. universities, hav­ing been turned down by McGill. Like so manybrilliant Canadians, Fessenden could find noadmirers at home.

Page 35: Electricity - The Magic Medium

Marconi et ses assistantspreparcnt Ie cerf-volantgeant qui servira II lareccption des prcmierssignaux sans fil, it Signal Hill,Terre-Neuve. Photo:Marconi Canada.

Marconi and assistantsprepare giant kite aerial forreception of historic wirelesssignals at Signal Hill,Newfoundland. Photocourtesy of CanadianMarconi Company.

Communications sans fUs

II est 12h30, Ie 12 decembre 1901, un ouraganf~lit rage, Sur une colline, a600 pieds au-dessusdu port de St. John's a Terre-Neuve, dans unh6pital militaire abandonne, a moitie couchesur une table OU repose un recepteur detelephone, un jeune homme d'origine italienneprete une oreille attentive. Tout a coup, Gu­gliemo Marconi appelle un assistant qui ac­court, s'empare du recepteur et ecoute. II cor­robore ce que Marconi croyait avoir entendu­trois declics bien distincts marquant les troispoints de la lettre S, en code Morse. Ces pointsavaient parcouru 2,170 milles depuis un trans­metteur installe pres de Land's End, en Angle­terre.

Sept ans plus tard, Marconi avait lu Iecompte-rendu des travaux de Heinrich Hertzqui avait decouvert que des etincelles electri­ques produites entre deux plaques de metalpouvaient se transmettre entre les deuxextremites d'un fil recourbe, situe a plusieurspieds plus loin, sans qu'il y ait de connexion vi­sible entre Ie fil et les deux plaques de metal.Marconi commenc;:a lui-meme a essayer de pro­duire des ctincelles de plus en plus longues ades distances de plus en plus grandes, et avantlongtemps, il pouvait transmettre une etincelle

d'un bout ;1 I'autre de la piece. II mit au pointun moyen de contr61er la longueur de ses si­gnaux de sorte qu'il pouvait transmettre despoints et des traits. Son pere, un homme d'af­faires prospere, avait deja pressenti Ie potentield'exploitation des travaux de son fils et luiavait avance les fonds nccessaires pour lespoursuivre. Marconi avait aussi ete favorisepar Ie sort. Un jour, alors qu'il urilisait deuxfeuilles de metal en guise de reflecteurs, ildecouvrit que s'il en tenait une a une certainehauteur et l'autre au sol, il pouvait augmentersensiblement la distance de sa transmission. En1896, Marconi envoya un signal ;1 quatre milIesde distance lors d'une demonstration qu'il don­nait dans la plaine de Salisbury, en Angleterre.Des 1900, il Hait deja celebre; cependant, leshommes de sciences croyaient que les ondes ra­diophoniques, tout com me la lumiere, se pro­pageaient en lignes droites; il ne serait donc ja­mais possible de transmettre des signauxau-dela de I'horizon. Marconi savait que ceUeopinion etait erronee, car les distances qu'ilavait atteintes Ie pnmvait. Le temps ctait venude jouer Ie tout pour Ie tout et d'essayer defranchir I'Atlantique.

Marconi erigea, sur la c6te du Cornwall, untransmetteur qui comprenait un systeme d'an­tennes fixees sur 20 mats en bois de 200 pieds

17

Page 36: Electricity - The Magic Medium

Unlike Marconi, Fessenden was a poor busi­nessman and promoter. He got neither creditnor much money for most of the 500 inven­tions of his 68 years of life. Like Marconi andothers, Fessenden was pursuing the work ofHertz and the possibility of wireless telegra­phy. But Marconi's demonstration on the Salis­bury Plains in 1896 had discouraged him andhe took off for a long holiday near Peter­borough, Ontario, wher-e he often visited rela­tives. While day-dreaming beside a lake oneday, Fessenden cast a stone into the water andwatched the ripples spread. An idea struckhim. What if sound waves were transmitted,not as a series of sparks, but as continuous con­centric waves?

Fessenden returned to his job teaching at theUniversity of Pennsylvania and plunged intoproving his theory. One day an assistant acci­dentally jammed down a Morse key whichtransmitted a howl. Fessenden decided that if ahowl could be transmitted, so could a voice.The solution, he theorized, could be very fastcontrolled waves of high frequency. He quithis university job and took a weather-reportingcontract with the U.s. Weather Bureauwhlchwould allow hi~1 to continue his own experi­ments.

Fessenden now worked from a laboratory onCobb Island in the Potomac River, experi­menting with a receiving station at Arlington,Va., 50 miles away, manned by an assistantnamed Alfred Thiessen. On December the23rd, 1900, Fessenden spoke into his voicetransmitter: "One, two, three, four. Is it snow­ing where you are, Mr. Thiessen? If so, tele­graph back and let me know." A few minuteslater the telegraph key clicked out Thiessen'sanswer. Yes, it was snowing in Arlington.

This message by Fessenden, then, was thefirst broadcast of the human voice.

Convinced that he could broadcast speechacross the Atlantic, Fessenden began buildinga station at Brant Rock, Mass. The common al­ternator generates alternating electrical cur­rent at 60 cycles per second. Fessendenhounded General Electric to build him an al­ternator that would deliver 100,000 cycles persecond. They couldn't give him that much butwhat they gave him was good enough. In No­vember, 1906, his man iii Scotland reported hecould hear voices from Brant Rock as clearly asif next door.

On Christmas Eve, 1906, Fessenden broad­cast the world's first Christmas prog,-am. Flab­bergasted Morse operators on the Atlanticcoast and hundreds of miles at sea heard a rec­(nding of Handel's Largo. Then Fessenden,

18

the only musician on Brant Rock, played "OhHoly Night" on the violin, read a message ofscripture, and asked anyone who heard him towrite. The mail poured in.

Fessenden was not honored for his accom­plishment. Marconi had exclusive rights tobuild radio stations in Canada. The Canadian-government, which had given Marconi$80,000 for Glace Bay, had already refusedsupport for Fessenden. The rest of his life wasa constant struggle for recognition and com­pensation for the inventions which still pouredout. Four years before his death, he received amillion dollar settlement. Although he had re­turned to Canada from time to time, he died inBermuda, 1932.

On Sept.. 3, 1983, Fessenden was finally hon-ored by the unveiling of an historic plaque atAustin, Quebec-his birth-place.

The Voice of RadioDespite Fessenden's feat of Christmas Eve,1906, not much happened in Canadian broad­cast radio for a while. It was D.<::cember,1919;

. before XWA;Camidian Marconi's broadcasttransmitter in Montreal, made the country'sfirst broadcast, mostly recorded music. Regu­lar broadcasting from XWA, later CFCF,began in May, 1921, with a program of livemusic to a blue-ribbon audience at the ChateauLaurier in Ottawa, 100 miles away.

During the early 1920s, years of jazz and ginmills, stations multiplied. By 1923, there were34 stations across Canada. The same year sawCanada's first church broadcast, first hockeybroadcast, and first broadcast university lec­ture.

The newly-formed Canadian National Rail­ways put radio receivers into its parlor cars,broadcasting news as well as music. The CNRsoon set up a radio department and startedforming its own network. It was CN radio thatmasterminded the famous Diamond Jubileebroadcast of 1927. Its network continued untilthe Canadian Broadcasting Corporation wasformed in 1936 and took over national broad­casting.

Technical improvements eliminated thesqueals and static that came from the earlycrystal sets. And it was a Canadian who madehome radio popular by inventing the first re­ceiver that coul~ be plugged into an electricoutlet. Edward (Ted) Rogers came from a fam­ily of Pennsylvania Quakers who had been suc­cessful in farming and industry. He was des­tined for the world of business. But thefascination of radio was too strong. As a boy,he filled his bedroom with radio gear. .

Page 37: Electricity - The Magic Medium

de hauteur. II installa son n':cepteur a CapeCod, mais un ouragan Ie renversa. II decida,alors, d'essayer un site plus pres de I'Angle­terre mais toujours sur Ie continent nordamericain. II s'embarqua done pour Terre­Neuve et an"iva a St. John's Ie 6 decembre,1901. Marconi installa son equipement dansun ancien fort sur une colline qu'on appelleaujour'hui "Signal Hill". Son antenne seraitportee par un cerr-volant. II donna instructionaux techniciens, au Cornwall, de commencer atransmettre la lettre "5" entre II h et ISh,heure de Terre-Neuve. La lettre "S" avait etechoisi parce qu'elle pouvait etre expediee auto­matiquement et que Ie transmetteur pouvaittransmettre des points sur une periode detemps plus longue que des traits. Lespremieres tentatives, Ie 11 decembre,echouerent du aux grands vents. Le lende­main, malgre les vents qui sevissaient toujours,Ie cerf-volant et l'antenne furent lances a 400pieds d'altitude. Marconi, apres avoir ecouteattentivement pendant une heure et demie,sans succes, commenc,:ait a desesperer quandsoudainement les trois points arriverent. En­core une fois, la Anglo-American TelegraphCompany se prevalut de ses droits exclusifsdans Terre-Neuve. Marconi installa des quar­tiers-generaux permanents a Glace Bay, enNouvelle-Ecosse. La societe connue presente­ment sous Ie nom de Canadian Marconi, futfondee en 1902.

Reginald All.duey FessendenAu moment ou Ie monde acclamait GugliemoMarconi, un homme de grand talent, ne au Ca­nada, travaillait dans une relative obscurite,meme s'il avait ete I'inventeur de la radio-dif­fusion de la voix-telle qu'on la connait.

Reginald Aubrey Fessenden, fils d'un minis­tre anglican, avait vu Ie jour, en I866, pres de5herbrooke, au Quebec. Etudiant precoce, ilavait etudie de son propre chef toute la techno­logie des communications. En I886, il alIa tra­vailler aux Etats-Unis et, par la suite, enseignaa diverses Universites americaines apres avoirete refuse par McGill. Comme bien des Cana­diens doues, Fessenden n'avait pas d'admira­teurs au pays.

Contrairement it Marconi, Fessenden etaitun mauvais homme d'affaires et promoteur: iln'obtint ni reconnaissance ni beaucoup d'ar­gent pour la plupart de ses 500 inventions fai­tes au cours des 68 annees de sa vie. CommeMarconi et d'autres, Fessenden poursuivait Ietravail de Hertz et cherchait un systeme deteh':graphie sans-fil. Mais la demonstration deMarconi sur la plaine de Salisbury, en 1896,

l'avait decourage et il se retira, en conge pro­longe, pres de Peterborough en Ontario, OU ilvisitait souvent sa parente. Un jour qu'il revaitpres d'un lac, Fessenden jeta un cailloux dansI'eau et regardant les rides se propager en cer­des it la surface, eut une idee: serait-il possibleque les ondes sonores se propagent, non pascomme une serie d'etincelles, mais comme desondes concentriques continues?

Fessenden retourna a son poste de profes­seur a I'Universite de Pennsylvanie et coneen­tra ses efforts aprouver sa theorie. Unjour, unassistant coinc;:a accidentellement une cle dumorse qui emit un hurlement. II conclut que siron pouvait transmettre un hurlement, onpouvait aussi bien transmettlT la voix. IItheorisa que des ondes controlces de hautefn':quence cmises tres rapidement pourraientetre la solution. II laissa son poste a I'Universiteet s'engagea comme meteorologiste au U.S.Weather Bureau, ce qui lui permettrait depoursuivre ses recherches experimentales.

Fessenden occupait maintenant un labora­toire sur rile de Cobb, dans la riviere Potomac,et de la, faisait des essais avec un poste recep­teur situe a 50 milles de la, a Arlington, en Vir­ginie, ou se trouvait son assistant, AlfredThiessen. Le 23 decembre 1900, Fessendenprononc,:a dans son transmetteur de voix: "Un,deux, trois, quatre. Neige-t-il la OU vous etes,Monsieur Thiessen? Si oui, telegraphiez-moipour me Ie faire savoir". Quelques minutesplus tard, la cle du telegraphe tapait la reponsede Thiessen: oui, iJ neigeait it Arlington. Lemessage de Fessenden etait done la premierediffusion de la voix humaine.

Convaincu qu'il pouvait diffuser la voix au­dela de I'Atlantique, Fessenden commew,:a laconstruction d'un poste it Brant Rock, au Mas­sachussets. L'alternateur ordinaire produit uncourant alternatif de 60 cycles par seconde.Fessenden supplia General Electric de lui fa­briquer un alternateur capable de donner100,000 cycles par seconde. La societe n'a paspu lui en fournir un, mais ce qu'elle a pu luidonner ctait suffisant. Au mois de novembre1906, son partenaire en Eeosse lui fit savoirqu'il entendait cles voix venant cle Brant Rockaussi c1airement que si elles venaient de lapiece voisine.

La veille de Noel, en 1906, Fessenden radio­diffusa Ie premier programme de Noel aumonde. Sur la cote de I'Atlantique et it des cen­taines de milles en mer, les operateurs demorse, it leur surprise, entendirent un enregis­trement du Largo de Handel. Puis, Fessenden,Ie seul musicien a Brant Rock joua "Oh: HolyNight" au violon, lut un passage des Ecritures

19

Page 38: Electricity - The Magic Medium

------------------~---------------

Jack Dempsey interviewed byradio station XWA inMontreal in 1922. Photocourtesy of CanadianMarconi Company.

Jack Dempsey, interviewe parIe poste de radio XWA deMontreal, en 1922. Photo:Marconi Canada.

By 1924, Rogers decided batteries had to go.They were too large, too expensive and toounreliable. But if radio was to run on house­hold current, it must have an AC tube. AnAmerican had invented a tube but not a verygood one. Rogers brought in improvements toreduce interference and had a tube on themarket in 1925, made by his own StandardRadio Manufacturing Company. By 1927Rogers had improved the batteryless system tothe point that it could be used in commercialbroadcasting. That year he founded radio sta­tion 9RB, later to become CFRB, in Toronto.

Finally, with radio, the North was connectedto the rest of Canada. Telegraph lines hadbeen pushed through to the Yukon, but main­tenance over miles of wilderness had been sim­ply impossible. In 1923, soldiers of the RoyalCanadian Corps of Signals headed north fromEdmonton to see if radio would work. Some setup a transmitter at Mayo,just north of Edmon­ton, while others went to Dawson, 125 milesfurther north. Mayo began transmitting andlistening for a reply. It came on October 20th.In 1926, the Northwest Territories and YukonRadio System was in operation. Radio had fi­nally opened up the North.

20

Radio also provided the first telephone linkbetween Canada and Newfoundland. In 1938,a radio connection was set up between the Ava­lon Telephone Company in Newfoundlandand Bell in Montreal. Radio-telephone mes­sages between Montreal and St. John's were re­layed through newly installed radio transmit­tel: and receiver stations respectively atDrummondville and Yamachiche on eitherside of the St. Lawrence River to link with cor­responding stations in Newfoundland near St.John'S operated by Canadian Marconi. Thesystem was inaugurated January 10, 1939, withthe ceremony carried live on the CBC and theNewfoundland Broadcasting Company. Thiss;ngle-channel AM radio circuit would be New­foundland's only telephone link with Canadaand the rest of the world until it entered Con­federation 10 years later.

The Depression Years of the 1930s wereyears of retrenchment for the communicationsindustry. Telegraph revenues dwindled. Tele­phones were taken out of service. The CNRhad to cancel radio service on its trains.

However, n~ar the end of the decade, theKing and Queen visited Canada. Their's wasthe first Royal Visit to be broadcast in this

Page 39: Electricity - The Magic Medium

et demanda a tous ses auditeurs de lui ecrire. IIrec;ut un grand nombre de lettres.

Les realisations de Fessenden ne lui valurentaucune marque de gratitude. En etTet, Mar­coni detenait les droits exclusifs pour la cons­truction de postes de radio au Canada. LeGouvernement canadien, qui avait octroye80,000 $ a Marconi pour son installation aGlace Bay, avait refuse d'aider Fessenden. Cedernier aura it lutter Ie reste de ses jours pourfaire respecter ses droits et pour obtenir descompensations pour les inventionsqu'il conti­nuait afaire. Quatl-e ans avant sa mort, il rec;utun paiement de un million de dollars. Memes'il retournait au Canada de temps it autre ilmounlt £lUX Bermudes en 1932.

Le 3 septembre, 1983, on accorda enfin aFessenden les honneurs qui lui etaient dus enerigeant une plaque commemorative a Austin,au Quebec, son lieu de naissance.

La voix de la radioMalgre l'exploit de Fessenden, la veille de Noel1906, il Yeut peu de progres dans Ie domainede la radio, au Canada, pour un certain temps.Ce ne fut qu'en decembre 1919, avant la fon­dation de XWA, que Ie transmetteur de Cana­dian Marconi, it Montreal, faisait la premiere

radiodiffusion au pays. Elle consistait surtoutde musique enregistree. La programmationreguliere de XWA, qui devint plus tard CFCF,commenc;a en mai 1921, quand un programmede musique fut transmis directement a un au­ditoire de notables assembles au Chflteau Lau­rier, aOttawa, 100 milles plus loin.

Au debut de la decennie de 1920, annees dujazz et des bars c1andestins, les stations se mul­tiplierent, tant et si bien qu'en 1923, il Y avait34 postes emetteurs, au Canada. La memeannee, avait lieu la premiere diffusion d'uncours universitaire, d'un service religieux, etd'un match de hockey. La Societe Canadiennedes Chemins de Fer nationaux (CNR), recem­ment formee, installa des recepteurs de radiodans les voitures-salons. On y recevait a la foisles nouvelles et de la musique. Bientat, Ie CNRmit sur pied un service de raclioffusion et en­treprit d'etablir son propre reseau. C'est Ie ser­vice CN Radio qui prit en main Ja celebre dif­fusion du Jubile de Diamant, en 1927. Sonreseau continua ses operations jusqu'a la fon­dation de Radio-Canada (CBq, en 1936, quiprit alors charge de Ja diffusion a l'echelle na­tionale.

Les ameliorations apportees aux composan­tes permirent d'eliminer les siff1ements et lesbruits de friture que produisaient les premiers

Dans les ,mntes ]920, latoule nouvelle Compagniedes Chemins de fernationaux du Canada ainstallt' des recepteurs radiodans ses wagons-salons. pourdiffuser des nouvelles et de lamusique. Photo: CanadienNational.

The newly-formed CanadianNational Railways installedradio receivers in parlor cars,in the 1920s, to broadcastnews and music. Photocourtesy of CanadianNationaL

21

Page 40: Electricity - The Magic Medium

country. The Second World War then brokeout and ushered communications into a newage.

The Electronic AgeIn 1907, an American named Lee De Forest in­vented the vacuum tube, a device for amplify­ing weak electric currents, and ushered in theelectronic age. It was to be not only the age ofradio but also of 'radar, television, computersand automatic controls in industry.

In Canada the National Research Councilwas formed in 1925 under the able chairman­ship of Dr. Henry Marshall Tory. Its meagerresources were used to encourage researchthrough scholarships to promising studentsand th rough university research grants. Dr.Tory was appointed President in 1928 andserved until 1935. Gen. A. G. L. McNaughtonsucceeded him and served in that capacityfrom 1935 until 1939. Gen. McNaughton com­bined his lifelong interest in scientific studieswith his successful career in military service.He pioneered research on ballistic missile con­trol and on the "CathocleRay DirectionFinder": This was the early stage of Canadianresearch and development in radar. Ironically,it would not be until the desperate days of theSecond World War that electronics wouldmake great progress. Radar had to be devel­oped to make anti-aircraft fire more efficientand to track incoming German bombers.

As the war ended, the development of thecomputer was spurred by the need for the mil­lions of computations involved in the produc­tion of atomic energy.

For 40 years, the vacuum tube remained themainstay of the electronics industry. Then, in1947, the transistor was developed by three sci­entists of Bell Laboratories in the U.S. Smallerand more reliable, it replaced the vacuumtube, making possible the miniaturization ofelectronic equipment in a way that was notdreamed possible before.

I n this half-century, before men venturedinto space, electronics was to revolutionize theworld of industry, medicine and communica­[ions.

The MicrowaveAfter the Second World War, demand for tele­phone service was so great it became obviousopen-wire lines would soon not be able to carrytbe load. Fortunately the solution was at handin the form of a radio wave known as tbe"micro wave".

22

Radio waves are measured in leri'gill and t't-e­quency. Length may vary from millimetres tomiles. Frequency varies from under 10 kilo­hertz (l0,000 cycles per second) througb a gi­gahertz (one billion cycles per second) up to300 gigahertz. The shorter the wave the higherthe frequency. The micro wave, only a fewinches long, is found above 1 gigahertz.

Because tbemicrowave travels in a straightline and won't penetrate solid objects, a mi­crowave system of communications must havea lirle of relaying towers to carry the "message"around the curvature of the earth. There mustbe no obstruction between these towers.

Actually, Canada's first microwave systemhad already been built between Prince EdwardIsland and Nova Scotia. The two provinces hadtired of the continual failure of underwatercable, due to tides and currents. On Nov. 20,1948, the premier's had exchanged the first mi­crowave telephone conversation. In 1952 Bellbegan pushing its colleagues in the Trans~,Can­

<lda Telephone System to build a cross-Canadamicrowave line. The microwave line, it waspointed out, would carry hundreds of tele­phone channels as well as television. The CBChad already opened its first television stationsin 1950,

Microwave towers began to dot the land.Builders ran into the same problems as withthe All Red Line in 1932, but thisjob was fin­ished by 1958. It was the longest microwaveline in the world, stretching 3,900 miles fromHalifax to Vancouver, with 139 towers averag-

A Canadian PacifiC Railwayengineman communicates byradio with caboose orterminal. Photo courtesy ofCanadian Pacitlc CorporateArchives Collection.

Un mecanicien de locomotivedll Canadien Pacifique entrain de commllnii\ller avec Icwagon de queuc. Photo:Archives centrales dll

_~ G.'l.nadienPacitique. --~

Page 41: Electricity - The Magic Medium

appareils a cristal. C'est un canadien qui a po­pularise I'usage de la radio dans les foyersquand il inventa Ie premier appareil pouvantse brancher directement dans une prise d'elec­tricite domcstique. Edward (Ted) Rogers estne dans une prosperc famille agricole et indus­trieHe de Quakers de Pennsylvanie. II etait des­tine aux affaires, mais I'attrait de la radio avaitete trop fort. Encore toutjeune, il avait remplisa chambrc de fils et d'equipement de radio.En 1924, Rogers decida que les piles devaientdisparaitre: elles etaient trop encombrantes,trop dispendieuses et trop peu fiables. Mais,pour que la radio puisse fonctionner sur cou­rant domestique, il lui fallait un tube redres­seur de courant. Un Americain en avait in­vente un, mais, il n'etait pas tres efficace.Rogers lui apporta des ameliorations pourn~duire les interferences et son tube, fabriquepar sa propre compagnie, la Standard RadioManufacturing Company, apparut sur Iemarche en 1925. En 1927, Rogers avaitameliore I'appareil sans pile si bien gu'on pou­vait s'en servir pour la radiodiffusion commer­ciale. La meme annee, il etablissait, aToronto,Ie poste de radio 9RB, qui devint plus tardCFRB.

Par I'intermediaire de la radio, Ie GrandNord etait enfin relie au reste du pays. Les Ii­gnes de telegraphe avaicnt rejoint Ie Yukon,mais il etait tout simplement impossible de lesentretenir sur des milles de terrain sauvage. En1923, des hommes du Royal Canadian Corpsof Signals, partirent d'Edmonton ct monterentdans Ie Nord pour verifier si la radio pourrait yfonctionner. Quelques membres installhentun transmetteur a Mayo, juste au nord d'Ed­manton, tandis que d'autres se rendaient aDawson, 125 milles plus au nord. Mayo com­men.;:a a transmettre et a attendre unereponse. Elle arriva Ie 20 octobre. En 1926, IeNorthwest Territories and Yukon Radio Sys­tem etait en service. La radio avait enfin ouvertIe Grand Nord.

La radio a aussi permis la pl'emihe liaisontelephonique entre Ie Canada et Terre-Neuve.En 1938, une connexion par radio etait etablieentre la Avalon Telephone Company aTerre­Neuve et Bell, a Montreal. Les messages entreMontreal et St. John'S etaient relayes par despostes transmetteur et recepteur nouvellementinstalles a Drummondville et a Yamachiche,respectivement sur !'une et I'autre rive du St­Laurent et relies a des postes correspondantseriges pres de St. John's a Terre-Neuve, dontIe fonctionnement avait etc confie a CanadianMarconi. Le systeme fut inaugure Ie 10 janvier1939, et la ceremonie transmise, en direct, par

la CBC et la Newfoundland BroadcastingCompany. Ce circuit radiophonique AM d'uncanal unique constituera la seule liaison radio­phonique entre Terre-Neuve et Ie Canada et Iereste du monde jusqu'a I'entree de Terre­Neuve dans la Confederation, dix ans plustard.

Les annees de depression economique de ladecennie 1930, furent des annees de retran­chement pour I'industrie des communications.Les revenus des compagnies de telegraphe di­minuerent, des telephones furent debranches,Ie CN annula Ie service radio de ses trains.Quoigu'il en soit, vel'S la fin de la decennie, Ie ,Roi et la Reine vinrent au Canada et ce fut lapremiere visite royale a ctre radiodiffusee aupays. La seconde grande guerre mondialeeclata et les communications s'engagerent dansune ere nouvelle.

lL'ere de ll'telecltJr«llJl1i.qucEn 1907, un americain du nom de Lee DeForest inventa Ie tube avide, dispositif qui am­plifie les courants eJectriques faibles: I'elec­tronique etait nee. Non seulement I'age de laradio s'annon.;:ait-il, mais aussi celui du radar,de la television, des ordinateurs et de I'automa­tisation industrielle.

Au Canada, Ie Conseil national de re­cherches etait institue en 1925, sous l'habilepresidence du Dr. Henry Marshall TC)l-y. Deses maigres ressources, Ie Conseil encourageaitla recherche en acconlant des bourses ;1 desetudiants meritants et des octrois de re­cherches aux universites. Le Dr. Tory fut in­vesti du titre de President en 1928 et Ie de­meura jusgu'en 1935. Son successeur, IeGeneral A.G.L. McNaughton, occupa Ie postede 1935 a 1939. Le General McNaughton com­bina son profond interet pour les recherchesscientifiques et sa brillante carriere militaire. 11fut un des pionniers de la recherche sur Iecontrole des missiles balistiques et Ie CathodeRay Direction Finder, ou detecteur de direc­tion par rayons cathodiques. C'etait Ie debut dela recherche au Canada et des travaux sur Ieradar (Radio Detecting and Ranging, ou"detection et telemetrie par radio-electricite").lroniquement, ce furent les jours de desespoirde la seconde guerre mondiale qui donnerontson essar a I'electronique. II fallait alars mettreau point Ie radar pour rendre I'artillerieaerienne plus efficace et pour reperer les bom­bardiers allemands qui attaguaient.

A la fin de la guerre, les millions de caleulsrequis dans la production d'energie nudeaireont necessite Ie developpement des ordina­teurs.

23

Page 42: Electricity - The Magic Medium

,_._---------------- ----------------~----------------------- -- - ~-~----~

I"~ '"",-"-", "~,-".....;?'iiilf!:ldf.....I1'-~--~~;,,;;;;==••••iE::=r--t...rll"I~~';:"'~ :I ~:lt ••

Microwave tower provides telephone and televisionservices to remote areas of Northern Ontario. Photocourtesy of Bell Canada Telephone Historical Collection.

ing less than 30 miles apart. They ranged fromas high as 350 feet in Ontario to only 30 feet onthe nat plains of Saskatchewan. E\(entually, themicrowave line was able to carry 1,200 tele­phone channels or their equivalent in tele­phone, telegraph, data, radio, television, TWX(customer-dialled teleprinters) and computercommunications:

24

Cette tour de micro-andes pennet d'assurer les serviceste!cphoJ]ique et televisuel ;\ des regions isolees du nord deI'Ontario. Photo: Collection historique du telephone deBell Canada.

In 1962, CNjCP Telecommunications an­nounced they would build their own mI­crowave line, It was finished in 1964.

CNCP TelecommunicationsWith the formation of the CNR in 1923, CNand CP Telegraph Companies competed headto head with each other as well as with tele-

Page 43: Electricity - The Magic Medium

Le service tClephonique il Frobisher Bay, en 1964. Photo:Collection historique dll telephone de Bell Canada.

Telephone Service at Frobisher Bay, 1964. Photocourtesy of Bell Canada Telephone Historical Collect.ion.

Pendant 40 ans, Ie tube a vide avait ete Iepl'incipal pivot de I'industrie electronique.Puis, en 1947, trois chercheurs des Bell La­boratories aux Etats-Unis, mirent au point Ietransistor. Plus petit et plus fiable, il rempla~aitIe tube avide et rendait possible la miniaturisa­tion de l'equipement electronique comme onne ['aurait jamais imagine auparavant.

Au coms du demi-siecle qui preceda l'entreede I'homme dans I'espace, l'electronique devaitrevolutionner l'industrie, la medecine et Iemonde des communications.

Cette tour de micro-andes, situee sur un immeuble dllcentre-ville de Regina, fait partie du systeme mis en placepar Ie Reseau telephonique transcanadien entre 1955 et1958. Photo: Saskatchewan Telecommunications.

Microwave tower, 1959, part of system installed by TransCanada Telephone System between 1955 and1958-located on top of a building in downtown Regina.Phot.o conrtesy of Saskat.chewan Telecommunications.

Les micro-ondesApres la seconde guerre mondia\e, la demandede services telephoniques etait si grande qu'ildevint evident que les lignes en fils nus seraientbien tot incapables de suffire a la t~lche.

Heureusement, la solution etait toute trouvee:les "micro-ondes".

On mesure les ondes henziennes en lon­gueur et en frequence: leur longueur peutvarier de quelques millimetres a plusieurskilometres; leur frequence varie de moins de10 kilohertz (10,000 cycles par seconde) et, de

25

Page 44: Electricity - The Magic Medium

26

A CP Telecommunicationslineman, in wintry weather.Photo courtesy CanadianPacific Corporate ArchivesCollection.

Un monteur desTelecommunications CP, quidoit subir les rigueurs del'hiver. Photo: Archivescentrales du CanadienPacifique.

A Canadian PacilicTelegraph messenger inToronto, 1940. Photocourtesy Canadian PacificCorporate ArchivesCollection.

Un telegraphiste duCanadien Pacifique ilToronto, en 1940. Photo:Archives centrales duCanadien Pacifique.

Page 45: Electricity - The Magic Medium

Un monteur desTelecommunications CPinspeete les fils, presd' Arbutus Creek, dans I'ile deVancouver, II la fin desannees 1940. Pboto: Archivescentrales du CanadienPacifique.

A CP Telecommunicationslineman inspects wires nearArbutus Creek, VancouverIsland-late 1940s. Photocounesy of Canadian PacificCorporate ArchivesCollection.

I gigahertz (un milliard de cycles par seconde)jusqu'it 300 gigahertz. Plus l'onde est courte,plus sa frequence est elevee. La micro-onde dequelques centimetres a une frequence de plusde I gigahertz.

Etant donne que la micro-onde se propageen Iigne droite et ne peut penetrer les objetssolides, un systeme de communications utili­sant les micro-ondes doit comprendre uneserie de tours de relais pour transporter Ie'message' en suivant la courbure de fa terre et ilne peut y avoir aucun obstacle entre ces toUl-S.

De fait, Ie premier systeme de communica­tions a utiliseI' les micro-on des au Canada,avait deja ete mis en place entre l'I1e-du­Prince-Edouard et la Nouvelle-Ecosse parceque les pannes incessantes dl! cable so us­marin, qui etaient causees par les marees et lescourants, avaient ete une cause d'irritationpour les deux pmvinces. C'est ainsi que Ie 20

novembre 1948, les premiers ministres avaienteu une pt-emiere conversation telephoniguetransmise par micro-ondes. En 1952, Bell en­treprit de convaincre les membres dl! Trans­Canada Telephone System des avantages del'installation d'un circuit it micm-ondes atravers Ie Canada. Un tel reseau pourraitporter des centaines de canaux de telephone etde television. La CBe avait deja ouvert sespremieres stations de television, en 1950.

Les tours de micro-ondes commencerent aparsemer Ie pays. Les constructeurs ren­contrerent les memes difficultes que ceux quiavaient installe Ie "Reseau Tout-Rouge" en1932, mais Ie travail fut acheve avant 1958. IIs'agissait du plus long reseau a micro-on des aumonde, couvrant la distance de 3,900 milles,de Halifax it Vancouver. Les 139 tours, placeesit intervalles de 30 milles en moyenne, variaienten hauteur de 350 pieds en Ontario a 30 pieds

27

Page 46: Electricity - The Magic Medium

phone. During the 1930s, they provided com­munications service for such organizations asairlines and stock exchanges. While the tele­gram was still important, it was no longer thekeystone to their business.

By this time competition with telephone wasno longer limited to long distance. There was aneed for inter-city teletype circuits and varioustypes of network service.

In 1947, the two companies began to thinkabout joining forces and started joint sales.Their first important step together was the of­fering of Telex Service in 1956. This was ofparticular use for small businesses which werelooking for an alternative to telegram or tele­phone but could not afford dedicated, or pri­vate, circuits. Telex offered them access to aworld-wide network at reasonable cost with nominimum toll charge.

In 1980, the two companies merged com­pletely into CNCP Telecommunications. Withthe coming of computers in the late 1950s andearly 1960s circuits were needed to transmitdata between computer terminals. Long dis­tance was limited to about 1,000 words perminute. Dedicated circuitry \~as expensive. In1967 CNCPfilled the gap with their Broad­band Exchange Service, using a wider bandthan the typical telephone service. While de­sigried for data, the broadband system was alsodeveloped to provide high-quality voice serviceand facsimile transmi~sion. It has been exten­sively used by broadcasters on coast-to-coastnetworks and by the RCMP to transmit photosand fingerprints.

Links With the WorldAs early as 1900 there were plans to connectCanada to the Pacific Rim by undersea cable.However, despite the coming of radio, com­munication with the rest of the world re­mained primitive until 1950 and the formationof a crown agency called the Canadian Over­seas Telecommunication Corporation(COTC), now called Teleglobe.

The world's first long distance multipUl-poseunderwater cable was laid between Scotlandand Newfoundland with COTC as one of itsowners. It was designed to carry not only tele­phone and telegraph messages, but also pic­tures, broadcast programs and Telex. It en­sured that callers no longer had to wait forproper conditions to use the radio-telephone.Then finally, in 1963, the COTC participatedin cstablishing underwater cable communica­tion from Vancouver Island to Hawaii, Fiji,New Zealand and Australia. Later, in 1966, the

28

COTC also became part owner of a cable sys­tem linking us to southeast Asia. The worldwas almost linked by cable but the systemwould never be completcd. It was rendered ob­solete by Satellite Communication.

Northern Telecom'sDigital WorldIn early 1976, Northern Telecom, a Canadianmulti-national, signalled a revolution in tele­communication technology with its announce­ment of the Digital World. In becoming thefirst corporation in the world to commit to theintroduction of a complete family of fully digi­tal communications switching and transmissionsystems, Northern Telecom indicated that ana­log-based systems would become obsolcte inthe next few years. Subsequently, every majormanufacturer in the world followed this cor­poration's lead. Northern Telecom has sincemaintained its pioneering role in digital tele­communications and remains the leading sup­plier of fully digital telecommunications sys­tems in the world._Human speech generates s(lurid waves that

vary in volume and frequency. They are calledanalog waves. For nearly 100 years, telephonywas based on converting these waves into elec­tric signals at the transmitter and back tosound waves at the receiver. Then digital tech­nology was developed. In the computer field, ithas been said that thc analog system simply cal­culates by measuring while the digital systemactually counts. A digital signal is informa­tion-voice, numbers, letters, images-codedas a string of on-or-off bits (zeros and ones). Intelecommunications, the digital system pro­vides a better signal, greater capacity and im­proved cost-effectiveness.

Northern Telecom is the second-largestmanufacturer of telecommunications equip­ment in North America, next to AT&T in theU.S. It operates 27 plants in Canada, 14 in theU.S., two in Malaysia, and one each in theUnited Kingdom, the Irish RepUblic and Bra­zil. Its marketing teams blankl'( the world. In1982, Northern Telecom announced a newprogram, based on the foundation laid by suc­cess of the Digital World. The new programOPEN World, addresses the needs of organiza­tions for more effective information manage­ment systems. OPEN (Open Protocol En­hanced Networks) World products enableorganizations to connect different types andmakes of equipment into an integrated systemcapablc of handling information in voice, data,image, and graphics format.

Page 47: Electricity - The Magic Medium

sur les plaines de la Saskatchewan. Finalement,Ie n;seau pouvait porter 1,200 canauxH~lephoniques ou leur equivalent en messagestelephoniques, teJegraphiques, de radio, detelevision, de TWX et de donnees d'informati­que et de terminaux d'ordinateur.

En 1962, Telecommunications CNCPannonc;aient I'installation de leur proprereseau a micro-ondes. Son installation etait tel'­minee en 1964.

Les teli~communications

CNCPDepuis la fonnation du CNR, en 1923, lescompagnies CN et CP se livraient a une con­currence serree aussi bien en telephonie qu'entelegraphie. Au cours des annees 30, e1les 01'­

.fraient des services de communication auxagences telles les lignes aeriennes et la bourse,et bien que Ie teIegraphe ait ete encore utile, ilne constituait plus l'essentiel de leur entre­prise. A ce moment-la, la concurrence ne por­tait plus uniquement sur l'interurbain, il exis­tait un urgent besoin de circuits pour lesteleimprimeurs et divers autres sel'vices que lesclients recIamaient.

En 1947, les deux com pagnies com­mencerent a penseI' a unir leurs forces et a 01'­fril' des services conjoints: leur premier grandpas dans ce sens fut d'offrir Ie Telex, en 1956.Ce service etait particulierement utile aux pe­tites entreprises qui cherchaient un substitutpour Ie telegraphe et Ie telephone, mais qui nepouvaient se payer des circuits assignes ouprives. Le Telex leur offrait done un reseaumondial a un prix raisonnable, sans fraisminimum d'utilisation. En 1980, les deux com­pagnies se fusionnerent pour former lesTelecommunications CNCP.

L'arrivee des ordinateurs, vers la fin desannees 50 et au commencement des annees 60,creait Ie besoin de circuits de transmissionentre les terminaux. Le circuit restreignait ~I

1000 mots par seconde la communicationentre les endroits e10ignes et les frais de loca­tion d'un circuit assigne etaient eleves. En1967, CNCP combla la lacune avec Ie service"Broadband" qui utilise une bande plus largeque celie du telephone. Bien que Ie systeme debande large ait ete conc;u pour la transmissiondes donnees, on I'employa aussi pour latelephonic et la teh~copie a haute fidelite. Lesysteme a largement ete utilise par les chainesde radiodiffusion pour leur service trans-con­tinental et par la Gendarmerie Royale du Can­ada (GRC) pour la transmission de photos etd'empreintes digitales.

Liaisons avec Res atll1t:res paysDes 1900, on envisageait de relier Ie Canadaaux pays en bordure du Pacifique, par cablesous-marin. Cependant, malgre I'avenementde la radio, les communications avec les autrespays resterent a I'etat primitif jusqu'en 1950,quand fut fonnee, par Ie Gouvernement, laCanadian Overseas Telecommunications Cor­poration (COTC), devenue depuis Teleglobe.

Le premier cable sous-marin, de longue dis­tance, a usage multiple, a ete installe entrel'Ecosse et Terre-Neuve; l'un des proprietairesetait la COTC. II etait conc;u pour transporternon seulement des messages telephoniques ettelegraphiques, mais aussi des images, des pro­grammes de radio et Ie service telex. II assuraitaux utilisateurs un service de radio-telephonesans interruption. Enfin, en 1963, la COTCpanicipait a I'installation d'un dible sous-marinreliant !'lIe Vancouver a Hawaii, Fiji, la Nou­velle-Zelande et l'Australie. Plus tard, en 1966,la COTC devenait co-proprietaire d'unsysteme de cable reliant Ie Canada a I'Asie. Laplanete etait presquc totalcmcnt reliee parcable, mais Ie reseau mondial ne devait jamaisetiT acheve; les communications par satellite\';:lVait rend u desuet.

L'univers numerique deNorthern TelecomAu debut de 1976, Northern Telecom, unesociete multinationale canadienne, marquaitune revolution tcchnologique dans Ie domainedes communicatons lorsqu'elle rcndit publicson concept dc l'univers numerique. Laprcmiere compagnie au monde a offrir unegamme complete de systemes de communica­tions et de transmission en langage binaire,North~rr1 Telccom signalait que les s)'stemcsanalogiques etaient voues a la desuetude. Peuapres, tous les grands fabricants du mondeemboiterent Ie pas. Northern Tclecom conti­nue toujours a jouer un role de pionnier dansIe domainc des communications numeriseeset demeure Ie principal fournisseur d'un sys­teme de telecommunications entierementnumerique.

La voix humaine produit des ondes sonoresqui, sans cesse, varient en intensire er enfreguence. Ce sont les ondes analogiques. Pen­dant pres de cent ans, la telephonie consistait aconvertir ces ondes en signaux a I'aidc d'untransmettcur et ~I les reconstituer en ondes so­nores clans Ie recepreur. Puis vint 1£1 technolo­gic numerique. En informatique, on dit que Iesysteme analogigue effectue des caleuls simple­mcnt par mesurage tandis que Ie systemenumerique, en fq.it, les execute par comptage.

29

Page 48: Electricity - The Magic Medium

Information is one of the most valuable re­sources any organization has. Yet, because ofthe large number of manufacturers, consul­tants and users, many different informationsystems have evolved over the years, some ofwhich cannot work together. This increasescosts and consumes time. With OPEN World,organizations can choose diverse equipmentbest suited to their needs, knowing they canconnect them to their networks and get imme­diate access to information in any form theywish.

Speech by SunlightSoon after he invented the telephone, Alex­ander Graham Bell invented a "photophone",which could carry voice messages on a beam oflight. Its practical application was not possibleat that time because there was no suitable lightsource and no low-loss means of transmission.

In 1960, the idea of using light for commun­ication was revived with the demonstration ofthe laser (light amplification by stimulatedemission of radiation). Whereas ordinary lightscatters, as from a flashlight, the laser is a pow­erful beam of concentrated light. But the useof light for-communication was still limited, be:­cause it travels only in a straight line and isdisrupted by fog or bad weather.

The solution, developed in the 1970s, was totransmit light through a hair-thin glass fibre,capable of carrying thi beam in any directionwithout significant loss of strength.

Optical fibre systems have many advantagesover copper wire. They use less power andtake up much less room, a prime considerationin underground ducts in cities. They arelighter for overhead installations. Above all,they can carry vastly greater amounts of infor­mation.

One pair of glass fibres can carry more than4,000 voice conversations or several televisionchannels and millions of computer bits per sec­ond. A copper pair can carry only two tele­phone conversations and cannot carry videoimages for a practical distance.

One thimbleful of silicon, the most plentifulelement of the earth's crust, will produce a ki­lometer (.62 miles) of glass fibre. (Fibres mayalso be made of plastic which is cheaper but notas good as glass.)

Fibre optics has become one of the most ex­citing technologies of the I980s, with Canada aworld leader in the field. Northern Telecomand its research and development subsidiary,Bell-Northern Research, began development

30

of optical systems in 1973. Bell Canada success­fully tested an optical fibre system between twomain telephone stations in downtown Mon­treal in 1977. Then, in 1978, Bell began a fibreoptics trial extending this new type of tele­phone service to residences in Toronto's York­ville district. By the end of 1983, Bell was usingfibre optics exclusively for all new inter-officetrunk cable requirements.

The Manitoba Telephone System tested theworld's first rural fibre optics transmission sys­tem in 1981, in conjunction with the federaldepartment of communications and NorthernTelecom.

In 1984 Sask Tel, the Saskatchewan Govern­ment telephone company, was to complete theworld's longest fibre optics system-3,400 kilo­meters (2,100 miles)-carrying cable televisionand other services to small communities. Thefibre optic technology has been supplied byNorthern Telecom's new $8 million plant inSaskatoon. In April, 1985, Telecom Canada (a

Optical fibre telephonecables. A single pair can carryas many as 4000 voicemessages simultaneously. ACopper pair, in contrast, canonly carry two voice signals.Photo courtesy of BellCanada.

Cables teJephoniques :1 fibresoptiques. Une seule paire defibres peut acheminersimuhanementjusqu':14000communicationsteJephoniques. Une paire defIls de cuivre ne pelltacheminer eu Itleme tempsque deux signauxtelephoniques. Photo: BellCanada.

Page 49: Electricity - The Magic Medium

Un signal numenque est de I'information­parole, textes, chiffres, images-codee ensequences de binons (generalement des zeroset des uns). En telecommunication, Ie systemenumerique offre un signal meilleur, une capa­cite plus grande et une rentabilite ameliOl'ee.

Apres AT & T, aux £tats-Unis, NorthernTelecom est Ie deuxieme plus grand fabri­cant d'equipements de communication enAmerique du Nord. Elle exploite 27 usines auCanada, 14 aux £tats-U nis, deux en Malaisie etune chacune en Angleterre, en Irlande et auBresil, et ses eqliipes de mise en marche sontdeployees a travers Ie monde. En 1982, Nor­thern Telecom, encouragee par Ie succcs deson univers numerique, annon<;:ait un nouveauprogramme nomme OPEN (Open ProtocolEnhanced Networks) World, en fran<;:ais,reseau PLAN£TAIRE. Celui-ci a pour objectifde satisfaire les besoins des entreprises dans lagestion plus efficace de I'information. Les com­posantes qu'offre OPEN World assureront I'in­terconnexion de plusieurs types et marquesd'equipements en un systeme integn~ capablecl'evoluer en fonction des besoins, c'cst-,l-direIe traitement de I'information sous toutes sesformes-parole, textes, chiffres et graphiques.

L'information est une des ressources les plusprecieuses de toute entre prise. Toutefois, aufil des ans, de nombreux fabricants, consul­tants et utilisateurs ont, chacun de son c6te,propose des systemes informatiques qui nepeuvent pas toujours etre compatibles, ce quioccasionne des frais supplementaires et despertes de temps. Grace a OPEN World, les en­treprises peuvent acheter les composantes quileur convienncnt et les incorporer dans leurreseau, confiantes qu'clles auront accesimmediatement a I'information sous la formede leur choix.

lLa <comm1UllI1lkatiolI1l par ResrayolI1ls §oRaire§Peu apres avoir invente Ie telephone, Alexan­der Graham Bell mit au point un "photo­phone" qui pouvait transporter des mess,lgesvocaux sur un rayon lumineux. Sa mise en ap­plication n'etait pas possible, ~t ce moment-la,etant donne qu'il n'existait pas de source delumiere convenable ni de moyen de transmis­sion ou la dispersion serait minime.

En 1960, I'idee d'utiliser 1£1 lumiere dans lescommunicatons fut ravivee quand on eut fait lademonstration du laser (Light Amplificationby Stimulated Emission of Radiation) ou (am­plificateur quantique de radiations lumineu­ses). Alors que la Iumicre ordinaire se disperse,comme celie d'une lampe de poche, Ie laser

emet un bisceau de lumiere concentree degrande puissance. Mais, I'utilisation de lalumicre dans les communications etait encorelimitee, car elle se propage en ligne droite et labrume et les nuages I'interceptent. La solution,mise au point dans les annees 70, a ete detransmettre la lumiere par une fibre de verrefine comme un cheveu, capable de transporterIe faisceau dans n'importe quelle direction sansperte de puissance appreciable.

Les fibres optiques comptent de nombreuxavantages en comparaison des fils de cuivre:entre autres, ellcs consomment moins d'ener­gie et sont moins encombrantes, une con­sideration primordiale quand on pense £lUX

conduites sous-terraines dans les villes. Les fi­bl'es optiques sont aussi plus legcres et, sur­tout, elles peuvent transmettre un nombre plusconsiderable de donnees. Vne seule paire defibres de verre a une capacite de plus de 4000conversations ou plusieurs canaux de televi­sion et des milliers de binons d'ordinateur parseconde. Le Iii ne peut transmettre que deuxconversations telephoniques et aucun signalvideo sur un distance raisonnablc.

V n de de silicium, I'element naturel Ie plusabondant de la croute terrestre, peut donnerun kilometre (0.62 mille) de fibres de verre.(Les fibres peuvent aussi etre bites de plasti­que qui est moins cher, mais de moindre qua­lite que Ie verre). La technologie des fibres op­tiques est devenue une des plus marquantesdes annees 80, et Ie Canada est un chef de filemondial dans Ie domaine. Northern Telecomet sa filiale de recherche et de developpement,Bell-Northern Research, etudient les fibres op­tiques depuis 1973. En 1977, Bell Canada obte­nait un franc succes lors de la mise it l'essai defibres optiques entre deux centraux du centre­ville de Montreal. Puis, en 1978, Bell etendit cenouveau genre de transmission telephoniqueaux residences de Yorkville, it Toronto. A lafin de 1983, Bell n'utilisait que les fibres opti­ques dans ses nouvelles installations.

Le Manitoba Telephone System a fait I'essaidu premier systcme rural de transmission parfibres optiques en 1981, en collaboration avecIe ministcre federal des communications etNorthern Telecom. En 1984, Sask Tel, Iasociete de la couronne de telephone de 1£1 Sas­katchewan, a installe Ie systeme de fibres opti­ques Ie plus long au monde-3400kilometres-pour la transmission de 1£1 televi­sion par dble et d'autres services a de petiteslocalites e1oignees. La nouvelle usine de 8 mil­lions de dollars construite par Northern Tele­com, a Saskatoon, en avait fourni la technolo­gie. En avril 1985, Telecom Canada (un

31

Page 50: Electricity - The Magic Medium

consortium of\ the major telephone companiesand Telesat Canada) announced it will build acoast-to-coast fibre optic network that will befinished by the end of the decade.

Technology has made real the vision ofAlexander Graham Bell in 1880: "I have heardarticulate speech produced by sunlight! I haveheard a ray of the sun laugh and cough andsing!"

The ComputerAlthough the history of the computer goesback many years, the first electronic computer,using vacuum tubes, was completed in the U.S.in 1946. Called ENIAC, for Electric NumericalIntegrator and Calculator, it contained 18,000tubes, was 100 feet long, and stood 10 feet highand three feet deep.

Plans to build a Canadian computer were an­nounced in 1949 by the University of Toronto.Funds were made available from the NationalResearch Council and the Defence ResearchBoard and a prototype was completed in 1951.It filled one side of a lecture room and con­taineG a thousaridvacuurrituhes.Meanwhile, aFerranti Mark 1 computer became availablefrom Britain after the British government can­celled an order. The need in Canada was ur­gent at the time so the Ferranti computer waspurchased and christened "Ferut" (a contrac­tion of "Ferranti" and "University ofToronto").

Ferut computed water levels for the pro­posed St. Lawrence Seaway, did computationsfor Atomic Energy of Canada Limited and of­fered services to other universities. The Uni­versity of Saskatchewan in particular took ad­vantage of this.

The Canadian Post Office got a system forsorting mail in 1955, three years ahead of any­one else.

Multi-national computer manufacturersmoved into the Canadian market. The CNRcomputerized its payrOll. Trans Canada Air­lines, as it was then, used the first transis­torized computer huilt for commercial use tohandle its seat reservations.

In the early 1960s, Ferranti-Packard ofToronto produced a Canadian computer, firstin the world with time-sharing features. Calledthe FP 6000, it could perform several jobs atonce, each protected from the others.

Generally though, it is in the field of com­puter servicing and software that Canadianshave excelled. The University of Waterloo,first to offer computer courses on a wide scale,boasts that every piece of educational softwareused there has been created by students. Wa-

32

terloo's software products have been distri­buted around the world.

Electronics in IndustryComputer technology can now perform somegigantic tasks. Steel making, for instance, canno longer be thought of as a job of strengthand endurance. Sophisticated electronic con­trols now watch the process. Video terminalsdisplay information on temperature andchemical composition of the steel, speeding upthe process and improving product quality.

Electronic controls also govern the processesof oil refineries, pulp and paper mills, and theenvironment of huge commercial buildingcomplexes. Canadian oil companies use elec­tronic equipment throughout the productionprocess from seismic exploration to refining.

Industry, always trying to cut energy costs,uses microprocessors to improve the efficiencyof steam boilers.

In the production of electrical power, elec­tronic controls govern the output of both nu­clear and coal-fired plants. Computers relay allvital informarlon wplant operators at Iight~ ­ning speed. A dual computer system ensuresthat, if one unit fails, control is automaticallyswitched to another.

Honeywell Limited, born in the U.S. in 1883making primitive thermostats, now producesextremely sophisticated control systems in itsScarborough, Ontario, plant for exportaround the world. Because of Canada's cli­mate, and its history of publicly-owned hydro­electric utilities, Honeywell has been able to doa brisk business in electric heat controls. It hasbecome a main supplier of security systems tobanks and lighting control systems which ad­just to the particular light level needed. In­stalled in an office complex, a microprocessor­based system can control temperature, light,air conditioning and security from fire and' un­authorized entry.

Electro-MechanicsIn the field of electro-mechanics we have an­other example of Canadian enterprise. Elec­trovert, established in Montreal in 1951 as aone-man importing and sales agency, nowleads the world in soldering technology.Branching out first into the U.S., Electrovert isnow a multi-national with customers in morethan 60 countries around the world.

Central to Electrovert's success was the intro­duction to North America of the technology ofwave-soldering. Soldering of printed circuitboards-the "brains" of an electronic prod­uct-was once a painstaking manual operation.

Page 51: Electricity - The Magic Medium

consortium compose des principales compa­gnies de telephone et Telesat Canada)annon<;:ait la construction d'un reseau de fibresoptiques d'un ocean a l'autre qui sera en placevel'S la fin de la decennie.

Cette technologic a realise ce que AlexanderGraham Bell avait vu en reve en 1880: ".rai en­tendu des paroles emises par les rayons du so­leil! j'ai entendu un rayon de solei! rire, tous­ser, chanter!"

L'ordinateurBien que I'histoire de l'ordinateur date de plu­sieurs annees, Ie premier ordinateur electroni­que, utilisant des tubes avide, fut construit auxEtats-Unis, en 1946. Sumomme ENIAC,abreviation de Electrical Numerical IntegratorAnd Calcultar, il contenait 18,000 tubes etmesurait 100 pieds de long, 10 pieds de haut ettrois pieds de profond.

En 1949, I'Universite de Toronto fit part deson desir de construire un ordinateur canacdien. Le Conseil national de recherches et laCommission de recherches de la defense natio­nale avancerent les fonds necessaires et unprototype fut acheve en 1951. II remplissaittout un cote d'une salle de cours et comprenaitmille tubes a vide. Au meme moment, un ordi­nateur Ferranti Mark I, d'origine britannique,devenait disponible parce que Ie Gouverne­ment anglais n'en voulait plus. AceUe epoque,Ie pays avait un besoin urgent d'un ordinateur;alors, on acheta I'ordinateur Ferranti et on Iebaptisa 'FERUT' (contraction de Ferranti etUniversity of Toronto).

FERUT fit les caIcuIs des niveaux d'eau pourla Voie Maritime du St-Laurent, comme il fitaussi des calculs pour l'Energie Atomique duCanada, Limitee, et, en general, offrit ses servi­ces aux autres Universites. L'Univel"site de Sas­katchewan, notamment, profita de cette offre.

En 1955, les Postes canadiennes installerentun systeme de triage des leures trois ans avanttout autre. Les fabricants d'ordinateurs etran­gel's envahirent Ie marche canadien. Le CN in­formatisa sa liste de paie. La societe Air­Canada, alors connue sous Ie nom de Trans­Canada Airlines, mit en service, et utilisa pourla reservation des places, Ie premier ordinateurtransistorise ausage commercial.

Au debut des annees 60, Ferranti-Packardde Toronto produisit un ordinateur canadienqui a ete Ie premier au monde aofTrir I'utilisa­tion partagee. Sumomme FP6000, il pouvaitaccomplir plusieurs taches a la fois, indepen­damment les unes desautres. En general, ce­pendant, c'est dans I'amelioration des ordina-

teurs et dans la creation de Jogiciel que lesCanadiens excellent. L'Universite de Waterloo,qui a ete la premiel"e ~! offrir un cours trespousse en informatique, se vante du fait quetous les elements du logiciel utilises dans sesCOUl"S ont ete uees par les etudiants et qu'ilssont distribues partout dans Ie monde.

L'electronique au service derindustrieL'informatique peut, al~ourd'hui, accomplirdes taches enormes. Par exemple, on ne con­sidere plus la fabrication de I'acier comme untravail ardu et requerant de I'endurance, saproduction s'accomplit sous la surveillanced'equipemcnts e1ectroniques ratlines, des ter­minaux video presentent les donnees relativesa la temperature et a la composition chimiquedu produit, Ie procede est accelere et la qualiteest meilleure. Des systemes electroniquescontr6lent les procedes dans les raffineries depetrole, dans les moulins de pates et papiers,ainsi que la c1imatisation dans les grands en­sembles commerciaux. Les compagnies depetrole canadiennes utilisent de I'equipementelectronique dans toutes leurs activites, depuisl'exploration sismique jusqu'au raffinage final.Toujours dans Ie but de reduire 1es frais enenergie, I'industrie utilise des microproces­seurs pour accroitre I'efficacite des chaudieres~l vapeur. La generation d'electricite dans lescentrales n ucleaires et thermiq ues cst aussicontrolee par de I'equipement electronique.Les ordinateurs relayent toutes les donnees es­sentielles aux operateu rs de la centrale ~l tresgrande vitesse. Au cas 011 une unite manque­rait, un double systeme d'ordinateur assure Iepassage automatique du contr6Ie a une autre.

La societe Honeywell, qui commen<;:a, en1883, aux Etats-Unis, ~l fabriquer des thermos­tats primitifs, produit main tenant a son usinede Scarborough, en Ontal"io, des systemes decontr61e extremement complexes qu'elle ex­porte dans toutes les parties du globe. En rai­son du dimat particulier du Canada, et du faitque les services d'e!cctricite sont la proprietedes gouvernements, Honeywell a pu faire detres bonnes affaires dans la vente de contr61esutilises dans Ie chauffage electrique. Elle estdevenue un important fournisseur de systcmesde protection pour les banques et de systemesde controle de l'edairage qui s'ajuste au niveaude luminosite voulu. Un systeme muni d'unmicroprocesseur, installe dans un edifice a bu­reaux, peut controler la temperature, l'eclai­rage, la dimatisation de l'air, et assurer la pro­tection conO"e les incenclies et les entreesinterdites.

33

Page 52: Electricity - The Magic Medium

Wave-soldering provides for an automated sys­tem that has revolutionized the electronics in­dustry. As the printed circuit board travelsalong a conveyor system it passes over a waveof liquid solder pumped through special noz­zles which produce the required wave shape.This not only speeds up the process but en­sures consistently high quality.

The first North American customer for thewave-soldering technique was the Minutemanmissile project in the U.S. The American mar­ket has served as the laboratory and provingground for Electrovert's techniques. Electro­vert was asked by NASA to develop automaticequipment for hot-solder coating of its specia­lized boards. When NASA set up a solderingschool for contractors ,working on the Apolloprogram, Electrovert methods were used.

Electronic MedicineUntil the 1920s and 1930s, electronics played arelatively small part in the field of medicine.Now it is involved in any number of treatmentsin wh.ich Canadians have made significant dis­covenes.

The Cobalt Bomb:It was a Canadian team that developed the

. first cobalt bomb in 1951, prolonging thelives of thousands of cancer sufferers. Thekey figure was Dr. Harold Johns, a physi­cist at the University of Saskatchewan inSaskatoon, who started seeking materialfrom Chalk River in 1947 to test on cancercells. The response was that Saskatoon, acity of 40,000, might not be the ideal placefor such work, but authorities finallyagreed to send him cobalt if he could de­vise a safe container for it and design atreatment head that would regulate theamount of radiation given a patient andaim the rays accurately. Dr. Johns and hisassociates did both.

In 1951, Chalk River sent radioactivecobalt, the world's first, to Dr. Johns andto Victoria Hospital in London, Ontario.The two Canadian units served as modelsfor other countries and scientists camefrom around the world to learn how to usethe cobalt bomb.

The Pacemaker:In 1949, Dr. John Hopps was working atthe National Research Council in Ottawawhen he got a call for help from Dr.Wilfred G. Bigelow, head of the cardiova­scular laboratory at the Banting Instituteof the University of Toronto. The Insti­tute was looking into the possibility of

34

cooling a patient prior to heart surgery sothe effect of interrupting his circulationwould be less severe. The problem that re­quired Dr. Hopps' help was how to safelyrewarm experimental animals that hadbeen subjected to hypothermia.

Dr. Hopps learned that during cooling,the animals' hearts tended to come to astandstill. However, repeated electricalstimuli would keep the heart beating.From this research came the world's firstheart pacemaker, built at the National Re­search Council, in 1951.

At that time there were no transistorsand the pacemaker was far too big to becarried by the patient. By 1984, however,a premature baby born in Calgary, weigh­ing one kilogram, was fitted with a pace­maker the size of three silver dollarsplaced on top of each other. It is believedto be the first operation of its kind in theworld. Dr. Robert Sommerville, who per­formed the operation at Foothills Hospi­tal, compared it to implanting a railwaywatch under the skin on top of someone'shand.

As the little girl grows the pacemakerwill be replaced.

Electronics has also given new hope to para­plegics and to amputees who can be fitted with

Since the early 1960s, U.S.National Aeronautics SpaceAdministl"ation projects suchas the Space Shuttle OrbiterDiscovery (pictured here)have incorporated subsystemfabrications using Electrovertwave,soldering equipmentand technigues. Photocourtesy Electrovert Ltd. andAM&P Services Ine.

Depuis Ie debut des annees1960, la NASA, dans Ie cadrede projets comme celui de lanavette Discovery (que I'onvoit sur cette photo), utiliseles equipements et lestechniques de soudure 'I lavague de la societe

," Electi"ove'I1.'PYiofo: - --' ,Electrovert Ltee et AM&PServices I lie.

Page 53: Electricity - The Magic Medium

La duree de vie des premiersstimulateurs cardiaques seIi mitait ;\ celie des piles ;\l'oxyde de zinc et de mercurequi les alimentaient. Celuique I'on voit sur cette photoest alimente par une pile aulithium, qui peut durer plusde dix ans. Photo: Conseilnational de recherches.

Early heart pacemakers werelimited to the life ofzinc-mercul"ic oxide batteries.The pacemaker picturedhere uses lithium battery witha life of more than 10 years.Photo courtesy of NationalResearch Council.

L'electromecaIrniqueDans Ie domaine de l'eIectromecanique, nousavons un autre exemple de l'esprit d'entreprisedes Canadiens. La societe Electrovert, etablie aMontreal, en 1951, et toujours sous la directiond'un seul homme, est une agence d'importa­tion et de ventes, qui, attiourd'hui, domine Iemarche mondial dans Ie domaine de la sou­dure. Apres s'etre etablie d'abord aux Etats­Unis, Electrovert est devenue une multinatio­nale servant une clientele dispersee dans 60pays duglobe. Electrovert doit son succes sur­tout a I'introduction en Amerique du Nord dela technique de la soudure par vague. La sou­dure des cartes de circuit imprime-Ies 'cer­veaux' d'un equipement eIeetronique-etait,auparavant, un travail manuel laborieux. Lasoudure par vague automatise a revolutionneI'industrie de I'electronique. La carte de circuitimprime s'avance sur un convoyeur et passeau-dessus d'une vague de metalliquide pompedans des gicleurs speciaux qui produisent unevague de la forme voulue. Ceci, non seulementaccelere Ie procede, mais assure une produc­tion de qualite toujours egale et excellente.

On a utilise pour la premiere fois enAmerique du Nord la technique de la s()Udurepar vague, pour Ie projet du missile Minute­man, aux Etats-Unis. Le marche americain ahabituellement servi de laboratoire et de ter­rain d'essai pour les techniques d'Electroverr.Cette derniere fut mandatee par NASA pourmettre au point un appareil automatique pourrecouvrir ses cartes speciales d'une couche demetal d'apport chaud. Quand NASA mit surpied une ecole de soudure pour Ie benefice desentrepreneurs travaillant au projet Apollo, lesmethodes con~ues par Electrovert furent uti­lisees.

lL'electtronique au service de lamededneAvant les annees 30, I'electronique a joue unrole relativement rninime dans Ie domaine dela medecine. Aujourd'hui, on s'en sert dans denombreux traitements OU les Canadiens ontfait des decouvertes importantes.

La bombe au cobaltLa premiere bombe au cobalt a ete as­semblee en 1951 par une equipe de Cana­diens: on s'en servira pour prolonger lavie de milliers de personnes atteintes decancer. Le personnage-cie de ce groupeest Ie docteur Harold Johns, un physiciende I'Universite de Saskatchewan, a Saska­toon, qui, des 1947, avait tente d'obtenir

de Chalk River du materiel qu'il desiraitessayer sur des cellules cancereuses. On luifit remarquer que Saskatoon, une ville de40,000 habitants, ne serait peut-etre pasI'endroit ideal pour faire de tels travaux.Mais Ies responsables, finalement, consen­tirent a lui envoyer du cobalt a conditionqu'il puisse inventer un contenant SCII'

pour Ie transporter et concevoir une gainede traitement qui pourrait controler laquantite de radiation administree a un pa­tient et servir a diriger les rayons d'unemaniere exacte. Le docteur Johns et ses as­socies accomplirenr les deux.

lLe stimulateur cardiaqueEn 1949, Ie docteur John Hopps travaillaitau Comeil national de recherches, aOttawa, quand il re~ut un appel a l'aide dudocteur Wilfred G. Bigelow, directeur dulaboratoire pour I'etude des troubles ca1"­diovasculaires, du Banting Institute deI'Universite de Toronto. L'institut faisaitdes recherches sur la possibilite de refroi­dir un patient avant une intervention acoeur ouvert pour rendre mains brutall'effet de l'arret de la circulation. Leprobleme du docteur Hopps etait de sa­voir comment rechauffer, sans danger,des animaux experimentaux dont on avaitabaisser la temperature (ju corps. Le doc­teur Hopps avait note que, durant Ie re­froidissement, Ie coeur des animaux avaittendance a s'arreter, mais, que I'interven­tion d'un stimulus electrique repete gar­dait Ie coeur en mouvement. Le premierstimulateur cardiaque au monde, cons­truit au C.N.R.C., en 1951, etait Ie fruit deces recherches.

A ceUe epoque, les transistors n'exis­taient pas encore et Ie stimulateur etaitbeaucoup trop volumineux pOUJ- etreporte par Ie patient. En 1954, un bebe, neprematurement a Calgary, et ne pesantque un kilogramme, avait besoin d'un sti­mulateur cardiaque. On lui implanta untel appareil qui n'etait pas plus gros quetrois pieces de un dollar empilees les unessur les autres. On croit que ce fut la lapremiere intervention de ce genre aumonde. Le docteur Robert Sommerville,qui a fait I'operation, a I'Hopital Foothills,I'a comparee a I'implantation d'une mon­tre de chemin de fer sous la peau du des­sus de la main.

On changera Ie stimulateur au fur et amesure que la fillette grandira.

35

Page 54: Electricity - The Magic Medium

electrically powered artificial limbs controlledby myolectric voltages generated by nerves.

Another example of the application of elec­tronics to medicine is a mini-computer the sizeof a pocket calculator, developed at Toronto'sHospital for Sick Children, which gauges theinsulin doses needed by a diabetic, balancingthe dose against food intake and exercise.

One of medicine's newest surgical tools is thelaser which has been used to destroy tumors,open clogged arteries and weld leaking bloodvessels. First used in the early I970s, lasers arenow used mainly for eye, ear, nose and throatsurgery. Some diseases of the retina associatedwith diabetes can now be controlled with lasersurgery. Lasers can also correct detached reti­nas and remove scar tissue that obstructs visionfollowing a cataract operation.

The Electronic MediaIn July of 1932, readers of Radio Week gotsome interesting news: radio station CKAC inMontreal had been experimenting with televi­sion broadcasts. But, predicted the writer:,there could -never be-lbi1g~dista~ce transmis­sion of pictures. The difficulties and costswould be too great. He told radio fans not toworry; their sets would not be made obsoleteby television. As it turned out, television wasnot considered a viable medium at the time. Itwould be another 20 years before CBC-TV sta­tions in Montreal and Toronto went on the air,in the ] 950s, with color television having towait until the I960s.

Meanwhile the Second World War hadproved radio indispensable. Broadcastsbrought back news and interviews with Cana­dian troops overseas, the speeches of WinstonChurchill and the Sunday morning BBC newscomplete with the chiming of Big Ben. CBCcorrespondents were ahead of their U.S. coun­terparts with their recording equipment thatcould bring sounds directly from the battle­front. It would not be the last time Canadianswere ahead in communications technology.

In 1967 the CBC was looking for a betterToronto transmitting site and persuadedCanadian National Railways to include abroadcasting tower in a new development onLake Ontario. The idea snowballed into theCN Tower, the world's tallest freestandingtower, with observation decks, dining pod andthree levels crammed with broadcasting equip­ment.

By 1984 Canadians had direct broadcastsatellite television, beamed directly to practical­sized homeowner dishes.

36

Print, too,nas -gone electronic. When theRiel Rebellion broke out in 1885 Canada's firstwar correspondents went west to write theirstories in longhand and file them by the rela­tively new telegraph medium. In those earlydays telegraph operators themselves wereoften the only newspaper correspondents.Then a dispute between CP Telegraphs andthe Winnipeg papers led to the establishmentin 19 II of the Canadian Press, a co-operativenewsgathering agency. For many years, CP re­ports were calTied by the wires of the tele­graph companies and ripped off teletype ma­chines in newsrooms across the land. To-dayreporters, who used to pound on typewriters,use silent electronic video display terminals towrite their stories while words and pictures areflashed across the country via satellite.

The Space AgeIt's September 29, 1962, at Vandenberg AirForce Base in California. A Thor-Agena rocketroars off towards space carrying Alouette I, aCanadian satellite designed to bring back sci­entific information from space. It's Canada'sfirst satellite launching and makes us the thirdcountry in the world to have a satellite aloft.

Placed in orbit 1,000 kilometers (600 miles)above the earth, Alouette I will send back newsof the physical properties of the ionosphereand help improve high frequency radio com­munications in the Far North. It will be fOl­lowed by many other satellites, sending backinformation or acting as reIayers of communi-

An IS-month congenitalamputee contemplates hisfuture with prototype of amyoelectric prosthesisdeveloped at the Universityof New Brunswick. The limbis activated by an electricalimpulse from user's nerves,amplified by a battery in thelimb. Photo courtesy of Lynnand Joe Rector and sonJonathan, of Sf. John, N. B.,Dr. R.N. Scott of theUniversity of NewBrunswick, and Health CareTechnology ConsultantsLimited of Belfountain,Ontario.

Un ampute congenital de 18mois scnlle son avenir dansun prototype de prothesemyoeleetritlUe developpe aI'Universite duNouveau-Brunswick. Lememhre est actionne par uneimpulsion eIeetrigueprovenariLdu systemenerveux et amplillee par unepile placee aXinte!ieur_du

--membre:"PllOtO: Lynn andJoe Rector et leur IllsJonathan, de St-Jean, N.-B.,DI" R.N. Scott de l'Universitedu Nouveau-Brunswick, etles Health Care TechnologyConsultants Limited, deBelfountain, Ontario.

Page 55: Electricity - The Magic Medium

-- --- ---- --------------- ------------ ------------------------ - ----- --

L'electronique a aussi ouvert de nouveauxhorizons 'lUX paraplegiques et 'lUX amputes aqui on peut maintenant installer des membresartificiels actionnes par Ie systeme nerveux.

Parmi les applications de l'electronique enmedecine, il est bon de signaler Ie mini-ordina­teur de poche, mis au point a I'Hopital pourenfants de Toronto, qui mesure la quantited'insuline d'un diabetique et etablit la dose re­quise d'apres l'alimentation et l'activite physi­que.

Un des instruments de chirurgie les plusnouveaux est Ie laser qu'on emploie pourdetruire les tumeurs, ouvrir les arteres obs­truees et reparer les vaisseaux sanguins en­dommages. Utilises pour la premiere fois audebut des annees 70, les lasers sont au­jourd'hui employes principalement dans 1'1 chi­rurgie de l'oeil, de \'oreille, du nez et de lagorge. Certaines affections de la retine as­sociees au diabete peuvent maintenant etrecorrigees par chirurgie au laser. Le laser peutaussi reparer les n~tines detachees et enlever Ietissu cicatriciel qui bloque la vision apres uneoperation de la cataracte.

Les media electroniquesEn juin 1932, Radio Week informait ses lec­teurs d'un evenement interessant: la station deradio CKAC, a Montreal, avait entrepris desexperiences en television. Mais, assurait \'au­teur, on ne pourrait jamais transmettre d'ima­ges a grandes distances: les difficultes a sur­monter et les couts d'exploitation seraient tropgrands. II rassurait donc les adeptes de la radioen leur promettant que leurs appareils ne se­raient jamais supplantes par la television. Defait, la television n'etait pas consideree commeun medium viable, a l'epoque. Deux autresdecennies devaient s'ecouler avant que les sta­tions CBC-TV a Montreal et a' Toronto necommencent leurs diffusions. La television encouleurs ne ferait son apparition que durantles annees 60.

Entre-temps, la seconde guerre mondialeavait demontre que 1'1 radio etait indispensa­ble. On avait diffuse Ies nouvelles et les entre­vues avec les troupes canadiennes outre-mer,ainsi que les harangues de Winston Churchillet les bulletins de nouvelles de la BBC du di­manche matin, sans oublier Ie carillon de BigBen. Les correspondants de la CBC damaientIe pion a leurs confreres americains. AvecI'equipement d'enregistrement dont ils dispo­saient, ils ramenaient directement du front lesbruits de la guerre. Ce ne serait pas la dernihefois que les Canadiens seraient en avance dansIe domaine des communications.

En 1967, la CBC etait a la f'echerche d'unmeilleur site de transmission, a Toronto, et apersuade Ie Canadien National d'inclure unetour de transmission dans Ie nouveau com­plexe que cette societe avait decide d'eriger enbordure du lac Ontario. L'idee prit de I'am­pleur pour devenir la Tour CN, la tour auto­nome 1'1 plus haute au Blonde. Elle comprenddes plate-formes d'observation, une salle ~\

diner et trois etages d'equipement de diffu­sIOn.

Les Canadiens ont commence a recevoir endirect, meme avant 1'1 fin de 1984, des pro­grammes de television transmis par satellites ades antennes paraboliques individuelles de pe­tite taille.

La presse s'est aussi tournee vel's l'eIectroni­que. Quand, en 1885, 1'1 Rebellion de Riel aeclate, les premiers correspondants de guerrecanadiens se sont rend us dans l'Ouest. IIs ecri­vaient leurs compte-rendus a 1'1 main et lesexpediaient par teIegraphe qui, a l'epoque,etait relativement nouveau. Au debut, Jesoperateurs de telegraphe ClIX-memes etaientsouvent les seuls aexercer Ie metier de journa­liste.

Plus tard, une dispute entre CP Telegraphset Ies journaux de Winnipeg aboutit ~\ 1'1 for­mation, en 1911, de la Presse Canadienne, uneagence co-operative qui recueille les nouvelles.Pour de nombreuses annees, par 1'1 suite, cettederniere expediait ses bulletins de nouvellessur les fils des compagnies de telegraphejusqu'aux teleimprimeurs installes dans les sal­les de depeches des journaux du pays.

Les journalistes modernes, qui avaient I'ha­bitude de taper sur des machines a ecrire, em­ploient, maintenant, des terminaux video si­lencieux pour eo"ire leurs bulletins dont Ietexte et les images apparaissent simultanementdans tout Ie pays par l'intermediaire de satelli­tes.

L'ere spatialeC'est Ie 29 septembre 1962, a 1'1 VanderbergAir Force Base, en Californie. Une fusee Thor­Agena s'elance dans l'espace en rugissant, em­portant avec elle Alouette I, un satellite cana­dien con<;u en vue de recueillir desrenseignments scientifiques dans l'espace et deles retourner au sol. C'etait Ie premier satellitecanadien a etre lance ct il nous plac;ait autroisieme rang des pays avec un satellite dansl'espace. De son orbite, it 1,000 kilometres (600milles) de 1'1 terre, Alouette I renverra desdonnees relatives 'lUX proprietes physiques del'ionosphhe et contribuera a l'amelioration descommunications par radio it haute frequence

37

Page 56: Electricity - The Magic Medium

---------_. --

cations to join Canada's sparse population to­gether.

Because of its physical characteristics, Can­ada has been an ideal place to test communica­tions technology. The harsh climate makesnorthern travel difficult. Geographical bar­riers and vast spaces separate us. The magneticnonh pole disrupts northern radio communi­cations. The Canadian space industry hasproved equal to these challenges. Canada hasbecome one of the few countries in the worldwith the ability to design, build and test com­plete satellites. Much has been accomplishedsince the primitive telegraph and telephonedays of 1884. Who knows what 2084 maybring?

The SatellitesAlouette I had four jobs to do. By emittingradio beams and timing the echoes, it coulddraw a radar map of the upper ionosphere. Itcould also measure cosmic noise, monitor lowfrt~quency radio noise, and count the numberof chal'ged partiCles al'otind it. Although its lifespan was expected to be only one year, it lastedfor 10 before being switched off from earth.

Alouette I was followed in 1965 by AlouetteII. Then came Isis I and II, named after theEgyptian queen of the heavens, in 1969 and197 I. They were able to perform more scien­tific tasks. Isis II took pictures of the auroraborealis from above. These early satellitesproved that the aurora and the accompanyingradio blackouts result from solar wind, flowingin from space, reacting with the magnetic fieldof the magnetic north pole. Launched by U.S.facilities, their information was shared with theU.S.

But even before this program was completedCanada made an important decision. It de­cided to get into the relatively new, untestedand expensive field of communications satel­lites. Such satellites are equivalent to towersthousands of kilometers high. They can cap­ture signals from earth and return them with­out interference. They can "see" even the re­motest parts of Canada.

In 1969 Telesat Canada was formed to in­stall and operate a system of communications,including satellites and the earth stations thatreceive their signals. Telesat is a private com­pany, owned by CNCP, the major telephonecompanies, and the federal government. Its sa­tellites are called Anik, the Eskimo word forbrother.

Anik I would be the western world's firstcommunications satellite. Only the U.S.S.R.

38

was in the field. And Canada would follow abetter and more sophisticated procedure thanthe Russians. Russia had six satellites in orbit,carefully co-ordinated so that when one disap­peared over the horizon the next would takeover. Canada's Aniks would be geostationarysatellites, orbiting at the speed of the rotatingearth so as to remain stationary in one spothigh above the equator. Anik A-I, as it wouldbe known later, went into space on November9, 1972, carried by a U.S. Delta rocket fromCape Canaveral.

Essentially, Anik A-I was a spinning drum,180 centimeters (70 inches) in diameter, 340centimeters (11.5 feet) high, weighing 570 kilo­grams (1,254 pounds) at launch. On its body,were 20,000 solar cells to provide the mainpower for its electronic systems. Computercontrols kept it from moving more than 0.5 de­grees latitude or longitude from its stationaryposition which had to be maintained if it was tobeam signals down to fixed earth stations. AnikA-] could carry 12 television programs or11,520voice.circuits. On January 11,_19732 itbegan relaying telephone service between thesouth and the high Arctic. By spring, 25 com­munities had begun to get television throughit. Subsequent Anik A's increased the volumeof service.

Even before Anik A-I was launched, Canadaand the U.S. had begun to plan a new type ofcommunications satellite called Hermes,afterthe messenger of the Greek gods. Its purposewas to test new technologies in such fields asmedicine and education. Unlike Anik, Hermescarried its 27,000 solar cells in a pair of "sails"that unfolded from its body at launch. Hermeswent into orbit in 1976 and shut down in late1979.

Anik B, la.unched in 1978, was a hybrid satel­lite, used for both experiments and commer­cial broadcasting. Its two solar sails stretched9.54 meters (31.3 feet), rotating once a day toget maximum sunlight.

On November 11, 1982, the first of the AnikC series was launched from Kennedy SpaceCentre aboard the NASA shuttle Columbia. Asthe shuttle orbited 300 kilometers (185 miles)above the earth, Anik C was "spun up" to 50I'evolutions pel' minute on a turntable. Thenthe cargo bay doors opened, a clamp holdingthe satellite in place was released, and fourspring plungers propelled it into space. Later,a small rocket motor fired it into orbit.

The Anik C's, third of which was launchedApril 12, 1985, brought new kinds of broad­casting, business network and other telecom-

A fIve-year study by theNational Researdl Councilhas unravelled some of themysteries of bird Hightphysiology. Biotelemetrytransmitters weighing lessthan an ounce (28.35 grams)were carried on the backs ofhoming pigeons and otherbirds. They produced newin formation on the energeticsof flight by measuringbt'eathing rate, oxygenconsumption, bodytemperature and heart rate.Photo courtesy of NationalResearch Council.

__________ ---------------_...1

Page 57: Electricity - The Magic Medium

Une etude d'une durce decinq ans effectll('e par' IeConseil national derecherches a permis depercer quelques-uns desmysteres de la physiologic duvol des oiseaux. Desemellem's biotclernetriquesd'un poids de mains d'uneonce (28,35 gramrnes) ont eteplaces sur Ie dos de pigeonsvoyageurs et d'autres oiseaux.lis ont permis de recueillirdes donnees nouvelles surl'energetique du vol,rnesurant Ie rythme derespiration, la consommationd'oxygene, la temperature ducorps et Ie rythrne cardiaquede ces oiseaux. Photo:Conseil national derecherches. dans Ie Grand Nord. II sera suivi de plusieurs

autres satellites, qui renverront des donneesd'information ou qui serviront a I-elayer les sig­naux de communications et reuniront ainsi lapopulation du Canada dispersee d'un ocean aI'autre.

Etant donne ses caracteristiques physiques,Ie Canada est un endroit ideal pour mettre aI'essai toutes les techniques de communica­tions. Le climat rigoureux rend Ie transportdans Ie Grand Nord difficile. Des barrieresgeographiques et de vastes espaces nousseparent. Le pole nord magnetique cause desderangements dans les communications radio­phoniques avec Ie Nord. L'industrie cana­dienne s'estmontree a la hauteur de ces dCfis.Le Canada est devenu un des rares pays aumonde a possedel' I'habilete de concevoir, deconstruire et de tester des satellites complets.On a fait beaucoup de chemin depuis les pre­miers telegraphes et telephones de 1884. Quisait ce que nous resel-ve l'an 2084?

l.es satellitesAlouette I avait quatre taches a accomplir. Enemettant des faisceaux d'ondes par radio, etchronometrant leur echo, il pouvait tracer parradar la carte de l'ionosphere superieure. IIpouvait mesurer les bruits provenant du cos­mos, surveiller les emissions eJectromagneti­ques de basse frequence, et compteI' Ie nombrede particules electrisees dans son voisinage.Bien que sa longueur de vie ait ete estimee ~l

seulement une an nee, il survecut dix ans avantd'etre arrete par une commande de la terre.

En 1965, Alouette II rempla(,:a Alouette I.En 1969 et 1971 respeetivement, on plat;:a surorbite Isis I et Isis II, nom emprunte a la reineegyptienne des cieux. lis accomplirent d'autrestaches scientifiques. Isis II photographia lesaUI-ores boreales du haut de son orbite. Ces

premiers satellites demontrerent que les auro­res boreales et les trous dans la diffusion radio­phonique qui en resultem, sont causes par Ievent solaire venant de l'espace et reagissantavec Ie champ magnetique du pole nordmagnetique. Etam donne que les satellites somlances par les Etats-Unis, nous partageons aveceux les renseignements qu'on en obtient.

Mais meme avant de mettre fin a ce pro­gramme, Ie Canada prit une importante deci­sion, celie de se lancer dans Ie domaine relati­vement nouveau, non encore veri fie etdispendieux, des satellites de communications.Ces satellites constituent I'equivalent de tourshautes de milliers de kilometres. IIs peuvenlcapter des signaux venus de la terre et les re­tourner sans interference. lIs peuvent 'voir'meme les regions les plus lointaines du Ca­luda.

En 1969, Telesat Canada a etc formee pourmettre en place et exploiter un systeme decommunications, y compris les satellites et lesstations au sol qui re(,:oivent leurs signaux.Telesat est une compagnie privee dOIU les ac­tionnaires sont CN/CPT, les principales com­pagnies de telephone et Ie Gouvernememfederal. Ses satellites ont etc baptises Anik, motinuit qui signifie "frere".

Anik I etait Ie premier satellite de communi­cations dans Ie monde occidental. La Russieetait Ie seL!l autre pays aposseder ce type de sa-tellite. .

Le Canada devait employer une techniquemeilleure et plus sophistiquee que celle desRusses. La Russie avait six satellites en orbite,synchronises avec soin, de sorte que lorsquel'un d'eux disparaissait a l'horizon, Ie suivantprenait la releve. Les Anik canadiens seraientdes satellites geostationnaires, se depla(,:ant surleur orbite a une vitesse telle qu'ils suivraient larotation de la terre et paraitraient immobilesau-dessus de I'equateur. Anik A-I, comme onI'appelera, s'envola dans l'espace Ie 9 novem­bre 1972, transporte par une fusee Deltaamericaine, lancee du Cap Canaveral.

En realite, Anik A-I etait un cylindre en ro­tation, mesurant 180 centimetres (70 pouces)de diametre et 340 centimetres (11.5 pieds) dehauteur, et pesanl 570 kilogrammes (l,254 li­vres) au lancement. Sur sa paroi exterieure20,000 cellules solaires fournissaient Ie princi­pal pouvoir requis par ses systemes electroni­ques. Des contrbles informatises l'empechaientde devier de plus de 0.5 degres de longitudeou de latitude de sa position stationnaire quidevait etre maintenue arin qu'il puisse dirigerses signaux vel'S une station fixe, au sol. AnikA-I pouvait t1-ansmettre 12 programmes de

39

- ---------------------------------------------------

Page 58: Electricity - The Magic Medium

Alouette I, Canada's first satellite, was launchedSeptember 29, 1962, from Vandenberg Air Force Base inCalifornia. It sent back scientific information from theionosphere. Photo courtesy of Department ofCommunications.

Alouette I, Ie premier satellite canadien, a ete lance Ie 29septembre 1962, de la base aerienne de Vandenberg, enCalifornie. II fournit des renseignements scientifiques surI'ionosphere. Photo: Ministere des Communications.

The ISIS I (shown here) and ISIS II scientific satellitesceased regular operation March 13, 1984. The twoCanadian-built satellites had successfully collected data onthe ionosphere of the earth's surface, for 15 years. Photocourtesy of Department of Communications.

Les satellites scientifiques ISIS I (que I'on apen;:oit surcette photo) et ISIS II ont cesse de fonctionner Ie 13 mars1984. Ces deux satellites canadiens ont reeueillis desdonnees sur I'ionosphere de la surface terrestre durant15 ans. Photo: Ministere des Communications.

Telesat Canada's Anik D-I satellite undergoes tests at theDavid Florida Laboratory near Ottawa. It was launched in1982. Photo courtesy of Department of Communications.

Le satellite Anik 0-1 de Telesat Canada fait I'objet detests au laboratoire David Florida, pt'"" d'Ottawa. Photo:Ministere des Communications.

Anik I, launched in 1972, was Canada's, and the westernworld's first communications satellite. The 20,000 solal'cells on its body powered its electronic systems,supplemented by batteries. Photo courtesy of Departmentof Communications.

Anik I, qui a ete lance en 1972, a ete Ie premier satellitede telecommunications de I'hemisphere occidental. II esttapisse de 20 DOD cellules solaires qui ali men tent sessystemes electroniques et qui sont completees par desbatteries. Photo: Ministere des Communications.

--- -- - ----------

I

I

I

I

I

L40

Page 59: Electricity - The Magic Medium

Hermes, un satellite detechnologic destelecommunications, a etelance par Ie Canada et lesEtats-Unis en 1976 et a eteutilise pour des experiencesen teItmtdecine et enttle-education, Ses cellutessolaircs etaicnt montecs surdes panneaux repliablcs.Photo: Ministere desCommunications,

Hermes, a communicationstechnology satellite, waslaunched by Canada and theU,S, in 1976, and was usedfor experiments intelemedicine andtete-education, Its solar cellswere carried in folding"sails", Photo courtesy ofDepartment ofCommunications.

41

Page 60: Electricity - The Magic Medium

munications services to Canadians. These arehigh frequency satellites which can work withsmall earth stations. Because they don't inter­fere with terrestrial microwave, their earth ter­minals can be located in crowded cities on indi­vidual homes. The Anik C can deliver anexcellent television picture through a dish an­tenna only one meter (3.28 feet) in diameter.

The I980s also brought the Anik D's, withtwice the communications capacity of the A's.Of special significance is that they are made bySpar Aerospace Limited, a Canadian contrac­tor now famous for its Canadann.

Canada and the U.S. are studying the possi­bility of a mobile satellite (MSAT). It would vir­tually end restrictions on distances that can bebridged by mobile radio and radio telephone,whether from land, air or sea.

Canada is already taking part in SatelliteAided Search and Rescue (SARSAT), an inter­national search and rescue tracking system, inco-operation with the Soviet Union's COSPAS.By cutting rescue times to hours instead ofdays, the system should drastically increasethe

_ survival rate. In its first six inonths of testing in1983, COSPAS-SARSAT helped save 28 lives.

The CanadarmFriday, November 13, 1981. In the cargo bayof the orbiting Columbia space shuttle, a 15­meter (50-foot) electronic arm comes to lifeand lifts slowly from its cradle. Then, as it risesabove the open bay, the shoulder, elbow andwrist joints are flexed. The arm is moved fromside to side to see how it will react to suddenmovements in space.

At an instrument panel as complex as that ofa commercial airliner, shuttle pilot RichardTruly puts the arm through its paces-auto­matically, by computer, and manually. At atelevision set in the Johnson Space Center inHouston, Texas, Canadians watch proudly asthe Canadarm waves back at earth.

The Remote Manipulator System (RMS), orCanadarm, has been designed and built inCanarla with Spar ACiOspace Limited as primecontractor to the National Research Council. Ithas been a $110 million investment that paidoff. Spar has now delivered four Canadarms tothe U.S. Every shuttle orbiter will have a Can­adarm as part of its equipment.

Spar, long involved in space projects, has be­come world famous. In 1984 it signed a $20million deal with the People's Republic ofChina to provide 26 satellite earth stations plustelecommunications equipment and technol­ogy. The contract has since been expanded to

42

$28 million for 31 stations. The equipment willform part of a Chinese domestic satellite sys­tem. Other Spar projects include a Braziliansatellite system, of which the first satellite waslaunched in 1985, and a subcontract for com­ponents on Intelsat VI, the worlds most power­ful communications satellite, to be launched in1986.

Unable to support its own weight on earth,the 434 kilogram (965 pound) Canadann wastested on an air bearing rig at Spar, but no onecould be sure how it would perform under ac­tual conditions. As of November, 1981, the en­gineers knew their theories were right. Cana­darm's ability to actually grasp an object wastested March 25, 1982. The electronic limbmade it look easy. It grabbed a 160 kilogram(350 pound) package of electronic instru­ments, lifted it out of the shuttle hold, then re­placed it.

The aluminum and graphite arm is attachedat the shoulder to the shuttle's cargo bay. It is38 centimeters (15 inches) in diameter andpacked ~ith ele~tronicequipment. The end ef­fector, or hand, is designed to mesh with grap­ple fixtures on the payload it must handle.Among other things, the Canadarm will beable to deploy and retrieve equipment, serviceit in space, and map the environment aroundthe orbiting shuttle.

As might be expected, Spar Aerospace'stechnological wizardry will not be confined tospace. It is now developing a remote manipula­tor and control system for Ontario Hydrowhich will be able to service a nuclear reactorcore while the reactor is working.

TelemedicineIn 1881, the daughter of the telegraph opera­tor in Humboldt, Saskatchewan, fell ill. Thenearest doctor, 100 miles away in Prince Al­bert, offered advice by telegraph but the littlegirl died. It was a primitive form of telemedi­cine, the use of telecommunications for diag­nosis and treatment of disease. Since then, tele­medicine has progressed slowly. In 1954 theRoyal Canadian Corps of Signals was stationedat Ennadai Lake, 250 miles northwest of Churechill, Manitoba, when an epidemic of inf1uenzabroke out among the natives. A sergeant ra­dioed for help but all planes were grounded inChurchill by bad weather. However, a doctorradioed back instructions for treatment andthe native community was saved by judicioususe of the signal corps' medical supplies.

During the 1970s a four-stage project gotunder way in Ontario to bring health care to

Page 61: Electricity - The Magic Medium

television ou 11,520 circuits phoniques. Le IIjanvier 1973, il commenc;ait a reIayer les appelstelephoniques entre Ie sud et l'arctique. Auprintemps, 25 localites recevaient 1£1 televisiongrace a lui. Les Anik A qui suivirent aug­menter-ent Ie volume de service.

Meme avant Ie lancement de Anik A-I, Ie Ca­nada et les Etats-Unis avaient commence I'ela­boration d'un nouveau type de satellite decommunications appcle Hermes, nom du mes­sager des dieux grecs. Son but etait de verifierde nouvelles techniques dans des domainescomme 1£1 medecine et I'education. A 1£1difference de Anik, Hermes comptait 27,000cellules solaires sur une paire de "voiles" qui sedeplierent au lancement. Hermes a ete mis enorbite en 1976 et arrete vel'S 1£1 fin de 1979.

Anik B, lance en 1978, etait un satellite hy­bride, utilise pour des diffusions experimenta­les et commerciales. Ses deux "voiles" solairesavaient une envergure de 9.54 metres (31.3pieds) et executaient une rotation une fois parjour pour absorber 1£1 plus grande quantite delumiere du soleil possible.

Le 11 novembre 1982, Ie premier de 1£1 serieAnik C etait lance au Centre de I'Espace Ken­nedy, abord de 1£1 navette Columbia de NASA.Une fois que 1£1 navette eut ete mise sur son 01'­

bite, a 300 kilometres (185 milles) de 1£1 terre,Anik C fut place sur une plaque tournantejusqu'a ce qu'il atteigne 50 revolutions par se­conde. Alors, les portes de 1£1 soute s'ouvrirent,la bride et les quatre poussoirs a ressort quiretenaient Ie satellite en place furent rd~lChes

et Anik fut ejecte dans l'espace. Plus tard, unpetit moteura fusee Ie plac;a sur son orbite.

Les Anik C, dont Ie troisieme etait lance en1984, apporterent £lUX Canadiens de nouveauxservices de radiodiffusion, d'affaires et, detelecommunications. Ce sont des satellites quiemettent des signaux a haute frequence quipeuvent etre rec;us par des petites stations ter­restres. Etant donne qu'ils ne creent pas d'in­terference pour les micro-andes qui se propa­gent autour de la terre, les pastes recepteurspeuvent etre installes dans les grandes vi liessur Ie toit des maisons. II est possible de rece­voir de Anik C une excellente image de televi­sion au moyen d'une antenne parabolique deseulement un metre (3,28 pieds) de diamerre.

Les annees 80 ont vu nai'tre les satellites AnikD qui ant une capacite de transmission doublede celie des A. Fait a noter, ces satellites sontfabriques par Spar Aerospace Limited, une en­treprise canadienne, maintenant celebre pourson CanadaI'm.

Le Canada et Ies Etats-Unis sont a faire uneetude de faisabilite pour un satellite mobile

(MSAT). II devrait mettre virtuellement fin£lUX contraintes causees par les distances aux­quelles sont assujetties les communications parradio mobile au radio-telephone, que ce soitsur terre, dans I'air au sur 1£1 mer.

Le Canada panicipe deja au projet "SatelliteAided Search and Rescue" (SARSAT), unsysteme international de recherche et de sau­vetage en collaboration avec COSPAS del'Union Sovietique. En ramenant Ie tempspour accomplir un sauvetage a quelques heu­res plutat qU'~l plusieurs jours, on devraitaccroitre grandement les chances de survie. Defait, au cours des premiers six mois d'essai, en1983, COSPAS-SARSAT a contribue a sauveI'28 vies.

Le CanadarmVendredi, Ie 13 novembre 1981.-Dans 1£1soute de la navette spatiale Columbia, en 01'­

bite, un bras electTOnique de 15 metres (50pieds) se reveille et se leve lentement de son lit.Puis, au moment 0\1 il apparait au-dessus de 1£1saute ~l marchanelises, les articulations deI'epaule, du couele et du poignet se plient et see1eplient. On deplace Ie bras d'un cote puis deI'autre pour voir comment il repondrait a unmovement soudain dans l'espace. Devant untableau de manoeuvre aussi complexe quecclui d'un avion commercial, Ie pilote de 1£1 na­vette, Richard Truly, fait fonctionner Ie bras­automatiquement par ordinateur, et manuelle­ment-. Sur un eeran de television au JohnsonSpace Center de Houston, au Texas, des Cana­diens regardent avec fierte tandis que Ie Cana­daI'm salue 1£1 terre.

Le systeme de manipulation a distance (Re­mote Manipulator System-RMS), ou Cana­daI'm, a etc conc;u et fabrique au Canada parSpar Aerospace Limited, principal entrepre­neur au service du Conseil national de recher­ches. II s'agit d'un investissement de 110 mil­lions de dollars qui est profitable. Spar a dejafourni quatre Canadarm £lUX Etats-Unis. Cha­que navette en orbite aura ~l son bord un Cana­darm.

La societe Spar, qui participe depuis long­temps a des projets spatiaux, s'est acquise unerenommee mondiale. En 1984, dIe a signe uncontrat de 20 millions de dollars avec 1£1 Repu­blique chinoise pour 1£1 fourniture de 26 sta­tions terrestres receptrices de satellite en plusde I'equipement et de 1£1 technologic detelecommunications. Le contrat a, depuis, eteaugmente a 28 millions de dollars pour 31 sta­tions. L'equipement fera partie d'un systemedomestique de satellites pour 1£1 Chine. D'au­tres projets de Spar comprennent un systeme

43

Page 62: Electricity - The Magic Medium

The Canadann operatesfmm U.S. Space Shuttle.Photo courtesy of NASA andSpar Aerospace Limited.

Le bras spatial canadienCanadarrn fait partie derequipement de la navetteamericaine. Photo: NASA etSpar Aerospatiale Limitee.

'-------

remote areas. The first three stages were feasi­bility studies by the Universities of Torontoand Waterloo to compare various telehealthsystems. The studies showed that if a nurse waswith the patient, a doctor could make as good adiagnosis through examination by television ortelephone as he could face to face.

In 1977 a telehealth system was set up inSioux Lookout, where the town serves a healthregion of 27 outlying communities with popu­lations of 25 to more than 1,000. The systemused slow-scan television linking Sioux Look­out Hospital with health aid and nursing sta­tions in the region and also with SunnybrookMedical Centre and the Hospital for Sick Chil­dren in Toronto. Since then, a conferencebridge at the Toronto General Hospital hasmade it possible for a number of sites to parti­cipate in teleconference sessions.

With the launching of Hermes in 1976, tele­medicine moved into consultation via satellite,with experiments conducted through the Uni­versity of Western Ontario in London and Me­morial University in St. John'S, Nfld.

44

Western was able to receive transmissionsfrom Moose Factory General Hospital onJames Bay. There was also an audio connec­tion between Western, Moose Factory and a re­mote nursing station called Kashechewan.

In Newfoundland, Memorial was linked byaudio and video to hospitals in St. Anthonyand Stephenville on the island and LabradorCity and Goose Bay in Labrador. Through "te­levisits", patients in St. John'S could even seeand talk to thei'" relatives back home. Now, te~

lemedicine connects hospitals throughoutNewfoundland with St. John'S and also pro­vides medical assistance to oil rigs offshore.

Tele-EducationCanadian education moved into the electronicage in the 1960s with educational television.Regular radio broadcasts to schools had al­ready begun in 1927 and radio continues toplaya valuable role in education systems. Now,satellites bring educational and social pro­grams to the most remote parts of the countrypermitting interaction, not just one-way broad­casts.

Page 63: Electricity - The Magic Medium

de satellites pour Ie Bresil, dont Ie premier aete lance en 1985, et un sous-contrat pour descomposantes de Intelsat VI, Ie satellite de com­munications Ie plus puissant au monde, quisera lance en 1986.

Incapable de supporter son propre poids surla terre, Ie Canadann, pesanr 434 kilogrammes(965 livres), a ete essaye sur un coussin d'airdans les laboratoires de Spar, mais personnene pouvait etrc sur de son comportement dansl'espace. Depuis novembre 1981, les ingenieurssavaient que leur theories etaicnt valables. lisont prouve, Ie 25 mars 1982, que Canadarmpouvait, effectivement,' agl'ipper un objet: Iebras electronique a fonctionne sans difficultequand il a saisi un assemblage d'elements elec­troniques pesant 160 kilogrammes (350 livres)I'a leve en-dehors de la soute et 1'a remis enplace.

Le bras fait d'aluminium et de graphite estfixe par I'epaule ~lla soute. D'un diametre et 38centimetres (15 pouces), il est rempli de com­posantes electroniques et I'extremite efficiente,ou main, est con<;ue pour s'adapter aux grap­pins de la charge qu'il aura a manipuler. Entreautres, Ie CanadaI'm sera capable de larguer oude recuperer de I'equipement, de faire tout en­treticn requis dans I'espace et d'enregistrer lesconditions de 1'environnement a I'exterieur dela navette en orbite.

Comme on peut s'y attendre, la magie tech­nologique de Spar Aerospace ne se borne pas aI'espace. La societe travaille, presentement, amettre au point pour I'Hydro-On!ario unsysteme de contr61e et de manipulation a dis­tance qui pourra faire les travaux requis dansIe coeur d'un reacteur nucleaire en marche.

TeU~medecine~traitementsadistanceEn 1881, la fillette de I'operateur dl! telegra­phe a Humboldt, en Saskatchewan, tomba ma­lade. Le medecin Ie plus pres, a Prince Albert,quelques cent milles de la, donna les instruc­tions necessaires par telegraphe, mais la fillettemom-ut. C'erait la une forme primitive detelemedecine, I'emploi de la telecommunica­tion pour diagnostiquer et traiter une maladie.Depuis, la telemedecine a progresse lentement.En 1954, Ie Royal Canadian Corps of Signalsetait cantonne pres du lac Ennadai, a 250 mil,­les au nord-ouest de Churchill, au Manitoba,quand une epidemie d'inf1uenza se declarachez les aurochrones. Un sergent demanda deI'aide par radio, mais les avions ne pouvaientpas voleI' a cause du mauvais temps. Nean­moins, un medecin donna, par radio, des ins-

tructions pour les soigneI' et les aurochtonesfUI-ent sauves gl-ace a l'emploi judicieux desmedicaments fournis par Ie corps des signa­leurs.

Au cours de la decennie 1970, un projet dequatre etapes, destine a offrir des soins medi­caux dans les regions eloignees, vit Ie jour enOntario. Les trois premieres etapes consis­taient en des etudes de faisabilite realisees parles universites de Toronto et de Waterloo quietablissaient une comparaison entre les diver­ses methodes de prodiguer des soins medicaux~I distance. Les erudes etabJirent que pourvuqu'une infirmiere est pres du patient, unmedecin peut faire un aussi bon diagnostic,par examen a I'aide de la television ou dutelephone, que s'il etait lui-meme sur les lieux.

En 1977, un service de soins medicaux adis­tance a ete mis en place a Sioux Lookout, villequi dessert une region de 27 communautesdont la population varie de 25 a plus de 1000pei·sonnes. Le service utilise la television ~I ba­layage lent qui relic I'Hopital de Sioux Lookouta des postes de service de sante etablis dans Iaregion. II relie aussi l'hopital au CentreMedical Sunnybrook et it I'H6pital pour en­fants de Toronto. Depuis quelque temps, uncircuit de conference installe it I'H6pitaiGeneral de Toronto permet a plusieursloca­tions de participer a des consultations partelecommunications.

Avec Ie lancement de Hermes en 1976, latelemedecine s'engageait dans I'ere de la con­sultation par satellite qui fut mise it I'essai parI'Universite Western Ontario, ~I London et laMemorial University, it St. John's, Terre­Neuve. Western pouvait recevoir les transmis­sions de I'Hopital General de Moose Factory,en bordure de la baie James. II y avait aussi uneconnexion audio entre Western, Moose Fac­tory et un poste de sante eloigne appele Kashe­chewan. A Terre-Neuve, Memorial etait reliepar audio et video aux hopitaux de St-Anthonyet de Stephenville sur I'ile et de Labrador Cityet de Goose Bay, au Labrador. Grace a "televi­sits", les patients it St. John'S pouvaient memevoir leurs parents it la maison et leur parler. Apresent, telemedecine relie tous les hopitauxde Terre-Neuve a St. John's et aussi fournitune assistance medicale aux equipes de forageen mer.

Le tele~enseignement

L'enseignement au Canada entra dans I'ere deI'electronique au cours des annees 60 avecI'avenement de teIe-enseignement. En 1927,on a commence it transmettre aux ecoles des

45

Page 64: Electricity - The Magic Medium

A striking example is B.C.'s Knowledge Net­work of the West Communications Authority,created in 1980. Among other things, it allowsTV programs to be broadcast from the Univer­sity of British Columbia to isolated sites in theprovince and the Yukon. It is also able to hitsome spots on the prairies.

In Quebec the worth of satellite educationwas proven in 1980-81 with a pilot project link­ing the northern school district of Kativik withfive Inuit villages. Educational programsthrough audio and video facilities were broad­cast in English, French and Inuktitut for up to12 hours a week.

ACCESS Alberta has broadcast programs viasatellite to such northern communities as PeaceRiver with telephone lines permitting studentsto ask questions.

Through the satellite Hermes, the SaskabecEducation-Culture Exchange allowed twoFrench-speaking communities to get to knoweach other. One was Zenon Park in northernSaskatchewan, the other, Baie St. Paul, 3,000kilometers (1,860 miles) away in Quebec. Ex­changes included information on the historyand geography of each community. The 400Francophones of Zenon· Park gainedaiJewpride in their language and lost some of theirsense of isolation. '

In the classroom, every province now has. computers. "Computer literacy", the knowl­edge to make computers useful in everydaylife, is now considered a necessity.

Telidon1n the early 1880s women were just beginningto be accepted as telephone operators. Thefirst woman to handle the switchboard in Win­nipeg, in 1882, was Ida Cates, a pretty youngwoman who became known as "the voice withthe smile". Nearly 100 years later Ida Cates washonored in the naming of Project Ida, a Mani­toba trial of an entirely new Canadian technol­ogy called Telidon, developed by the Depart­ment of Communications.

Telidon, a term based on Greek wordsmeaning to see from afar, is an informationsystem that can operate in two ways. It can be aone-way system by which the user summons upinformation on a television screen in color, tell­ing him, for instance, what entertainment isavailable in a city he is visiting. Or it can be atwo-way television system with which the usercan shop, pay bills or take educational courses.This two-way system is called vicle'otex.

Project Ida, operated by the Manitoba Tele­phone System, was an engineering test in

46

1980-81 to try various forms of Telidon tech­nology. It was followed by Grassroots, the firstcommercial agricultural videotex venture inNorth America. Grassroots was started byMTS and Infomart, a developer of Telidon­based systems.

Grassroots began with 25 terminals placed ingovernment offices, credit unions, or grain ele­vators around t.he province. Farmers could usethese t.erminals, or' rent. terminals for t.heirhomes, t.o get weather forecast.s, data on t.helivest.ock market, or prices from t.he WinnipegCommodit.y Exchange. A second st.age brought.elect.ronic shopping, bill paying, and banking.Grassroots was later made available in ot.herCanadian provinces and, in 1984, was sold tot.he U.S.

The Space Age HomeThe public may not take advantage of all thattechnology can offer. However, it's a fairly safebet that every home will soon have, if it doesn'talready, both black and white and color TV,AM-FM radio, and a videocassette recorder torecord television programs. As well as a stereoset, there'll bea videodisc player, video gamesand a home computer. The latter will wake youup, turn on the coffee pot and plan your day.It may even talk to you.

Fantastic? Not in Canada, the most wiredcountry on earth!

Ida Cates became Winnipeg'sfirst woman telephoneoperator in J882. She washonoured one hundred yearslater in the naming of ProjectIda, which tested Canada'Snew Telidon technology.Photo courtesy of ManitobaTelephone System.

Ida Cates a ete la premierefemme alravailler commetelephoniste it Winnipeg, en1882. Un sieck plus tanl, 011

a honore sa memoire enmettant sur pied Ie ProjetIda, destine aux essais de lanouvelle technologiecanadienne Telidon. Photo:

_ l\1.an i tobiLTelephoneSystem: .

Page 65: Electricity - The Magic Medium

emiSSIOnS radiophoniques regulieres, et laradio continue a jouer un role appreciabledans les programmes d'education. De nosjours, les satellites mettent les programmeseducatifs et sociaux a la portee des regions lesplus eIoignees du pays et permettent desechanges et non pas seulement des diffusions asens unique.

Un exemple frappant est Ie "Reseau du Sa­voir" (Knowledge Network), a l'oeuvre en Co­lombie Britannique, sous l'egide de la WestCommunications Authority, qui a ete creee en1980. Entre autres, il diffuse les programmesde television de l'Universite de la ColombieBritannique aux regions isolees de la provinceet du Yukon. II peut meme atteindre quelqueslocalites des Prairies.

Au Quebec, la valeur du tele-enseignement aete demon tree, en 1980, quand on a mis enplace un projet-pilote reliant Ie district scolairede Kativik dans Ie nord a cinq villages Inuit.Les programmes d'enseignement etaient dif­fuses par radio et television, en anglais, enfranc:;ais et en Inuktitut pour des periodes pou­vant aller jusqu'a 12 heures par semaine.

ACCESS Alberta diffuse des programmespar satellite a des localites aussi septentrionalesque Peace River et des lignes de telephone per­mettent aux etudiants de poser des questions.

Par l'entremise du satellite Hermes, Ie Saska­bec Education-Culture Exchange a permis adeux localites de langue franc:;aise de seconnaitre. L'une d'elle est Zenon Park dans Ienord de la Saskatchewan, et I'autre, Baie St­Paul, a 3000 kilometres (1860 milles) a l'est, auQuebec. Les echanges comprenaient des ren­seignements sur l'histoire et la geographie dechaque localite. Les 400 francophones deZenon Park en ont retire une fierte renouveleepour leur langue et se sentent un peu moinsisoles depuis.

On trouve main tenant des ordinateurs dansles ecoles de toutes les provinces. De nos jours,il semble necessaire de posseder la "Culture in­formatique" (Computer literacy), c'est-a-dire,les connaissances requises pour faire bon usagedes ordinateurs dans la vie de tous les jours.

TelidonAu debut des annees 1880, les femmes ne fai­saient que commencer a etre acceptees commetelephonistes. La premiere femme a manier unstandard, a Winnipeg en 1882, a ete Ida Cates,une bien jolie jeune femme qu'on a bientot sur­nommee 'la voix avec Ie sourire'. Presque cent

ans plus tard, on lui a rendu hommage ennommant Projet Ida, la mise en oeuvre au Ma­nitoba d'une technique canadienne tout a faitnouvelle du nom de Telidon, que Ie Ministeredes Communications avait mise au point.

Telidon, un mot derive de mots grecs signi­fiant "voir de loin", est un systeme d'informa­tion qui peut fonctionner de deux manieres. IIpeut etre unidirectionnel permettant a un utili­sateur de demander certains renseignementsqui apparaitront sur un ecran de television encouleurs. Par example, sur demande, Telidonpresentera les programmes de divertissementsdisponibles dans la ville que Ie requisitionneurvisite. au bien, Telidon peut etre un systemede television bidirectionnel permettant de ma­gasiner, payer ses comptes au suivre des cours.Ce systeme bidirectionnel s'appelle videotex.

Le Projet Ida, realise par le Manitoba Tele­phone System en 1980-81, constituait un essaides divers avantages que pourrait offrirTelidon. Puis vint 'Grassroots', Ie premiervideotex commercial reserve a I'agriculture, enAmerique du Nord. Ce systeme a ete etabli parMTS et Informat, une agence de generationde systemes utilisant Telidon. 'Grassroots' adebute avec 25 terminaux installes dans quel­ques bureaux gouvernementaux, des co­operatives de credit et des elevateurs a grain, atravers la province. Les fermiers pouvaient uti­liseI' ces terminaux ou louer un terminal qu'ilsinstalleraient chez eux, pour obtenir les bulle­tins meteorologiques, les cotes du marche dubetail et les cours du Winnipeg Commodity Ex­change. Puis, on offrit Ie magasinage, Ie paie­ment des comptes et les transactions bancairespar e1ectronique. Peu apres, 'Grassroots' deve­nait disponible dans d'autres provinces et, en1984, il traversait aux Etats-U nis.

Le domicile de l'ere spatialeLe grand public ne profite pas toujours de tousles avantages que peut offrir la technologie.Cependant, c'est a peu pres certain que, danstous les foyers, on trouvera bientot, si l'on neles trouve pas deja, au mains deux appareils detelevision, blanc et nair et couleur, une radioAM-FM et un magnetoscope pour enregistrerles programmes de television. On y trouveraaussi, en plus d'un stereo, un video-cassette,des jeux informatises, et un ordinateur person­nel. Ce dernier vous reveillera, mettra la ca­fetiere en marche et planifiera votre journee.II pourra meme vous parler. Fantaisie! Pas auCanada, Ie pays au monde Ie plus electrifie!

47

Page 66: Electricity - The Magic Medium

Electric Power in CanadaBy Fred Kee

Prior to 100 Years AgoAgainst the long background of history, elec­tric powel' to serve mankind is very new. Dr.William Gilbert was a Court Physician toQueen Elizabeth and President of the Collegeof Physicians in London. He had been practis­ing medicine there since 1573 but during hisspare time he studied both magnetism andchemistry. In 1600 he published his famoustreatise on the magnetic field of the earth andconjectured that magnetism and electricitystem from-a common for:ce. -

One hundred and fifty--'two years later Ben­jamin Franklin flew his kite in Philadelphia,declared electricity and lightning to be one andthe same thing and introduced the practice ofprotecting exposed buildings with lightningrods to conduct the electrical energy of light­ning safely into the ground. That was in 1752.After another 70 years, in 1821, Michael Fara­day demonstrated in England that electric volt­age could be generated across the ends of apiece of wire by physically moving the wirethrough a magnetic field. It was called mag­netic induction and it showed the world thatelectrical forces could be generated from me­chanical forces. Ten years later Faraday suc­ceeded in generating a steady current of elec­tricity. He had built the world's first dynamoand the electric power industry had been born.It has been growing exponentially ever since.

Before the mid-1800s few people recognizedelectricity's potential to ease man's burden andextend his powers. Prior to about a centuryago, the only commercial uses for electricitywere telephone and telegraph.

The electric arc lamp was actually inventedin 1812 by connecting wires from a chemicalbattery to two pieces of charcoal. A Russian sci­entist living in Paris, Pavel Jablochkov showedan improved arc light at the Paris Exposition of1878. But gas lighting still held a monopoly.

48

Among the many investigators working tobreak that monopoly was an American namedThomas Alva Edison. The Edison family hadbeen connected to Canada since the AmericanRevolution when John Edison, Thomas'grandfather, had supported the King andbeen forced to flee north across the border. In1837, during the uprising in Canada, his sonSamuel resolved not to repeat that mistake sohe supported the rebels. Butthe rebels los~<irid - ­Sam and his family fled south to Ohio. ThusThomas Edison, his seventh child, was born inthe U.S. on February 11, 1847.

Like many others, Edison knew that lightcould be produced by passing electric currentthrough a filament inside a sealed glass con­tainer from which all air had been driven. Theproblems were to find a filament that wouldnot break and to produce a proper vacuum. Inthe fall of 1879 Edison adapted a new pumpand produced a filament of carbonized thread.He produced a light that would burn for 40hours.

"I think we've got it," he told his associates.

And they had. The incandescent lamp, orthe electric light bulb, as we know it today, hadbeen invented. The great age of electricity wasabout to begin:

In Canada, in 1880, there was a great needfor an indigenous source of energy. The hard­wood stands that had heated homes andfuelled foundries were largely gone. Thepower-producing capacity of falling water hadlong been recognized, but that power couldnot be economically transported over even ashort distance. Flour and saw mills were re­stricted to sites along rivers and streams. Theadvent of electric power opened up a wholenew horizon for the development of Canada'snatural sources of energy.

Fred Kee. Fred graduatedfrom University of Torontoin 1949 with honours inElectrical Engineering andthen joined Ontario Hydro.He held engineeringpositions in ConsunlerService, Communications,System PJaqning and ControlSystems. He then spent 13years, on Joan, with Atomic[nergy Canada in design ofnuclear reactor regulatingand safety systems. In 1971he returned to OntarioHydro 'and has sinceoccupied administrativepositions in design anddevelopment, audit, and asDirector of Research.

Page 67: Electricity - The Magic Medium

L'histoire de L9electricite au CanadaPar Fred Kee

Fred Kee a obtenu sonbaccalaureat en genieelectrique de I'Universite deToronto en 1949 et estensuite entre au servicecI'Hydro-Ontario. II a exercesa profession aux Services ala clientele, auxCommunications, a laPlanificatioll des systemes etaux Systemes de comman de.II a par la suite ete detache ;tI'Energie atomi'lue duCanada pour la conceptiondes systemes de regulation etde securite des reactcursnucleaires. En 1971, il estretourne a Hydro-Ontario,au il a occupe des pastes degestion dans les domaines dela conception, cludeveloppement et de laverification, pour devenir"Directeur de la Recherche.

Des origines a1882L'utilisation de l'electricite comme sourced'energie est apparue tres tard dans l'histoirede I'humanite. Depuis 1573, William Gilbertexen;ait la medeeine a Londres. President duCollege des medecins de cette ville, il ctait ega­lement au service de la reine Elisabeth. Toute­fois, durant ses heures de loisirs, il s'interessaitau magnctisme et a la chimie. En 1600, il pu­blia un traitc sur Ie champ magnetique terres­tre. L'oeuvre, qui devinr celebre, avan<;:ait queIe magnetisme et I'electrieite emancnt d'unmeme phenomene physique.

Cent cinquante-deux ans plus tard, a Phila­delphie, Benjamin Franklin fait voleI' un cerf­volant en plein orage et conelut de I'experienceque l'eJectricite et la foudre constituent un seulet meme phenomene. De la lui vient I'idee duparatonnerre, invention destinee a protegeI'les batiments en permettant a I'energie eJectri­que produite par la foudre de se dissiper dansIe sol, sans causer de dommages. Nous etionsen 1752. II fallut attendre encore 70 ans pourque Ie physicien anglais Michael Faraday nedcmontre, en 1821, qu'en depla<;:anr une tigemctallique a I'interieur d'un champmagnetique, il etait possible de produire unecharge electrique entre les deux extremites dufil. Le phcnomene, appele inductionmagnetique, permit de comprendre quel'energie electrique peut etre produite a partirde forces mecaniques. Dix ans plus tard, Fara­day reussit a produire un courant electriquecontinuo En construisant la premiere dynamoau monde, il avait donne naissance a I'industriede I'energie Clectrique. Celle-ci devaitconnaitre par la suite une serie ininterrompuede progres prodigieux.

Avant Ie milieu du XIxe siecle, peu de genscomprenaient que I'electricite pouvait servir aalleger la tache de I'etre humain tout en decu­plant ses forces. Jusqu'a il y cent ans environ,I'utilisation commerciale de l'eIectricite ne

s'etait limitee qu'aux transmissions telephoni­ques et tdegraphiques.

Quant a la lampe a arc electrique, son inven­tion remontait deja a 1812, lorsqu'on avaitreussi a brancher a deux morceaux de carboneles fils d'une pile chimique. En 1878, PavelJablochkov, homme de sciences d'origine russeetabli a Paris presenta, a l'Exposition univer­selle organisee dans cette ville, une versionamelioree de eet appareil. Malgre tout, on con­tinua de se servir exelusivement du gaz afin des'eclairer.

Parmi les nombreux chercheurs qui s'em­ployaient a trouver un substitut au gaz, se trou­vait un americain du nom de Thomas AlvaEdison, dont la famille entretenait avec Ie Ca­nada des rapports qui remontaient au tempsde la Revolution americaine. En effet, Iegrand-pere de Thomas, John Edison, etaitreste loyal a la monarchie et avait du fuir vel'SIe Nord, au-deLl. de la frontiere.Lorsqu'eelaterent les troubles de 1837, Sa­muel, fils de John, decida de ne pas commetlreIe meme erreur et se rangea du cbte des rebel­les. Malheureusement pour lui, ces derniersperdirent et Samuel dut s'enfuir en Ohio avecsa famille. Voila pourquoi son septieme fils,Thomas Edison, vit Ie jour aux Etats-Unis.C'etait Ie 11 fevrier 1847.

Comme beaucoup d'autres, Edison savaitqu'en faisant passer un courant electrique dansun filament place a l'inrerieur d'une ampoulescellee et videe de son air, on obtenait de lalumiere. Deux difficultes devaient cependantetre resolues: trouver un filament capable deresister aux chocs et produire un vide suffi­samment pousse. A I'auromne de 1879, Edisonetait parvenu a modifier un nouveau modelede pompe afin de l'adapter a ses besoins. IIrealisa par ailleurs un nouveau type de fila­ment en enduisant de noir de carbone Ie fiIconducteur. II parvint ainsi a produire uneampoule capable de durer 40 heures.

"Je crois que nous y sommes", dit-il a sesassocies,

49

Page 68: Electricity - The Magic Medium

Canada's Early Venturesin Electric PowerIt was in 1882 that the first commercial systemfor generating electricity in a central stationand delivering it to light up the streets of Man­hattan was built by Edison and his company.Likewise, in Canada, the early use of electricpower was to provide lighting-especiallystreet lighting-in the centers of cities andtowns. Then, to improve the economics of theelectrical system expansion was promoted todevelop lighting of various premises along thelighted streets. At the same time electricity waspromoted for scattered industrial operationsalong the rivers where water power was al­ready used as the driving force. As early as1882 some owners of flour and sawmills alongthe Ottawa River lighted their mills with elec­tric lamps. During the same year carbon arcstreet lighting came to Winnipeg, Manitoba.Then, in 1883, Canada's Parliament Buildingswere lighted by incandescent lamps poweredby steam-driven dynamos in a plant on theedge of the Ottawa River.

The development of electric power spreadrapidly across the country.

In Victoria, B.C. the city contracted withRobert Burns McMicking to "erect and sup­port and maintain at three several points in thesaid city an Electric Light with an illuminatingpower equal in the aggregate to fifty thousandcandles". Power was from a 25 horsepowersteam engine driving two Brush dynamos.

At Cornwall, Ontario, Thomas Edison com­pleted an installation of industrial electriclighting in 1884 in one of the weave sheds ofCanadian Cottons Ltd. Wilbur Hitchcock, whoassisted Edison with the installation, became apioneer in what would later become an in­dustry. From his efforts grew the CornwallStreet Railway Light & Power Co. Ltd.

Soon after electric street lighting gained itsfoothold interest quickly turned to applicationof the "Magic Medium" to operate street rail­ways. The first electric railway in Canada, andindeed the first on the continent, was an exper­imentalline in 1883 at the Toronto IndustrialExhibition on the site of the present CanadianNational Exhibition grounds. The followingyear the first practicable streetcar was placed inoperation at the Exhibition.

A great difficulty with these early installa­tions, which utilized direct current, was thatthe point of generation had to be very close tothe point of utilization because of the consider­able drop in voltage along the conductors asthey extended away from the power house.

50

The system had to be improved so that largewater power sites could be harnessed to advan­tage and power could be transmitted to thecentres of population and industries such asMontreal, Toronto, Winnipeg, etc. Fortunatelyfor Canada these same problems were beingworked on elsewhere as well.

The principles of water turbines had beenestablished and water wheels for all ranges ofhead had been patented. The Francis Runner,the Pelton water wheel and the Kaplan pro­peller turbine were all in use in smaller horse­power and needed only to be adapted to largersizes.

In Britain, Lucien Gaulard and JosephDixon Gibbs had obtained patents in 1881 fora "series alternating-current system of distribu­tion". This system featured transformers tostep up the voltage for transmission and to stepit down again for utilization.

Elihu Thomson designed an induction­repulsion ac motor in 1887 and in May of1888, Nikola Tesla announced his polyphasesystem of alternating currents and a motor touse them. The stage was then set ~oth.for a .battlehetween de andac systems and for rap­idly expanding the use of electrical energy.

Electric pioneers in Canada were quick toadapt these developments to the benefit of thiscountry. In the decades between 1890 and1910, record-sized units were common place.The Ottawa Elec.tric Railway Company, in1893, installed the largest generating units inCanada when two 400 hp units were installedin its generating station. In the same year thelargest generating units ever built were beinginstalled near Niagara Falls to provide powerfor an electric railway running from Queen­ston to Chippawa. The Electrical News and En­gineering magazine, at the time, describedthem as "three enormous 5,000 hp turbines".

The first three-phase plant in Canada wasinstalled at St. Hyacinthe, Quebec, in early1895. The power plant was located at RapidPlat, 4Y2 miles from the city and housed threeCanadian General Electric 150 kW, 2500-volt,60 hertz, 3 phase alternators.

The first long distance transmission of elec­tric power in the British Empire, in 1897, de­livered energy from the North Shore PowerCompany's 1200 hp plant on the BatiscanRiver to Three Rivers, Quebec, a distance of 17miles.

In 1898 the War Eagle Mining and Develop­ment Company, at Rossland B.C., installed a300 hp induction motor to drive the hoist rais­ing two fully loaded skips from 2700 feetbelow ground level at 1000 feet per minute

Page 69: Electricity - The Magic Medium

Et il avait raison. II venait d'inventer lalampe a incandescence ou, comme on I'appelleaujourd'hui, I'ampoule electrique. L'age del'eIectricite etait sur Ie point de commencer.

Le Canada des annees 1880 avait grand be­soin de produire sa propre energie. Les foretsqui donnaient Ie bois dur necessaire au chauf­fage des maisons et a l'alimentation des fonde­ries avaient presque entihement disparu. Onconnaissait depuis longtemps deja Ie potentielenergetique des chutes d'eau. II etait cepen­dant impossible de transporter economique­ment cette energie, meme sur de courtes dis­tances. C'est pourquoi les meuneries et lesscieries devaient etre installees Ie long descours d'eau. Avec I'arrivee de I'electricite, IeCanada allait connaitre une revolution dans Iedeveloppement des sources naturelles d'ener­gie.

Les premieres experiencescanadiennesC'est en 1882 qu'Edison et sa societe construisi­rent Ie premier reseau electrique commercialafin d'eclairer les rues de Manhattan a partird'un poste central. Au Canada aussi on com­men\;a par employer I'electricite a des finsd'cclairage, particulihement dans les rues descentres urbains. Puis, afin d'accroitre la renta­bilite du systeme, on stimula I'adoption deI'eclairage electrique aux abords des rues dejadesservies. Parallelement, on encourageal'adoption de l'electricite par les etablissementsindustriels qui avaient essaime Ie long descours d'eau afin de mettre a profit la force mo­trice de I'energie hydraulique. Des 1882, on vitapparaitre des ampoules eIectriques dans lesmeuneries et les scieries installees en bordurede la rivihe Outaouais. La meme annee, laville de Winnipeg equipa ses rues d'un systemed'eclairage a arc electrique. En 1883, ce fut autour des edifices du Parlement canadien de sedoter de lampes a incandescence alimenteespar des dynamos a vapeur qu'on avait ins­tallees dans une centrale, en bordure de 1'0u­taouais.

Par la suite, I'electricite se developpe rapide­ment dans tout Ie pays. La ville de Victoria, enColombie britannique, confie a Robert BurnsMcMicking Ie soin "de construire et d'entrete­nir, en trois endroits de ladite ville, un systemed'eclairage electrique d'une capacite totale decinquante mille bougies". L'energie ctait four­nie par une machine a vapeur de 25 HPentrainant deux dynamos Brush.

En 1884, Thomas Edison acheva l'instalIa­tion d'un systeme d'cclairage pour l'un des ate­liers de tissage de Ia Canadian Cotton Ltd., a

Cornwall en Ontario. II fut aide par WilburHitchcock, qui joua un role de pionnier dansun secteur d'activite appele a devenir une veri­table industrie. C'est grace ace dernier que futformce Ia Cornwall Street Railway & PowerCo. Ltd.

Des que fut implantee I'idee d'eclairer lesrues a I'electricite, on s'interessa a Ia possibilitede se servir de cette "prodigieuse energie"pour faire fonctionner les tramways. C'est aToronto, a I'occasion de l'Exposition indus­trieHe de 1883-laquelle se tint sur I'actuel ter­rain de I'Exposition nationale canadienne-,que I'on vit apparaitre Ie premier chemin defer eIectrique du Canada, voire meme du con­tinent. Apres cd essai, les organisateurs deI'Exposition decidhent, I'annee suivante, demettre en service Ie premier modele fonction­nel de tramway electrique.

Ces premiers vehicuIes, qui employaient Iecourant continu, souffraient grandement deI'importante perte de tension que subissaientIes conducteurs lorsque I'on s'eloignait un tantsoit peu de la generatrice. Ce phenomene obli­geait a maintenir pres l'un de l'autre Ie pointde production de I'electricite et son point d'uti­Iisation. II fallait done ameliorer Ie procede siI'on voulait tirer profit de notre enorme poten­tiel hydraulique afin d'amener l'eIectricite aucoeur des agglomerations urbaines et deszones industrielles, telles celles de Montreal, deToronto et de Winnipeg. Heureusement pourIe Canada, on tentait egalement ailleurs deresoudre les memes difficultes.

Le principe de la turbine hydraulique etaitdeja connu a cette epoque. On avait inventedes modeJes de roue pour toutes les hauteursde chute: a aubages fixes (Francis), a aubes(Pelton) et a helice (Kaplan). Tous etaient enusage dans des usines de petite capacite et ilsuffisait de les adapter a des installations plusimportantes.

En 1881 en Angleterre, Lucien Gaulard etJoseph Dixon Gibbs font breveter un "systemede distribution du courant alternatif', graceauquel il devient possible d'elever la tension ducourant eJectrique afin de Ie transporter et deI'abaisser ensuite pour en permettre l'utilisa­tion.

En 1887, Elihu Thomson in vente I'alterna­teur a induction-repulsion et, en mai 1888,Nikolas Tesla presente son systeme polyphase,avec-Ie moteur capable de l'utiliser. La guerreentre Ie continu et I'alternatif est declarce.L'cnergie electrique est des lors promise a unespectaculaire expansion.

Les pionniers de l'eIectricite au Canada netardent pas a adapter ces innovations afin d'en

51

Page 70: Electricity - The Magic Medium

I

I'-------~

Arc lighting plant (1897) of the North Shore PowerCompany at Grande Chute on the Batiscan River,seventeen miles from Three Rivers, Quebec When thisplant was remodelled early in 1897 the two dynamos,formerly engine driven, were then driven by asingle-phase motor which had previously operated as analternator. Photo from Electrical News and Engineeringmagazine courtesy of Thomas Fisher Rare Book Library,University of Toronto.

and a 300 kW synchronous motor to drive thecompressors powering the mining drills. Theskip operation was described as the "severestduty so far undertaken by any mining hoist inthe world."

In the same year the Cataract Power Com­pany completed its DeCew Falls hydraulic

52

Installations de la North Shore Power Company, aGrande Chute, sur la riviere Batiscan, 11 17 milles deTrois-Rivieres, au Quebec Lorsque ces installations ontete modifiees au debut de 1897, Ie moteur qui actionnaitles deux dynamos a ete remplace par un moteurmonophase qui servait auparavant d'alternateuL Cettephoto est tiree du magazine Electrical News andEngineering, qui a gl~acieusement ete prete par Jabibliotheque de livres rares Thomas Fisher de I'Universitede Toronto.

plant and began transmitting electric power 32miles to Hamilton, Ontario at 11,000 volts.The ac system, using transformers to step thevoltage up for economical transmission anddown for safe and practical utilization had fi­nally overcome the need for generation at ornear the points of utilization.

Page 71: Electricity - The Magic Medium

faire beneficier la population. Entre 1890 et1910, on voit apparaitre de nombreusesgeneratrices de taille imposante. En 1893, laOttawa Electric Railway Company installe danssa centrale deux appareils qui se revelent etreles generatrices les plus puissantes (400 HP) duCanada de l'epoque. Le record est battu desl'annee suivante avec l'installation, pres de Nia­gara Falls, de trois generatrices destinees a ali­menter Ie chemin de fer qui relie Queenston etChippawa. Le revue Electrical News and Engi­neering consacre a l'epoque un article aces"enormes turbines de 5 000 HP".

C'est en 1895 a Saint-Hyacinthe, au Quebec,qu'est construite la premiere centrale a couranttriphase au Canada. L'installation, situee a Ra­pide Plat, a un peu plus de sept kilometres dela ville, abritera trois alternateurs triphases de60 hertz, 2 500 volts et 150 kilowatts. Les appa­reils ont ete fabriques par la Generale Electri­que du Canada.

Vne autre premiere, mais cette fois dansl'histoire de l'Empire britannique, est egale­ment realisee au Quebec lorsque la NorthShore Power Company reussit, en 1897, atransporter de l'electricite sur une longue dis­tance. L'installation de 1 200 HP amenagee sur

1a riviere Batiscan parvient en effet a achemi­ner de I'energie electrique jusqu'a Trois­Rivieres, situee a plus de 27 kilometres de lao

En 1898, la War Eagle Mining and Develop­ment Company, a Rossland en Colombie Bri­tannique, installe un moteur a induction de300 HP afin d'entrainer un treuil servant ahis­ser, a raison de 300 metres a 1a minute, deuxbennes remplies de minerai charges a 825metres sous Ie sol. Elle installe egalement unmoteur synchrone de 300 kW afin d'alimenterles compresseurs servant a faire fonctionnerdes marteaux perforateurs. Aucune exploita­tion miniere de l'epoque n'avait entrepris uneoperation de treuillage aussi exigeante.

La meme annee, la Cataract Power Com­pany acheve la construction d'une centraleelectrique a DeCew Falls et commence a trans­porter 11 000 volts d'energie eIectrique en di­rection de Hamilton (Ontario), a 51 kilometresde lao Le systeme, qui fait appel au courant a1­ternatif, est dote de transformateurs chargesd'e1ever la tension afin d'assurer un transporteconomique et de l'abaisser pour permettreune utilisation efficace et sure. Desormais, iln'est plus necessaire de produire l'electricitepres du point d'utilisation.

La ligne de transport de laShawinigan Water and PowerCompany en direction du suddu Saint-Laurent, en 1910.Photo: Hydro-Quebec.

Shawinigan Water and PowerCompany power line to thesouth of the St. LawrenceRiver, since the turn of thecentury. A 1910 photocourtesy of Hydro-Quebec.

53

Page 72: Electricity - The Magic Medium

Electric Utilities across CanadaBy Fred Kee

NewfoundlandIn Newfoundland many small companiessprang up to serve urban centres. Electricpower for lighting came to St. John's as early as1885 when the St. John's Electric Light Com­pany installed a steam generator. Fifteen yearslater, in 1900, the St. John's Street RailwayCompany installed Newfoundland's firsthydro-electric plant to operate the electricstreet railcar system. The power station wasbuilt at Petty Harbour, 7% miles from St.John's. Its original· capacity consisted of an1868 hp Victor type turbine driving two gener­ators to transmit 1200 kW of power to the cityat 15,000 volts. These two companies com­bined in 1920 to form the St. John's Light andPower Company which, four years later, be­came the Newfoundland Light and PowerCompany, as it is known today.

Meanwhile, the United Towns ElectricalCompany Limited was formed in 1902. It in­stalled an 80 hp hydro unit on the VictoriaRiver near Carbonear. As the company ex­panded it extended service into other areas onthe southern side of the Avalon Peninsula, BellIsland and Marystown on Burin Peninsula­buying out several small companies in theprocess. Then many years later, it expandedfurther to pick up small industrial plants, theU.S. Naval Base and widely spread customersin the Stephenville and Port Aux Basquesareas. In 1966 the company merged with theNewfoundland Light and Power Co.

A preponderance of Newfoundland's gen­erating capacity was installed by pulp andpaper companies which, by 1948, consumed93% of all the electrical energy on the island.These companies responded to the surround­ing communities by also supplying their do­mestic, commercial and industrial electricpower needs. One of these was the Anglo­Newfoundland and Development Companywhich is now owned by Abitibi Price Co.

54

Power house, penstock and flume, Petty Harbour HydroElectric Development, Newfoundland-1900. Photocourtesy of Newfoundland Light and Power Company.

La centrale, la vanne et Ie canal, 11 Petty Harbour,Terre-Neuve, en 1900. Photo: Newfoundland Light andPower Company.

Original turbine and generators, Petty Harbour HydroElectric Development, Newfoundland-1900. Photocourtesy of Newfoundland Light and Power Company.

Les generatrices et la turbine de la centrale de PettyHarbour, T.-N., en 1900. Photo: Newfoundland Lightand Power Company.

Page 73: Electricity - The Magic Medium

-- ---~----------------------------------------------------

5 "*

Les entreprises d'electricite au CanadaPar Fred Kee

Pose des rails de tramway de la rue Water, it St-Jean,Terre-Neuve, en 1899. Photo: Newfoundland Light andPower Company.

Laying Street car rails on Water Street in St. John'sNewfoundland, 1899. Photo courtesy of NewfoundlandLight and Power Company.

Tramway exploite par la St. John's Street RailwayCompany, it St-Jean, Terre-Neuve, en 1900. Photo:Newfoundland Light and Power Company.

Street car operated by the St. John's Street RailwayCompany, Newfoundland, 1900. Photo courtesy ofNewfoundland Light and Power Company.

TerremNeuveA Terre-Neuve, plusieurs petites entreprisesont e:e creees afin d'assurer Ie service urbain.Dec, 1885, la St. John'S Electric Light Companyir.stalle dans la capitale terre-neuvienne unegeneratrice a vapeur chargee de satisfaire lesbesoins d'eclairage. Quinze ans plus tard, soiten 1900, la St. John's Street Railway Companyconstruit la premiere centrale hydroelectriquede la province. L'usine, situee aPetty Harbour,a 12 kilometres de Saint John's, sen a alimen­ter Ie reseau de tramways electriques de la ville.A l'origine, I'installation comprend une tur­bine de type Victor d'une capacite de1 868 HP. L'appareil entraine deux generatri­ces capables de produire 1 200 kW d'electricitea 15 000 volts. En 1920, les deux entreprisesfusionnent pour former la St. John's Light andPower Company qui, quatre ans plus tard, de­viendra I'actuelle Newfoundland Light andPower Company.

La United Towns Electrical Company, quantadIe, avait ete formee en 1902. Elle construi­sit, sur la riviere Victoria, non loin de Carbo­near, une generatrice hydraulique de 80 HP.Au fur et a mesure de son expansion, I'entre­prise est a meme d'etendre son service a d'au­tres territoires: la partie sud de la peninsuled'Avalon, Bell Island et Marystown, dans lapeninsule de Burin. Par la meme occasion, diefait l'acquisition de plusieurs petites entrepri­ses. De nombreuses annees plus tard, dieconnait une autre periode d'expansion qui luipermet d'englober quelques petites centrales a .vocation industrielle ainsi que la base navaleamericaine et un certain nombre de clientsrepartis un peu partout dans la region de Ste­phenville et dans celie de Port-aux-Basques.En 1966, la United Towns Electrical Companyfusionne avec la Newfoundland Light andPower Company.

A Terre-Neuve, ce sont les fabricants de pa­pier qui ant ete a I'origine de la majeure partie

55

Page 74: Electricity - The Magic Medium

Another such company was the Newfound­land Pulp and Paper Company Ltd., later pur­chased by the International Pulp and PaperCompany and then Bowater's. The Companyis now operated by Kruger International. Inreturn for its contribution to Newfoundland'sindustrial development this organization, in itsearly years, was granted water power, land andtimber rights along the Humber River. Con­struction of its Deer Lake Power Station re­quired excavation of a seven-mile canal leadingto the station's generators. Six huge steampowered draglines were brought in. The larg­est of these had earlier been used in buildingthe Panama Canal and was later used in On­tario during the building of the WeilandCanal.

Other new companies and amalgamationscharacterized the history of the electrical in­dustry in Newfoundland until, in 1954, theProvincial Government established a publicpower authority, The Newfoundland PowerCommission, to operate in isolated areas andassist in the development of rural electrifica­tion. By 1964 the Power Commission began

_ construction of the Baie D'Espoirpower devel­opment on the south coast. Then it was re­named the Newfoundland and LabradorPower Commission and was assigned the de­velopment of all new hydro-electric sites of theprovince. Its purpose was to supply power atlow rates to large power-using industries andat uniform rates to the various private utilitiesalready in operation.

The Baie d'Espoir hydro-electric develop­ment was an ambitious project by any stan­dard. By means of seven major dams and fivecanals the watersheds of four large rivers werecombined to utilize the runoff from 2,279square miles of drainage area. A head of 593feet exists between the last reservoir and sealevel. The water is carried in three pressureconduits to the underground powerhousewhere it is fed to six Francis turbines, eachrated at 100,000 hp. The matching generatorsare three-phase, 60 hertz, rated at 75,000 kilo­watts. The tallest surge tanks in the world, at371 feet, absorb the kinetic energy of the flow­ing water when wicket gates are closed. Thegenerating station was expanded in 1977 bythe addition of another 150,000 kilowatt unit.This is a far cry indeed from the 1200 kilowattinstallation at Petty Harbour in 1900.

Now we turn to the special story of ChurchillFalls in Labrador. Here we find a high plateau,1700 feet above sea level, covered with muskegand countless interconnected lakes, many ofwhich drain into the mighty Churchill River.

56

Churchill Falls in Labrador. Photo courtesy ofHydro-Quebec.

Churchill Falls. au Labrador. Photo: Hydro-Quebec.

Underground Gallery to house Churchill FallsGenerating Station. Photo courtesy of Hydro-Quebec.

Galerie soutelTaine abritant Ia centrale de Churchill Falls.Photo: Hydro-Quebec.

Page 75: Electricity - The Magic Medium

de la capacite installee. En 1948, ces entrepri­ses consommaient en effet 93% de toute l'ener­gie electrique produite dans l'ile. Elles sechargerent egalement de satisfaire les besoinsdomestiques, commerciaux et industriels descollectivites environnantes. L'une de ces entre­prises, la Anglo-Newfoundland and Develop­ment Company, est devenue depuis la pro­priete de la societe Abitibi Price.

Vne autre entreprise du secteur des papierss'appelait la Newfoundland Pulp and PaperCompany Ltd. Achetee par l'InternationalPulp and Paper Company et ensuite par la Bo­water's, elle est actuellement exploitee par laKruger International. En reconnaissance de sacontribution au developpement industriel deTerre-Neuve, les pouvoirs publics accorderenta cette entreprise, dans les annees qui ont suivisa formation, Ie droit d'exploiter les ressourceshydrauliques de la riviere Humber et celui dese servir des rives et d'y faire la coupe du bois.Pendant les travaux de construction de la cen­trale de Deer Lake, il avait fallu creuser uncanal de 11 kilometres afin d'alimenter en eaules generatrices. Pour ce faire, on amena surles lieux six immenses excavatrices a vapeur.La plus grosse d'entre elles avait servi aux tra­vaux de construction du canal de Panama, enattendant d'etre employee pour ceux du canalWeiland, en Ontario.

L'histoire de l'industrie de l'eJectricite aTerre-Neuve fut marquee par d'autrescreations d'entreprises et d'autres fusionsjusqu'a ce que, en 1954, les autorites provincia­les instituerent la Newfoundland Power Com­mission, organisme public charge de repondreaux besoins des regions isolees et de favoriserl'electrification rurale. En 1964, l'organismeentreprend la construction de la centrale deBaie-d'Espoir, sur la cote meridionale. Rebap­tisee Newfoundland and Labrador PowerCommission, elle re<;:oit Ie mandat de mettre envaleur tous les sites hydroelectriques non en­core exploites dans la province. Son objectif estde procurer une energie bon marche auxgrands utilisateurs industriels et de fournir,moyennant un tarif uniforme, les societes com­merciales d'eJectricite.

Le projet hydroelectrique de Baie-d'Espoiretait incomparablement ambitieux. Sept enor­mes barrages et cinq canaux furem amenagesafin de reunir les cours d'eau de quatre gran­des rivieres et de permettre la mise en valeurd'une surface de drainage de 5 903 kilometrescarres. Le dernier reservoir en amont de l'ou­vrage fut amenage a 181 metres au-dessus duniveau de la mer. Trois conduites sous pres­sion acheminent I'eau vers une centrale souter-

----------~------ - ~ -~----~

raine et alimentem six turbines Francis de100 000 HP chacune. Les genera trices corres­pondantes peuvent produire 75 000 kilowattsde courant triphase, d'une frequence de 60hertz. L'energie cinerique produite par la fer­meture des vannes a guichet est absorbee parles plus grands reservoirs amortisseurs aumonde, situes a 113 metres. En 1977, on accrutles installations par l'addition d'une genera­trice de 150 000 kilowatts. Nous sommes loindes 1 200 kilowatts installes en 1900 a PettyHarbour!

Tournons-nous main tenant vers ChurchillFalls, au Labrador. L'histoire remarquable dece complexe se deroule sur un plateau ~ situe a518 metres au-dessus du niveau de la mer etcouvert de moskeg et d'innombrables lacs in­terrelies, dont un bon nombre se deversentdans la majestueuse rivihe Churchill. Pourmettre en valeur I'energie disponible et trou­ver un moyen de I'exploiter economiquementsur de grandes distances, il faut concevoir unprojet si vaste et si audacieux que I'on reunit lesefforts et Ie savoir-faire de la British Newfoun­dland Corporation (autrement dit BRINCO,un consortium prive) et du gouvernement deTerre-Neuve. Ces deux parties s'unissent en1958 afin de former la Churchill Falls (Labra­dor) Corporation (CFLCo), a qui est confiee larealisation de ce gigantesque ouvrage. LeQuebec apporte a la nouvelle societe ses res­sources techniques et financihes a compter de1963. Des lors, CFLCo peut compter sur Iesoutien combine de Terre-Neuve et duQuebec: droits d'exploitation de reserves hy­drauliques, sources de financement, savoir­faire technique et capacite de realiser degrands projets. Mais, par-dessus tout, les pro­moteurs font preuve de l'audace necessaireafin de mettre en oeuvre un ouvrage qui, depar son gigantisme, alimentera Terre-Neuve etIe Quebec et trouvera des debouches aux Etats­Unis. Les travaux sont l'occasion de nombreuxexploits techniques. On realise un systeme ca­pable de transporter 735 kilovolts, un record.Onze generatrices installees dans une enormesalle creusee dans Ie roc solide, a 305 metressous Ie sol, fournissent plus de 5 000 mega­watts d'electricite. Au moment de sa mise enservICe en 1972, la centrale hydroelectrique deChurchill Falls etait la plus importante dumonde.

Ile-du Prince-EdouardC'est vers 1886 que la Maritime Electric Com­pany Ltd. construisit la premiere centrale elec­trique de I'He. Equipee d'une turbine a vapeurchauffee au charbon, l'usine comptait une

57

Page 76: Electricity - The Magic Medium

To develop the available power at this site andfind a way of economically using it at distantpoints was a project so huge and so daring as torequire the combined effort, and capabilities,of the British Newfoundland Corporation(BRINCO-a consortium of private compa­nies) and the provincial governments of New­foundland and Quebec acting through theirrespective electrical utilities. These three par- .ties united in 1958 to form the Churchill Falls(Labrador) Corporation to accomplish this tre­mendous task. The new corporation wasbacked up by the assets and strengths of thethree co-founders. These assets and strengthsconsisted of water-resource rights, financial re­sources, technical capabilities, construction ca­pacity and, above all, a daring conception of agigantic scheme, far flung and bold, which wasexpected to provide power to the Island, to theProvince of Quebec and for export to theUnited States. Many major engineering featswere accomplished within this project. Thehighest levels of transmission were utilized­735 kilovolts. Its eleven generators are housedin a gigantic underground gallery blasted outof solid rock, one thousand feet below the sur­face, and they provide over 5,000 megawatts ofpower capacity. It was the largest hydro-elec­tric power installation of i,ts kind in the worldat the time of its inauguration in 1972.

Prince Edward IslandThe first power plant on the island was builtaround 1886 by Maritime Electric CompanyLtd. It was steam-driven using coal with a150 kW generator. The same company hascontinued to serve the province over the yearsmaking additions to its generating capacity anddistribution system as growing demand forelectricity required. In recent years, the Is­land's grid has been interconnected with thatof the New Brunswick Electric Power Commis­s1On.

Nova ScotiaIn various parts of Canada many of the electricutilities had their origins in gas and water com­panies who correctly perceived the threat ofelectricity to their continuing vitality and ac­cordingly diversified or merged. For example,the Halifax Gas Light and Water Company,formed in 1843, was followed by the HalifaxElectric Light Company in 1881. The Haligon­ians of Nova Scotia had their first electricitysupplied by this company in 1884 to some 75street lights and 50 stores. By 1895 this com­pany further merged with Halifax Electric

58

------------ -_.- --

Railway Company and, in 1896, electric street­cars were put into service. This new amalgama­tion formed the basis for the Nova Scotia Lightand Power Company in 1928.

The Nova Scotia Power Commission wascreated by the provincial government in 1919.The Commission undertook a number of de­velopments, notably at St. Margaret's Bay toprovide hydro-electric power to Halifax andvicinity, on the East River at Sheet Harbour, atMersey, .and at the Tusket plant near Yar­mouth. The Commission brought power toareas which private enterprise did not find fi­nancially attractive and, following the RuralElectrification Act of 1937, greatly extendedthis type of service. '

In 1972 the two major electric utilities inNova Scotia, Nova Scotia Light and Power Co.Limited and the Nova Scotia Power Commis­sion, were merged to create a single crown cor­poration, Nova Scotia Power Corporation, toprovide the electrical power and energy for theProvince.

In the years following World War II, Nova- .Scotia, .iiI commol1 with many other areas ofthe world, turned to oil to fire its steam­powered generating stations to the extent that70% of its electricity was then generated fromoil. Formation of the OPEC cartel in 1973 sig­nalled the end of low-priced oil and the priceof electricity produced from burning oil sky­rocketted. At Lingan, on Cape Breton Island,the Provincial Utility turned again to coal. Thefirst 150 MW generating unit, part of NovaScotia's solution to the international oil crisis,began feeding power into the provincial' grid.By 1984, the fourth unit at the plant wasbrought into service at the $400,000,000 plant.With a capability of 600 MW, the plant willburn about 1.5 million tonnes of Cape Bretoncoal a year.

A recent notable first for Nova Scotia hasbeen the commissioning by Nova Scotia TidalPower Corporation of the first Tidal generat­ing station in North America. This 20 me­gawatt Straflo Turbine, with a rim-mountedgenerator, was commissioned at AnnapolisRoyal on ALigust 25, 1984.

New BrunswickIn New Brunswick, the first power plant wasbuilt in 1884 by the Saint John Electric LightCompany and it was capable of supplying 2000sixteen candle power lights. This plant waspowered by steam. So were subsequent plantsat Campbellton (1898), Moncton and Sackville(1902), Fredericton, Newcastle and Loggieville

Page 77: Electricity - The Magic Medium

generatrice de 150 kV. L'entreprise continuade servir les besoins de la province. Avec lesannees, elle se chargea de repondre a la de­mande en augmentant sa capacite de produc­tion et en etendant son reseau de distribution.II y a quelques annees, Ie reseau de nle a etebranche sur celui de la Commission hydroelec­trique du Nouveau-Brunswick.

NouvelleQ:EcosseSouvent, les entreprises d'e1ectricite qui appa­rurent un peu partout au Canada avaient com­mence par exploiter les ressources du gaz et deI'eau. Ayant su identifier la menace que I'elec­tricite pouvait representer pour leur survie,elles se diversifierent ou fusionnerent. C'estainsi que la Halifax Gas Light and Water Com­pany, formee en 1843, devint en 1881 la Hali­fax Electric Light Company. C'est en 1884 quel'entreprise commenc;a a fournir de l'electricitea 75 lampadaires publics et a 50 etablissementscommerciaux de la capitaIe. En 1895, elle fu­sionne avec la Halifax Electric Railway Com­pany et, I'annee suivante, les tramways electri­gues entrent en service. La nouvelle entreprisefut a I'origine de la Nova Scotia Light andPower Company, qui vit Ie jour en 1928.

C'est en 1919 que les autorites provincialescreerent la Nova Scotia Power Commission.L'organisme realisa un certain nombre de pro­jets, dont la centrale hydroelectrique de St.Margaret's Bay, chargee d'alimenter Halifax etles environs, celie de la East R,iver a Sheet Har­bour, celie de Mersey et celle enfin de Tusket,non loin de Yarmouth. II apporta l'eIectriciteaux regions qui n'interessaient pas l'entrepriseprivee et accrut considerablement ce type deservice apres l'adoption en 1937 d'une loi surI'electrification rurale.

En 1972, les deux principaux fournisseursd'electricite, la Nova Scotia Light and PowerCompany et la Nova Scotia Power Commis­sion, fusionnerent pour former la Nova ScotiaPower Corporation et repond,'e aux besoinsenergetiques de la province.

Dans les annees qui suivirent la SecondeGuerre mondiale, la Nouvelle-Ecosse, a I'instarde nombreux autres pays, adopta Ie mazou tpour chauffer l'eau de ses centrales thermi­ques. Elle finit ainsi par produire 70% de sonelectricite au moyen de ce procede. La forma­tion du cartel de l'a.p.E.p., en 1973, annonc;atoutefois ia fin du mazout bon malThe. Le coutde l'electricite produite dans les centrales aumazout monta en fleche. La Nouvelle-Ecosseeut de nouveau recours au charbon. A Lingan,dans l'ile du Cap-Breton, elle mit en serviceune premiere generatrice de 150 megawatts

afin de contribuer a resoudre Ie probleme posepar la crise internationale du petrole. En 1984,la centrale, dans laquelle on avait investi 400millions de dollars, commenc;a a faire fonction­ner une quatrieme generatrice. L'usine, d'unecapacite de 600 megawatts, est appelee a con­sommer chaque annee 1,5 millions de tonnesde charbon provenant du Cap-Breton.

C'est par ailleurs en Nouvelle-Ecosse gu'unepremiere digne de mention vient d'errerealisee. En effet, Ie 25 aout 1984 aAnnapolisRoyal, la Nova Scotia Tidal Power Corporationa mis en service la premiere centrale mare­motrice d'Amerique du Nord. Le groupe elec­trogene de l'usine est dote d'une turbine Stra­flo de 20 megawatts.

NouveauQBrunswickLa premiere centrale eIectrique de la provincefut construite en 1884 par la Saint John Elec­tric Light Company. Capable de fournir 2 000ampoules de 16 bougies, I'usine etait alimenteea la vapeur, de meme que celles qui furentsubsequemment construites a Campbellton(1898), a Moncton et Sackville (1902), a Frede­ricton, Newcastle et Loggieville (1903) et aSaint-Jean de nouveau (trois centralesamenagees entre 1889 et 1905). Quant a lapremiere centrale hydraulique, elle fut cons­truite en 1905 sur la rivihe Meduxnekeag,pres de Woodstock.

En 1917, la Maritime Electric Co. voyait Iejour. Sa vocation comportait plusieurs facettes:transport de l'eIectricite pour les besoinsd'eclairage, distribution du gaz domestique,extraction, traitement et vente du charbon.Elle fit I'acquisition de la Charlottetown Lightand Power Co., de l'lle-du-Prince-Edouard, dela Bridgetown Electric Light, Heat and PowerCo., de la Nouvelle-Ecosse et d'une petite en­treprise d'electricite etablie a St. Stephen, auNouveau-Brunswick. En 1925, une entreprisede New York, l'Associate Gas and Electric Co.,prend en charge l'exploitation et la gestion fi­nancihe de la societe du Nouveau-Brunswick.Deux ans plus tard, la ville de Fredericton etquelques municipalites environnantes sont in­corporees au reseau. Au debut des annees 30,la propriete de I'entreprise passe a la New En­gland Gas and Electric Association, dont Iesiege social se trouve a Cambridge, au Massa­ch usetts. En 1932, on ajoute au reseau la villede St. Andrews et, en octobre 1936, l'entre­prise est acquise par des entrepreneurs cana­diens. Celle-ci etait alors titulaire de nombreu­ses concessions sur Ie territoire duNouveau-Brunswick et sur celui de l'lle-du­Prince-Edouard.

59

Page 78: Electricity - The Magic Medium

(1903) and three additional plants in SaintJohn (1889 and 1905). The first hydraulicplant was installed in 1905 near Woodstock onthe Meduxnekeag River.

Maritime Electric Co. Ltd. was incorporatedin 1917 to operate both as an electric light anddomestic gas utility and in the mining, process­ing and sale of coal. It acquired the Charlotte­town Light & Power Co. Ltd. in Prince EdwardIsland, the Bridgetown Electric Light, Heatand Power Co. Ltd. in Nova Scotia and thesmall electric utility at St. Stephen, N.B. In1925 management of company operations andfinances became the responsibility of the Asso­ciated Gas and Electric Co. of New York. Twoyears later, in 1927, power supply to the City ofFredericton and some adjacent municipalitieswas added to the system. In the early thirties,ownership was transferred to the New Eng­land Gas and Electric Association, headquar­tered in Cambridge, Mass. In 1932 the Townof St. Andrews, N.B. was added. In October1936, ownership was sold to Canadian inter­ests. At the time the Company held franchisesin many areas within New Brunswick andPrince Edward Island.

Priol'to 1918 there were some twerity orga­nizations, both public and private, supplyingelectricity in New Brunswick. Their operationswere confined largely to urban centres andthere was a pressing demand for electricity inrural areas. Power that was available was bothcostly and unreliable while rates varied fromone location to another.

The provincial government bowed to publicpressure and set up the New Brunswick Elec­tric Power Commission in 1920. The Commis­sion immediately launched a program of con­struction of both hydraulic generating stationsand an extensive distribution system coveringmuch of the southern part of the province. A6,960 kilowatt hydro plant was built at Mus­quash in 1922 and a 6,000 hp steam generat­ing station, burning bituminous coal, was builtat Newcastle Creek in 1931. The capacity ofthe plant was extended by a further 7,500 hpin 1936.

With a burgeoning demand for electricityover the years, the Commission added dieselgenerating stations, further fossil-fired gener­ation at Chatham, Courtney Bay and Dalhou­sie, hydraulic installations at Tobique, Beech­wood and Mactaquac and a large oil-firedthermal generating station at Coleson Cove.

In 1947 the New Brunswick Power Commis­sion purchased several portions of the Mari­time Electric Company's system and twenty-

60

two years later, in 1969, purchased theremaining portions within New Brunswick.Then, in 1983, it swept into nuclear powerwith commissioning of the 630,000 kWCANDU generating unit at Point Lepreau.

QuebecIn 1878 some Jesuits in Montreal received agift from their counterparts in France. It wasthe first arc light in Montreal. They called in atradesman by name of JA.I. Craig to test thelamp. This little event in 1878 not only lit thesurrounding area but it cast a light into the fu­ture. Over the 100 year period since, electricityhas been a pivot point in the history of Quebec.The early days saw the emergence of privateelectricity companies in various parts of theprovince followed much later by the creationand development of Hydro-Quebec on a prov­ince-wide base. It is a fascinating story.

During the early days of electricity the in­dustry developed much differently in ruralareas as compared to urban areas.

Rural installations of power plants, centeredat natural power sites, attracted energy-inten­sive industries. Thus, metallllrgical and pulp.and paper industries were drawn to the waterpower of the St. Maurice Valley. InternationalPaper developed the Gatineau's power for saw­mills and pulp and paper mills. The Alumi­num industry moved into the Saguenay andPeribonka regions of the Lac-Saint-Jean areaand tapped most of the available hydro-electricresources there.

The cities and towns, however, presented aready market that challenged enterprising,separately owned electricity companies. InMontreal and Quebec City the first obstacle forthese electricity companies was competitionwith the previously entrenched gas companieswhich already enjoyed lucrative contracts withthe authorities in both cities to supply streetlighting. The Montreal Gas Company had heldexclusive control of street lighting there since1837 while the Quebec Gas Company had en­joyed a similar monopoly in Quebec City since1848.

The electricity compauies had to obtainstreet lighting franchises to have any chance ofprofitably entering the residential lightingmarket-also against the competition of thegas companies. So, it has been said, "the battlebetween gas and electricity literally took to thestreets".

Electricity companies, in Quebec City andMontreal were numerous at the beginning ofthe 1880s. They were forceful in their sales

Andre Bolduc-economist.editor of Forces magazineand co-author of "Quebec,un siecle d'electricite". Mr.Bolduc has generouslycontributed sourceinformation and translationsfor the electric powerportions of this book.

Page 79: Electricity - The Magic Medium

~ Andre Bolduc, economiste,directeur de la revue Forceset co-auteur de I'ouvrage"Quebec, un siccled'electricite". M. Bolduc afourni gcnereusement desrenseignements precieuxpour ce livre et a fait traduireles sections qui se rapportenta I'hydroelectricite.

Avant 1918, une vingtaine d'entreprises pu­bliques ou privees se chargeaient d'alimenter IeNouveau-Brunswick en electricite. Commeleurs services se limitaient surtout aux centresurbains, la demande d'electrification dans lesregions rurales se faisait pressante. De plus,I'energie disponible coutait cher, Ie servicen'etait pas garanti et les tarifs variaient d'uneregion a l'autre.

Les autorites provinciales se rendent done ala demande populaire et creent en 1920 laCommission hydroelectrique du Nouveau­Brunswick. Celle-ci se lance aussitot dans unprogramme de construction de ce ntraleshydro-e1ectriques et dans I'amenagement d'unvaste reseau destine a couvrir la majeure paniedu Sud de la province. En 1931, une centrale avapeur de 6 000 HP, alimentee au charbon bi­tumineux, est construite a Newcastle Creek. En1936, on ajoute 7 500 HP a la capacite deI'usine.

Comme la demande d'electricite ne cesse decroitre avec les annees, la Commission cons­truit des centrales au diesel, d'autres installa­tions thermiques a Chatham, a Courtney Bayet a Dalhousie, des usines hydroelectriques aTobique, a Beechwood et a Mactaquac ainsiqu'une enorme centrale au mazout a ColesonCove.

En 1947, la Commission hydroelectrique duNouveau-Brunswick achete plusieurs sectionsdu n~seau de la Maritime Electric Company et,en 1969, elle fait I'acquisition du reste dureseau installe au Nouveau-Brunswick. En1983, die se lance dans Ie n ucleaire en mettanten service, a Pointe-Lepreau, un centraleCANDU de 630 000 kilowatts.

QuebecEn 1878, un incident apparement sans grandeimportance a lieu a Montreal: des jesuitesrec;oivent de leurs confreres franc;ais unelampe a arc. Pour mettre cette curiosite aI'essai, ils font venir J.-A.-I. Craig, Fabricant demeubles et inventeur a ses heures. C'est Ie mo­deste debut d'une aventure qui dure depuisplus d'un siecle, l'e1ectricite etant devenue unpivot de I'evolution du Quebec. Pendant lespremieres annees, on assiste a la fondation denombreuses compagnies d'electricite privees,un peu partout dans la province. Plus tard,Hydro-Quebec voit lejour et s'etend peu a peudans tout Ie territoire du Quebec. C'est unehistoire fascinante.

A ses debuts, I'industrie de l'electricite nes'est pas du tout developpee de la meme fac;ondans les campagnes que dans les villes. En mi-

lieu rural, les centrales etaient etablies sur dessites qui presentaient un bon potentielhydroelectrique; I'International Paper decided'exploiter la Gatineau pour alimenter ses scie­ries et ses papeteries; des usines d'aluminiums'etablissent sur Ie Saguenay, OU I'on amenagela plupart des ressources hydrauliques.

Dans les villes, au contraire, les debouchesexistent deja, et plusieurs compagnies s'atta­quent vigoureusement a ce marche. Mais aMontreal et a Quebec, un obstacle de taille lesattend: la resistance des compagnies gazieres,qui avaient passe des contrats lucratifs avec lesmunicipalites pour I'eclairage public. La Mon­treal Gas Company avait l'excusivite de I'eclai­rage des rues dans la metropole depuis 1837,et dans la vieille capitale, la Quebec Gas Com­pany jouissait de ce meme privilege depuis1848.

Les entreprises d'electricite devaient obtenirdes contrats d'eclairage public pour reussir apenetrer Ie marche de I'eclairage des mai­sons-ce a quoi s'opposait egalement les com­pagnies gazieres. On peut dire que Ie combatetait litteralement descendu dans la rue!

Au debut des annees 1880, Quebec etMontreal comptent de nombreuses entreprisesd'electricite, dont les methodes de vente sontpour Ie moins agressives et dont certaines, ilfaut Ie dire, sont plutot ephemeres.

Au debut, comme dIes sont incapables defaire resilier les principaux contrats d'eclairagepublic, elles s'interessent a de plus petitsclients, et reussissent a electrifier des magasins,des banques et des hotels. Puis elles incitent desmarchands et des gens d'affaires a se regrou­per pour offrir I'eclairage electrique dans cer­taines rues. Ainsi, Ie reseau s'etend peu a peu,et en 1886 Montreal se voit obligee de cederaux pressions populaires en electrifiant lesrues du centre-ville.

Le monopole du gaz etait done brise. Maisune autre lutte s'engage aussitot: trois entre­prises d'electricite presentent des soumissionspour Ie meme contrat. Apres des mois dedeliberations, la municipalite accorde Ie con­trat a la Royal Electric Company. En peu detemps, celle-ci reussit a etablir un quasi-mono­pole pour l'alimentation eJectrique de la villede Montreal.

A Quebec, apres une lutte semblable, Ie con­trat est accorde a une entreprise qui devientplus tard la Quebec Railway, Light and PowerCompany.

Dans les deux villes, les entreprises d'electri­cite ne tardent pas a fusionner avec leurs con­currentes, les compagnies gazieres. La RoyalElectric, la Montreal Gas et deux autres com-

61

Page 80: Electricity - The Magic Medium

campaigns and some, it must be admitted,were "fly-by-night" operators.

At first, unable to break the municipallyawarded contract for major street lighting theelectricity companies pursued smaller custom­ers and succeeded in introducing electricity insome stores, banks, and hotels. Then they or­ganized groups of merchants and businesses tocooperatively provide electric street lights insome blocks. Gradually electricity gained afoothold. Early in 1886 the City of Montreal,responding to public pressure, adopted elec­tric street lights for downtown.

The gas monopoly had been broken but an­other struggle immediately arose. Three dif­ferent electric companies submitted tendersfor the same business. After months of deliber­ation the City awarded a contract to the RoyalElectric Company. Soon after this success theRoyal Electric Company managed to establisha network to virtually monopolize the supplyof electricity over the whole city.

In Quebec City a similar battle took placeand the contract was awarded to a companywhich became known as the Quebec Railway,Light and Power Company. . "" "."

In both cities, it was not long before the elec­tricity companies merged with their counter­parts in the gas business. The Royal Electricand Montreal Gas companies, plus two otherelectricity companies in the area, merged to be­come "Montreal Light, Heat and Power Conso­lidated". Nine years later, in Quebec City, the"Quebec Railway, Light, Heat and Power Com­pany" was formed and later became known as"Quebec Power".

Distribution of electrical energy within theconfines of Montreal and Quebec City thus de­veloped into well guarded monopolies. But itwas through the efforts of several private busi­ness enterprises that, during the last five yearsof the 19th century, electrification gatheredmomentum throughout the province.

In all corners of Quebec, groups were takingsteps to bring electricity to their local villagesand surrounding areas. Companies were smalland means were limited, but contractors werelegion. Sometimes, the owner of a small indus­trial concern would try to reduce the costs ofproducing electricity for himself by supplyingthe local community. Other people may haveturned to electricity as a sign of progress thatthey considered beneficial for their area. Doc­tors, notaries and even a few members of reli­gious orders allowed themselves to be temptedby this new product.

And thus a maze of small local networkssprang up which were not really equipped to

62

produce the electricity they wanted to sell, andthey quickly fell prey to companies anxious toexpand.

The closing years of the 19th century alsosaw the construction of Quebec's first hydro­electric plants. In the 1880s, electricity hadbeen produced by steam turbines while powertransmission technology was barely at theteething stage. Even the Chambly hydro sitewas too far away! The consumption of electric­ity at the time did not really warrant large-scaleconstruction of hydro-electric plants and it wasnot until 1895 that Quebec's rivers began toarouse serious interest.

Strangely enough, most of the hydro-electricdevelopments at the turn of the century wereundertaken not so much by the existing elec­tricity companies as by entrepreneurs keen totake advantage of the opportunity to tap a newenergy source. It was they, therefore, thatformed the companies that went on to developthe huge watersheds in southern Quebec suchas the St. Maurice River.

For the Shawinigan Water and Power Com­pany, founded in 1897, it was not all plain sail­ing. When a handful of young Americans, ex­cited by the potential of the St. Maurice River,decided to go ahead and develop it, they dis­covered enthusiasm was not enough. Theyneeded funds just as they needed clients inorder to convince money lenders of the eco­nomic viability of the project.

Under the driving force of the young Amer­ican financier J.E. Aldred, the young companymanaged to gain the confidence of industrial­ists and consumers alike and on the strength ofthis went on to build the Shawinigan 1 powerstation.

From 1910 until the end of the 1930s,Quebec witnessed the expansion of the most dy­namic of the electricity companies and the con­solidation of their territories.

In the metropolises, Montreal Light, Heat'and Power bought all its suburban rivals whileQuebec Power made the same move in QuebecCity. In the Saguenay a branch of the Alumi­num Company of Canada, Saguenay Electric,gradually monopolized electricity distributionthroughout the area. Electricity sales in the Ot­tawa and Gatineau valleys were in the hands ofthe International Paper Company operatingthrough Gatineau Power, its wholly-ownedsubsidiary, at least until the antitrust legislationof the 1930s. Among the many small compa­nies on the south shore, Southern CanadaPower established itself firmly in its territory.

Similar regional monopolies were set up, inthe northwest by Northern Quebec Power, and

Page 81: Electricity - The Magic Medium

pagnies de la region fusionnent pour creer laMontreal Light, Heat and Power Consolidated.Neuf ans plus tard, a Quebec, c'est la fondationde la Quebec Railway, Light, Heat and PowerCompany, que I'on connaitra sous Ie nom deQuebec Power.

Ainsi, dans ces deux villes, la distribution deI'electricite devient un monopole bien protege.Mais c'est grace a de nombreuses entreprisesindependantes que, pendant les cinq dernieresannees du XIxe siecle, I'e!ectrification des au­tres regions de la province prend son essor.

Dans tous les coins du Quebec, des groupesse forment en vue d'electrifier leur village etles environs. Les compagnies sont petites etleurs ressources modestes, mais elles sontlegion. Parfois, c'est Ie proprietaire d'une pe­tite industrie qui reduit les couts de la produc­tion d'electricite en revendant ses surplus a lalocalite avoisinante. Certains considerent l'elec­tricite comme Ie signe d'un progres benefiquepour leur region. Des medecins, des notaires etmemes des pretres se laissent tenter par cenouveau produit.

C'est ainsi que surgissent une multitude depetites entreprises de distribution, qui n'ontpas les moyens de production necessaires aleurs besoins, et qui sont rapidement absorbeespar les gros reseaux, impatients d'eIargir leuremprise.

C'est aussi pendant cette fin de siecle quesont construites les premieres centraleshydroelectriques du Quebec. En effet,jusqu'alors on produisait l'electricite au moyende turbines a vapeur, et la technologie dutransport d'energie etait encore dans I'enfance.Meme Ie site de Chambly est trop eloigne al'epoque! D'aiIleurs, la demande d'e!ectricitene justifie pas la construction de grosses cen­trales et ce n'est qu'en 1895 que I'on commencea s'interesser serieusement a l'amenagementdes rivieres du Quebec.

II est assez surprenant de constater qu'autournant du siecle, la plupart des centraleshydroeiectriques sont construites non pas parles entreprises d'eIectricite deja etablies, maispar des entrepreneurs desireux d'exploiterune nouvelle source d'energie. Par conse­quent, ce 'sont eux qui ont forme les compa­gnies destinees a amenager les immenses bas­sins du Sud du Quebec, y compris Ie Saint­Maurice.

Pour la Shawinigan Water and Power Com­pany, fondee en 1897, la partie n'est pasgagnee d'avance. Lorsque de jeunes Ameri­cains decident d'exploiter Ie potentiel du Saint­Maurice, ils se rendent vite compte que l'en­thousiasme ne suffit pas. II faut des capitaux et

des clients si l'on veut convaincre les bailleursde fond de la rentabilite du projet. Mais, sousla conduite energique du jeune financieramericain J.E. Aldred, la nouvelle compagniereussit a se gagner la confiance des industrielset des consommateurs. Forte de cette caution,elle construit la centrale de Shawinigan I.

De 1910 a la fin des annees 30, les compa­gnies d'electricite les plus dynamiques duQuebec grandissent et consolident leurs terri­toires. Dans la metropole, la Montreal Light,Heat and Power fait main basse sur toutes lescompagnies rivales de la region, et la QuebecPower fait de meme a Quebec. Au Saguenay,une filiale d'Aluminum du Canada, la Sague­nay Electric, monopolise peu a peu la distribu­tion d'electricite dans la region. Dans les valleesde l'Outaouais et de la Gatineau, la distributionest contr61ee par la Compagnie internationalede papier, par l'intermediaire d'une filiale apart entiere, la Gatineau Power,jusqu'a l'adop­tion de la loi antitrust dans les annees 30.Parmi les nombreuses petites entreprises ausud du Saint-Laurent, la Southern CanadaPower s,ancre so!idement sur son territoire.Enfin, d'autres monopoles regionaux sontcrees, notamment dans Ie Nord-Ouest par laNorthern Quebec Power et en Gaspesie par laLower St. Lawrence Power Company.

Mais Ie cas de la Shawinigan Water andPower Company est Ie plus remarquable. Desses debuts, elle travaiIIe sans re1ache a etendreson territoire et devient un des plus gros four­nisseurs de la Montreal Light, Heat and Poweret l'un de ses principaux actionnaires. Plustard, elle dominera egalement la QuebecPower et achetera au cours des annees 50 lagrande m<uorite des actions de la Southern Ca­nada Power.

Cette rapide expansion est attribuable prin­cipalement a trois facteurs. Premierement, eIlea l'habilite d'attirer aShawinigan des industries'grosses consommatrices d'energie, grace a descampagnes de publicite diffusees aux .ftats­Unis et en Europe ou elle met en valeur l'abon­dance, la fiabilite et Ie cout modique tant de lamain-d'oeuvre quebecoise que de I'energie duSaint-Maurice. Deuxiemement, eIIe se sert deses !ignes de transport pour alimenter les mai­sons et les villages disperses sur son territoire.Troisiemement, elle saisit toutes les occasionsd'acheter les compagnies voisines.

Au debut des annees 30, Ie public commencea s'interroger sur les tarifs ainsi que Ie mauvaisservice offert par plusieurs des compagniesd'eIectricite. Meme si les tarifs sont inferieurs ace qu'ils ctaient au debut du siecle, ils sont pluseleves que ceux pratiques en Ontario, OU, de-

63

Page 82: Electricity - The Magic Medium

Hydro-electric station on the Matapedia River in 1910.Photo courtesy of Hydro-Quebec.

Daniel-Johnson Dam on the Manicouagan River, part ofthe Manic-Outardes power project, capacity 1,292,000kW. completed in 1968. Photo courtesy ofHydro-Quebec.

La centrale hydroelectrique de la rivihe Matapedia en1910. Photo: Hydro-Quebec.

Le barrage Daniel-Johnson, sur la riviere Manicouagan,qui fait partie du complexe Manic-Outardes, dont lacapacite est de I 292000 kW et qui a ete complete en1968. Photo: Hydro-Quebec.

64

Page 83: Electricity - The Magic Medium

---------------------- -- --------------------------

Interieur de la centrale de Drummondville, d'unecapacite de 14600 kW, qui a ete colllp](~tee vel's 1910.Photo: Hydro-Quebec.

Interior of generating station at Drullll11ondville, capacity\4,600 kW. completed about \910. Photo courtesy ofHydro-Quebec.

puis 1906, la production d'electricite est engrande partie nationalisee. Au Quebec, denombreuses personnes en vue, notammentPhilippe Hamel, dentiste de Quebec, et T.-D.Bouchard, journaliste de Saint-Hyacinthe, en­treprennent une campagne pour la nationali­sation de la production de relectricite. Le gou­vernement met sur pied la CommissionLapointe, dont Ie mandat est d'etudier la faisa­bilite de nationaliser les entreprises d'electri­cite, de confier la distribution urbaine aux mu­nicipalites et de reduire les tarifs. Le resuItatde cette enquete menee par Ernest Lapointe,Augustin Frigon et George C. McDonald est lacreation de la Comission de !'electricite en1935 et de la Commission hydroeIectrique deQuebec (Hydro-Quebec) en 1944. Immediate­ment apres l'adoption de la loi qui cree Hydro­Quebec, celle-ci prend possession d'une partiede la Montreal Light, Heat and Power Com­pany.

Par la suite, I'expansion d'Hydro-Quebec sederoule en trois etapes. De 1944 11 1960, ellebatit son savoir-faire technique. Puis, dans lesannees 60, elle consolide sa position de pivotdu developpement hydroeIectrique duQuebec. La troisieme etape, de 1970 a nosjours, se caracterise par une conjoncture et unenvironnement mouvants qui forcent Hydro­Quebec a faire face 11 une nouvelle realite.

Peu de temps apres sa fondation, en 1944,Hydro-Quebec reduit les tarifs d'electricite.Puis, pour satisfaire la croissance de la de­mande, elle entreprend la deuxieme phase dela centrale de Beauharnois. Comme la de­mande continue de croitre, die commence en1953 la construction de deux centrales sur laBersimis. C'est ici que, pour la premiere fois,elle rencontre Ie probleme du transport del'eIectricite sur de long'ues distances. Le niveaude tension choisi (315 kV) est tres eIeve pourl'epoque. Plus tard, Ie savoir-faire qu'elle ac­quiert sur les chantiers de la Bersimis lui serad'une valeur inestimable lorsqu'elle amenageraIe complexe Manicouagan-Outardes et lescomplexe La Grande ala Baie James.

Vel's la fin des annees 50, Hydro-Quebectermine la troisieme phase des travaux deBeauharnois et commence la construction de lanouvelle centrale de Carillon, sur la riviere Ou­taouais. De plus, a la demande du gouverne­ment, die fait Ie necessaire pour alimenterdeux regions qui sont depourvues de ressour­ces hydroeleetriques: Ie Nord-Ouest et laGaspesie.

Grace a I'experience qu'elle a acquise depuis1944, Hydro-Quebec est tout naturellementdevenue Ie pivot du developpement hydroeIec­trique avenir au Quebec. Au debut des annees60, Ie gouvernement de Jean Lesage proposede lui ceder tous les droits que ne detenait pasIe secteur prive sur les rivieres du Quebec.

Dne etude approfondie du gouvernementreveIe que, d'une region a I'autre, il existe degrandes differences dans les tarifs et dans laqualite du service. Comme de nombreuxreseaux regionaux se partagent Ie territoire, ilest impossible d'optimiser la production et Ietransport et difficile de coordonner les inves­tissements. L'etude condut que si on integraitles reseaux de distribution au reseau principald'Hydro-Quebec, toute la province en profite­rait.

Cette decision engendre une polemique quidure des mois. Le gouvernement decide d'enappeler a l'electorat, ce qui donne lieu a !'unedes campagnes eIectorales les plus enflammeesde l'histoire du Quebec. Le peuple enterine ladecision du gouvernement.

65

Page 84: Electricity - The Magic Medium

Maintaining electric service inwintry weather. Photocourtesy of Hydro-Quebec.

Le maintien du serviceelectrique durant la saisonfroide. Photo:Hydro-Quebec.

in the Gaspe by the Lower St. Lawrence PowerCompany.

But an outstanding case was ShawiniganWater and Power Company. From the outset,it sought tirelessly to increase its territory andbecame one of the major suppliers to MontrealLight Heat and Power, as well as one of its larg­est shareholders. Eventually it also dominatedQuebec Power and, during the 1950s, acquiredalmost all the shares in Southern CanadaPower. Three main factors contributed to thebreathtaking expansion of this company.

Firstly, it was astute enough to attractenergy-intensive industry to the Shawiniganarea through a series of advertising campaignsin the United States and Europe in which itemphasized the abundance, the reliability andthe cheapness both of the Quebec work-forceand of the energy potential of the St. Maurice.

66

Secondly, it tapped all its m<U0r transmissionlines to carry electricity to the houses and vil­lages scattered throughout its territory. Andthirdly, it took every opportunity to buyoutneighboring companies.

Starting in the early 1930s a lot of attentionwas given to the rates being charged and, insome cases, the poor service being given by sev­eral of the privately-owned electricity compa­nies. Although the rates were somewhat belowthose of the early years of the century theywere still high compared to those in Ontariowhere electrical production had been largely"nationalized" since 1906. In Quebec anumber of community spokesmen, such asPhilippe Hamel, a Quebec dentist, T.D. Bou­chard, a journalist in St. Hyacinthe and otherprominent citizens started a campaign for na­tionalization of power production in the prov-

Page 85: Electricity - The Magic Medium

Lignes de transport de 735kV acheminant l'energieproduite par les centralesquebecoises eloignees. Photo:Hydro-Quebec.

735 kV transmission linescarrying bulk power fromdistant power sites acrossQuebec. Photo courtesy ofHydro-Quebec.

En 1963, Hydro-Quebec engage donc 600millions de dollars pour acquerir les actions dela quasi-totalite des distributeurs prives d'eIec­tricite au Quebec (huit entreprises et 45cooperatives) et pour assUlTler leur dette a longterme. Du jour au lendemain, la taille de I'en­treprise d'Etat augmente du double, et dorena­vant son histoire s'etend sur toute la province.

La meme aImee, Hydro-Quebec reduit lestarifs pour la plupart de ses nouveauxabonnes. Graduellement, elle ramene les quel­que 85 tarifs residentiels et 80 tarifs generauxaune seule structure tarifaire. Sur Ie reseau duNord-Ouest, elle convertit la frequence de 25 a60 Hz. De plus, elle modernise et uniformiseles lignes de transport et de distribution. Lagestion integree de la production a permis derealiser des economies allant jusqu'a 50 mil­lions de dollars entre 1963 et 1969.

Hydro-Quebec se gagne rapidement la con­fiance des grands bailleurs de fonds: ceci luipennet de payer ses recentes acquisitions etd'emprunter les capitaux necessaires pourfaire face a une croissance rapide et realiserl.'ambitieux programme de construction qui luipermettra de satisfaire la demande de presquetous les consommateurs quebecois.

L'entreprise compte aujourd'hui parmi lesplus importantes entreprises de services pu­blics d'Amerique du Nord.

De meme, elle jouit rapidement d'une excel­lente renommee internationale sur Ie plantechnique et dans les annees 60 ses realisationsen imposent a l'imagination. Le projet Mani­couagan-Outardes est marque par plusieurspremieres mondiales, notamment la decisionaudacieuse de transporter I'electricite a la ten­sion de 735 kV. Mentionnons egalement I'Ins-

67

Page 86: Electricity - The Magic Medium

ince. The government consequently set up theLapointe Commission to study nationalizationof the electricity companies, municipal controlof urban distribution networks and the poten­tial for rate-reductions. The direct result of thestudy by Commissioners Ernest Lapointe,Augustin Frigon and George C. McDonald wascreation of the Quebec Electricity Commissionin 1935 and the Quebec Hydro-electric Com­mission (Hydro Quebec) in 1944. Immediatelyafter the act establishing Hydro Quebec waspassed the Commission took initial possessionof a portion of Montreal Light Heat andPower.

The subsequent development of Hydro­Quebec was in three major phases. From 1944until 1960 the Utility took broad measures tobuild up its technical capabilities. Then, duringthe 1960s, the Commission consolidated its po­sition as the backbone of further hydroelectricdevelopment in Quebec. The third phase,from 1970 to the present day, has been charac­terized by a rapidly changing environmentwhich has forced Hydro-Quebec to come toterms with a new reality.

Almost as soon as it was founded in 1944, itreduced electricity rates. Then, to ensure thatit could meet the growing energy demand, itundertook Stage II of the Beauharnois powerstation. In view of the increasing demand, in1953 it began to de,Y,elop two power plants onthe Bersimis River and here, for the first time,came up against the problem of carrying largequantities of energy over long distances. Thevoltage level chosen for the transmission linesto Montreal was very high at the time: 315,000volts. The technical know-how it gained fromthese projects was invaluable a few years laterfor the Manicouagan-Outardes and James Baypower developments.

As the 1950s drew to a close, Hydro-Quebecput the finishing touches to Stage III at Beau­harnois and began work on the new Carillonpowerhouse on the Ottawa River. Also, in re­sponse to the government's request, it took thenecessary steps to supply electricity to twoareas of the province notably lacking in hydro­electric resources, namely the northwest, andthe Gaspe peninsula.

With all the experience it had acquired since1944, Hydro-Quebec naturally became thebackbone of further hydroelectric develop­ment in Quebec.

In the early 1960s, Jean Lesage's govern­ment introduced a policy aimed to give theutility all river rights not already granted toprivate companies.

68

A probing government analysis revealedwide regional disparities in rates and quality ofservice. The fact that the province was split upinto many regional networks meant that it wasimpossible to achieve optimum generation andtransmission. The coordination of capital in­vestments was far from adequate. The govern­ment's conclusion was that the entire provincewould benefit from integration of the distribu­tion networks into Hydrq-Quebec's main grid.

This decision sparked off months of contro­versial discussion. The government, therefore,appealed to the public. Nationalization of elec­tricity became the theme of one of the mostcolorful election campaigns ever seen inQuebec and Nationaliz~tion won the day.

In 1963 Hydro-Quebec committed $600 mil­lion to cover the purcl;1ase of shares and as­sumption of long term debts of all the pri­vately-owned suppliers: of electricity in theprovince. With eight ad~itionalcompanies andforty-five local cooperatives, Hydro-Quebecwas doubled in size overnight. Its territorythen stretched from one side of the province tothe other.

During the same year Hydro-Quebec re­duced electricity rates f9r most of its new cus­tomers. It gradually reduced some 85 residen­tial and 80 general rates to a single consistentrate structure. It converted the frequency ofthe northwest network from 25 to 60 Hz, and

I

renovated and standardized its transmissionand distribution lines. Integrated power sta­tion management led to savings of up to $50million for the period 1963 to 1969.

However, the sudden expansion led to yearsbeset with financial and technical difficulties.Hydro-Quebec had to 'fin the respect of the"major league" financial markets, to cover thecost of its recent acquisitions and to raise thecapital needed to implement an ambitious con­struction program aimed to meet the electricitydemand of almost the erttire province.

The Utility was not l~ng in establishing itsgood standing on financial markets and nowranks among the leadi,ng public utilities inNorth America.

From the technical p~oint of view, Hydro­Quebec quickly established an enviable reputa­tion throughout the wl7:>rld and its achieve­ments in the 1960s knew no bounds. TheManic-Outardes project: scored several worldbreakthroughs, one of which was to transmitenergy at the daringly hilgh voltage of 735,000volts. The new research center, IREQ, earneda renown that soori extended beyond Canada'sborders.

Page 87: Electricity - The Magic Medium

titut de recherche d'Hydro-Quebec (IREQ),

dont la renommee n'a pas tarde a depasser lesfrontihes canadiennes.

Comme on I'a mentionne dans Ie chapitresur Terre-Neuve, Hydro-Quebec participeegalement a I'amenagement de Churchill Falls,au Labrador, projet qu'elle a d'ailleurs financeen grande partie.

En resume, les annees 60 representent uneperiode remarquable de la jeune histoired'Hydro-Quebec. Grace aux reussites qu'elleaccumule dans tous ses champs d'activite, elleacquiert la confiance et Ie respect incondition­nels des gens d'affaires, des gouvernements etdu public.

En depit de ce fait, Ie pr~jet d'amenagementdu territoire de la baie James fait, a ses debuts,l'objet de controverses. Quelques annees plustard cependant, on Ie designera comme Ie"projet du siecle" et il fera l'unanimite tant auQuebec qu'a l'etranger. Realise selon des nor­mes inedites de protection de l'environnement,ce "mega-projet" sera complete avec plusieursmois d'avance sur I'echeancier et en-dec;:a desbudgets prevus. II ajoutera 10280 megawatts ala puissance instaIIee d'Hydro-Quebec dont la.production annuelle est en quasi-totalite desource hydroelectrique. La centrale de LG-2,avec ses 5325 megawatts, est la plus imposantecentrale hydroelectrique au Canada.

Les nombreux soubresauts dont la sceneenergetique est Ie theatre dans les annees 1970amenent Ie gouvernement, en novembre 1978,a modifier la structure administrative de I'en­treprise. Elle est maintenant geree par un con­seil d'administration, comme toute autresociete. La nouvelle loi permet a Hydro­Quebec de creer une filiale, Hydro-Quebec In­ternational, dont Ie role est d'exporter partoutdans Ie monde Ie savoir-faire de I'entreprisedans Ie domaine de I'electricite.

En 1983, la mission d'H ydro-Quebec esteIargie au "domaine de la recherche et de lapromotion relatives a l'energie, de la transfor­mation et de l'economie de I'energie de memequ'a tout domaine connexe ou relie a I'ener­gie". De plus, on precise que I'entreprise doitrepondre "notamment" aux besoins d'electri­cite du Quebec, lui donnant ainsi toute la lati­tude voulue pour explorer les possibilites devente offertes par les marches exterieurs.

Aujourd'hui, Hydro-Quebec est un des prin­cipaux moteurs economiques du Quebec. Ellecompte 18500 salaries permanents. A la fin de1984, sa puissance installee etait de pres de23 500 MW, sans compter la puissance dontelle dispose en vertu du contrat passe avec la

Churchill Falls (Labrador) Co. Son actif s'eleve

a 27,1 milliards de dollars et ses ventes ont at­teint 4,1 milliards. Si I'on recense les societesprivees et publiques d'electricite, de telecom­munications, de transport et de gaz, elle figureparmi les dix entreprises les plus importantesd' Amerique du Nord.

OntarioPendant la seconde moitie du XIxe siecle, lesapplications commerciales de I'electriciteetaient encore peu repandues. Cette nouvelleforme d'energie a d'abord servi, en telegraphieet en telephonie, aaccroitre considerablementl'efficacite des communications. On I'utilisa en­suite dans les centres urbains, afin d'ameliorerl'edairage des rues et des maisons. Au coursdes cent ans qui suivirent, les applications deI'electricite n'ont cesse de connaitre d'extraor­dinaires progreso Aujourd'hui, on s'en sert detoutes les manieres imaginables: alimentationde reseaux de communication ultrarapides etextremement complexes, eclairage et chauf­fage, cuisson et autres travaux domestiques,applications commerciales et industrielles,transports en commun, loisirs, applicationsmathematiques, scientifiques, artistiques,medicales et spatiales.

Si de tels progres ont ete realises et qu'un or­ganisme de service public a pu voir Ie jour afinde rendre I'electricite accessible a tous les On­tariens, c'est qu'a l'origine on a su allier pa­tience, esprit d'entreprise et sens de l'avenir.On commenc;:a d'abord par construire quel­ques centrales dans des regions urbaines. C'estainsi que, vers les annees 1880, on entreprendde doter la ville de Toronto d'un service com­mercial de production et de distribution. Il enest de meme d'un grand nombre d'autres vil­les, qui voient s'edifier des centrales a vapeurou de petites usines hydrauliques. Finalement,toute la province reconnait Ie caractere indis­pensable de l'eIectricite.

Avant Ie tournant du siede, on avait reussi atransporter 1 100 volts, puis 2 500, puis 5 000et enfin 11 000 volts, chaque nouveau progrespermettant une distribution economique del'electricite sur des distances de plus en plusgrandes. Si Ie courant alternatif a permis defranchir la barriere des distances, les premiersentrepreneurs se mettent toutefois a revendi­quer la superiorite d'une frequence sur les au­tres. Certains vantent les me rites de lafrequence de 135 hertz, d'autres ont despreferences differentes: 66 2/3 hertz, 60, 40ou 25. Vne frequence recommandee pour lesbesoins d'eclairage peut ne pas convenir a I'ali­mentation des moteurs industriels. Toutes cesdiscussions menent a l'installation de systemes

69

Page 88: Electricity - The Magic Medium

As described earlier in the section on New­foundland, Hydro-Quebec also took an activepart in the Churchill Falls hydroelectric devel­opment project in Labrador for which it as­sumed a large portion of the financing.

To sum up, the 1960s were an outstandingperiod in Hydro-Quebec's short history. Itssuccess in every field of activity won it unquali­fied confidence and respect among business­men, governments and the general public.

Nevertheless, the James Bay developmentscheme had a controversial and stormy birth,and a few years were to elapse before it wouldreally become "the project of the century"amid unanimous approval within Quebec andelsewhere. This megaprciject, while subject tounprecedented environmental protection stan­dards, will be completed under budget andseveral months ahead of schedule. It will addsome 10,280 megawatts to Hydro-Quebec's in­stalled capacity, whose annual production is al­most entirely hydroelectric. The LG 2 generat­ing station, with its 5,325 megawatts, is thelargest hydroelectric generating station in Can­ada.

The several convulsive events that rockedthe energy scene in the 1970s led the govern­ment, in November 1978, to change the ad­ministrative structure of Hydro-Quebec. It isnow administered by a board of directors, likeother corporations. The new Act allowedHydro-Quebec to create a subsidiary-Hydro­Quebec International-whose role is to export,worldwide, Hydro-Quebec's expertise in thedomain of electric power.

In 1983, Hydro-Quebec's mandate was en­larged to include "endeavors in energy-relatedresearch and promotion, energy conversionand conservation, and in any field connectedwith or related to power or energy". Moreover,the Act specified that utility must meet the en­ergy needs of Quebec in particular, while alsoallowing it all the required latitude to explorepossibilities for sales to markets outside ofQuebec.

Hydro-Quebec today is one of Quebec'smain economic forces. Its permanent employ­ees number 18,500. By the end of 1984 it hadreached a total installed capacity level of 23.5million kilowatts without counting the poweravailable under the Churchill Falls (Labrador)Contract. Its assets are valued at $27.1 billionand its annual sales are $4.1 billion. It ranksamong the ten largest public utilities in NorthAmerica, including electricity, communication,transportation and gas companies or commis­sions.

70

OntarioDuring the second half of the 1800s, whencommercial electricity was a novelty, electricalapplications were limited. At first this new en­ergy form greatly enhanced communicationsthrough the telegraph and telephone. Thenthe magical medium was extended to give im­proved lighting on streets and in the homes ofurban centres. During the 100 years since,electrical applications have expanded dramat­ically and constantly until today we see electric­ity applied in every conceivable manner for themost complex and instant response communi­cations systems, lighting, heating, cooking andhousekeeping chores, industrial and commer­cial power, mass transportation, calculating,recording, science, surgery, entertainment andspace travel.

The story behind this expansion, and the es­tablishment of the public utility to make thisnew form of energy available to all the peoplein all the areas of Ontario is a story of small be­ginnings, enterprise and great foresight. Itstarted when local electric power planTs wereinsialled in some towns and cities. For exam-

< pIe, commercial generation and distribution ofelectricity in Toronto began during the 1880s.Likewise, through local steam or small waterpower stations, electricity became available inmany towns and cities until it was recognized a~

a necessity across the province.

Before the turn of the century transmissionvoltages were leaping from 1100 volts to 2500to 5000 to 11,000 volts-each step being takento economically provide for distribution ofelectrical energy from points of generation tomore distant and far flung points of consump­tion. Alternating current had cracked the dis­tance barrier but many claims were made byearly entrepreneurs for the advantage of onefrequency system over another. Some favored

. 135 cycles per second (I35 hertz). Othersclaimed 662/3, 60, 40 or 25 cycles. What wasclaimed to be good for lighting was not neces­sarily accepted as best for factory motors. Earlydevelopments of public utilities to produce,distribute and sell this energy were hamperedby these arguments and by the consequent va­riety of systems which sprang up.

As in some of the other provinces of Canada,there remains in Ontario to this day a mixtureof privately-owned, municipally-owned andprovincially-owned (Ontario Hydro) generat­ing plants. An outstanding example of pri­vately owned generation capacity is to befound in heavy industry locations such as theGreat Lakes Power Co. at Sault Ste Marie.

Page 89: Electricity - The Magic Medium

disparates et retardent Ie progres des entrepri­ses chargees de produire, de distribuer et decommercialiser 1'electricite.

Tout comme dans d'autres provinces du Ca­nada, Ie reseau des centrales de l'Ontario re­pose, aujourd'hui encore, sur une structuremixte formee par 1'entreprise privee, certainesmunicipalites et l'Ontario Hydro, d'apparte­nance provinciale. Ce sont dans les grands bas­sins industriels, tels celui de Sault-Sainte­Marie, avec la Great Lake Power Co., que I'ontrouve des exemples tout a fait typiques d'ins­tallations privees.

C'est en 1906 qu'est creee la Hydro-ElectricPower Commission (HEPC). Les caprices de lanature avaient voulu que l'Ontario ne soit pasdote d'abondantes reserves de combustiblesfossiles. Au fur et a mesure que 1'electricite faitson apparition, l'on se rend compte que leschutes d'eau vont pouvoir mettre en branle latransformation economique de la province.L'idee trouve des defenseurs competents, aussibien dans Ie monde industriel que dans ce!uide la politique municipale. Citons notamment,parmi les premiers ase manifester, E.W.B. Sni­der, de St. Jacobs, D.B. Detweiler, de Berlin(aujourd'hui Kitchener) et A. Beck, de Lon­don. Bien entendu, il yen a de nombreux au­tres. Dans son livre, The People's Power, Mer­rill Denison ecrit tou tefois: "Sn ide I' etDetweiler ant, ensemble ou separement, etesalues comme les vrais peres de l'OntarioHydro. Le premier fut l'architecte del'ingenieux systeme qui assura la coJJaborationdes municipalites. Le second joua Ie role d'unvisionnaire qui defendit sans relikhe l'idee decreer une entreprise publique afin faire pro­gresser la province sur les plans culture! et in­dustriel." Cependant, c'est l'echevin F.S.Spence, de Toronto, qui formule en detail laproposition visant a la creation d'une commis­sion de l'energie par Ie gouvernement provin­cial. C'est ensuite Adam Beck, 1'ex-maire deLondon du a1'assemblee legislative de l'Onta­rio, qui concentre les efforts et pilote Ie projetde loi. En 1906, Beck devient Ie premier presi­dent de la HEPC, paste qu'il assume jusqu'a sondeces en 1925.

A ses debuts, l'Ontario Hydro achete I'Clec­tricite des producteurs prives et s'occupe de lalivrer aux municipalites qui, a leur tour, la dis­tribuent sur leur territoire afin d'ecJairer lesrues et d'alimenter les maisons, les usines et lescommerces. Le reseau, qui a pris naissance aNiagara Falls, ne cesse de grandir.

Au nombre des principales entreprisesprivees productrices d'dectricite dans la regionde Niagara Falls,il y a lieu de mentionner la

Electrical Development Company, la OntarioPower Company, la Canadian Niagara PowerCompany et la Hamilton Cataract Power Lightand Traction Company, dont la centrale estsituee aDeCew Falls. Dans l'Est, la Ottawa andHull Power Manufacturing Company s'engageafournir la ville d'Ottawa tandis qu'au Nord, laville de Port-Arthur est alimentee par la Kami­nistiquia Light Heat and Power Company.

Berlin (aujourd'hui Kitchener) est la pre­miere ville a Nre alimentee par l'OntarioHydro. Nous sommes en octobre 1910. Avantla fin de l'annee, les villes de Guelph, Water­loo, Preston, Woodstock, London, Hamilton etStratford seront raccordees au reseau public.Au cours de I'annee suivante, sera au tour deDundas, de Hespeler, de New Hamburg, de St.Thomas, de Galt, de Toronto, de Ingersoll etde St. Mary's.

En 1913, l'Ontario Hydro entrepn:nd deconstruire, a Wesdell Falls sur la riviere Se­vern, sa premiere installation hydraulique. En1914, elle acquiert la centrale de Big Chute,propriete de la Simcoe Light and Power Com­pany. C'est ainsi que s'etablit la pratique selonlaquelle l'Ontario Hydro s'occupe d'une partde construire des barrages et, d'autre part,achete, directement ou par I'entremise del'Etat provincial, des installations appartenantau secteur prive.

En 1915, la Commission termine la construc­tion de sa deuxieme centrale, a Eugenia Falls,sur la riviere Beaver. L'annee suivante, lespouvoirs publics ontariens acquierent Ie patri­moine de la Electric Power Company et, en1918, l'Ontario Hydro entreprend la construc­tion de la centrale de Cameron Falls, sur lariviere Nipigon. En 1917, la Commission avaitachete la centrale qU'exploitait a Niagara Fallsla Ontario Power Company et avait commencede construire celie de Queenston-Chippawa.Au fur et a mesure que les plans se concreti­sent, 1'on se rend compte que "Ia difficulte etl'importance de la tache rappelaient celles destravaux de construction du canal de Panama,qui constituait alors la realisation technique laplus importante au monde. Le volume dedeblais aexcaver s'elevait a 17 millions de ver­ges cubes, ou cinq fois Ie volume de la pyra­mide de Cheops. II falltlt egalement couler450 000 verges cubes de beton." A la fin de1921, Ie premier ministre de I'epoque peut al­lumer une enseigne proclamant l'existence dela plus grande centrale hydroelectrique dumonde. Apres avoir termine son analyse dedepassement des couts, la commission Gregoryeo-ira que la centrale represente une "mer­veille d'ingenierie". L'usine rel;ut sa derniere

71

Page 90: Electricity - The Magic Medium

72

Ontario Power Companygenerating station at NiagaraFalls, 1909. Photo courtesy ofOntario Hydro.

La centralede la-OntarioPower Company, ;\ NiagaraFalls, en 1909. Photo:Ontario Hydro.

Generating floor of theOntario Power GeneratingStation at Niagara Falls.Photo courtesy of OntarioHydro.

Installation de production dela centrale de fa OntalioPower, a Niagara Falls.Photo: Ontario Hydro.

Page 91: Electricity - The Magic Medium

generatrice en 1925.Comme ailleurs au Canada, Ie gouverne­

ment institue un systeme de subventions afinde permettre I'electrification des regions rura­les. Nous sommes en 1921. Des lors, Ie reseaurural connait une expansion rapide. II fautdire que les collectivites agricoles connaissaientdepuis 1912 les merveilles de l'electricite. C'esten effet cette annee-Ia, au cours de l'ete, que Iefameux "cirque hydroelectrique" de Beck avaitpris la route. Par ailleurs, les organisateursd'expositions ne manquent jamais de montrerdes appareils electriques a usage domestiqueou agricole.

Au cours des annees 1920, l'Ontario connaitun accroissement de la demande d'electriciteau moment meme OU Ie Quebec surproduit.On entreprend donc de negocier l'achat d'elec­tricite avec la Catineau Power Company, laMaclaren-Quebec Power Company et la Beau­harnois Light, Heat and Power Company.ParalleIement, l'Ontario Hydro et la OttawaValley Power Company entreprennent con­jointement l'installation de la centrale de ChatsFalls, sur la riviere Outaouais. II faut alorsconstruire une ligne de transport de 220 000volts afin de relier Paugan Falls au Quebec et labanlieue de Toronto, ce qui represente unedistance de 370 kilometres. Jamais n'avait-onconstruit au Canada de ligne aussi longue etd'une ca pacite aussi elevee.

Malgre un certain recul au debut des annees30, la demande d'electricite continue de pro­gresser. L'activite miniere dans Ie Nord del'Ontario amene la construction de nouvellescentrales et de lignes de transport. Puis on en­treprend de detourner les cours de Long Lac:les rivihes et les etangs qui se deversent dans labaie d'Hudson sont reachemines vel's la riviereAguasabon et, de la, vel's Ie lac Superieur. C'estainsi qu'on peut accroitre Ie volume d'alimen­tation des centrales de Niagara Falls. La stimu­lation de la demande engendree par la guerredonne lieu a d'autres travaux de detourne­ment, cette fois de l'Ogoki. De la sorte, on aug­mente Ie volume de la riviere Nipigon afin demieux alimenter les centrales de Niagara Fallset de DeCew Falls. Par ailleurs, d'autres usineshydrauliques sont amenagees sur la Muskoka(Big Eddy) et sur la Madawaska (BarrettChute). Malgre tout, l'Ontario Hydro se voitobligee de restreindre la consommation super­flue et d'accroitre ses achats au Quebec.

La fin de la Seconde Cuerre mondiale nemet pas un terme a l'accroissement de la de­mande. Le taux de croissance est si rapidequ'au caul's de l'automne de 1946, l'OntarioHydro doit couper les charges interruptibles et

demander a sa clientele d'economiser l'enel'­gie. Dans les annees qui suivent, les penuriesde production sont aggravees par l'insuffi­sance des pluies. L'organisme ontarien rec;oitde l'assemblee legislative Ie mandat d'interdireen certaines circonstances la consommationd'electricite. Au cours des annees 1947, 1948 et1949, les periodes de pointe sont marquees pardes interruptions a tour de role.

En attendant que soient construites les ins­tallations hydrauliques, on resout d'aller auplus rapide en amenageant, a Toronto (cen­trale de Hearn) et a Windsor (centrale deKeith), deux usines thermiques alimentees aucharbon.

Parallelement, l'Ontario Hydro projette laconstruction de nouvelles centrales hydroelec­triques et l'installation de turbines additionnel­les dans les usines de la province. C'est ainsique I'on decide d'amenager, sur la rivihe Ou­taouais, les centrales de Des Joachims(360000 kW), de Chenaux (120000 kW) et deLa Cave (aujourd'hui Otto Holden C.S.­220 000 kW). On entreprend egalement d'ins­taUer, a DeCew Falls, une deuxieme genera­trice-70 000 HP-et de construire une usinea Stewartville, sur la Madawaska (54000 HP)landis qu'au Nord, la centrale Aguasabonfournira 40000 kW. Par ailleurs, une qua­trieme turbine s'ajoutera a la centrale Alexan­der et l'on construirait, sur la riviere Missis­saga, une centrale de 47000 kW (centraleTunnel, appelee aujourd'hui C.W. RaynerC.S.). On projette egalement d'installer a EarlFalls une quatrieme turbine (7 500 HP). Nonloin de la, a Manitou Falls, l'Ontario Hydrose propose d'entreprendre la constructionde sa premiere centrale telecommandee(42000 kW). P'.lrallelement, on projette deconstruire une autre centrale a Niagara Falls,afin d'absorber les surplus de volume prove­nant des cours d'eau detournes au Nord en di­rection du lac Superieur. On voulait egalementprofiter de l'accord passe avec les Etats-Unissur l'utilisation des eaux de la Niagara.

La realisation de tous les projets qui vien­nent d'etre mentionnes fut terminee au debutdes annees 50.

Depuis la mise en service de la toute pre­miere centrale a Niagara, la frequence du cou­rant produit par l'Ontario Hydro avait ete de25 hertz dans la plupart des cas. Cette situations'avera malheureuse en raison du fait que lesautres reseaux de la province, de meme queceux du Quebec et des Etats americains limi­trophes, avaient tous adopte la frequence de60 hertz. L'Ontario Hydro decide donc, vel's lafin des annees 40, d'uniformiser l'emploi de

73

Page 92: Electricity - The Magic Medium

The Hydro-Electric Power Commission ofOntario was formed in 1906. A capriciousMother Nature had left Ontario without ade­quate fossil fuels. As the electrical age dawned,there was a growing realization that fallingwater could become the fuel source to trans­form the Province's economy. There were ablespokesmen in industry and in municipal poli­tics. E. W. B. Snider of St. Jacobs, D. B.Detweiler of Berlin (now Kitchener) and A.Beck of London were among these early advo­cates. Of course, there were many others aswell. But, in his book "The People's Power",Merrill Denison said: "Sometimes singly andsometimes in combination, Snider and De­tweiler have been hailed as the true fathers ofHydro: Snider as the architect who designedthe imaginative system of municipal co-opera­tion, Detweiler was the fervent prophet towhom the cultural and industrial gains to bewon through public ownership became an ob­session." It was, however, Alderman F. S.Spence of Toronto who detailed the proposalwhich led to the formation of the Power Com­mission by the provincial government. ThenAdam Beck, who had been Mayor of London,was newly elected to the provincial legislature.He provided the focus and driving force to getthe act through the legislature itself. Beck, ap­pointed as the first chairman of the HEPC ofOntario, guided the Commission from its cre­ation in 1906 until his death in 1925.

Initially Ontario Hydro purchased powerfrom privately-owned generating companiesand transported it over a growing transmissionline grid, which originated at Niagara Falls,and delivered it to municipally-owned utilitiesfor final distribution and use in streets, homes,factories, commercial buildings and public in­stitutions.

The principal private utilities generatingpower in the vicinity of Niagara Falls at thetime were the Electrical Development Com­pany, Ontario Power Company, The CanadianNiagara Power Company and the HamiltonCataract Power Light and Traction Companywhose generating station was located at DeCewFalls. In the eastern part of the province con­tracts for power to supply the City of Ottawawere concluded with the Ottawa and HullPower Manufacturing Company while inNorthern Ontario, Port Arthur was suppliedwith power purchased from the KaministiquiaLight Heat and Power Company.

The earliest city to receive power from On­tario Hydro was Berlin (now Kitchener) in Oc­tober, 1910. Before the end of the same yearGuelph, Waterloo, Preston, Woodstock, Lon-

74

don, Hamilton and Stratford were added tothe Hydro system. During the following yearothers were connected to the system: Dundas,Hespeler, New Hamburg, St. Thomas, Galt,Toronto, Ingersoll and St. Mary's.

In 1913, Ontario Hydro began constructionof its first hydraulic development at WasdellFalls on the Severn River and in 1914 boughtthe Big Chute generating station from the Sim­coe Light and Power Company. A pattern wasthus formed where Hydro constructed somefacilities and either Hydro or the governmentpurchased the assets of privately-owned powercompanies.

The Commission began its second hydraulicdevelopment at Eugenia Falls on the BeaverRiver completing it in 1915. In 1916 the On­tario Government purchased the assets of theElectric Power Company and in 1918 OntarioHydro began construction of the CameronFalls generating station on the Nipigon River.In 1917 the Commission had bought the On­tario Power Company generating station at:

. Niagara Falls and had also embarked upon theconstruction of the Queenston-Chippawa gen­erating station. As plans matured it was saidthat the "work presented problems compara­ble in scope and difficulty with those encoun­tered in building the Panama Canal, until thenthe world's most impressive engineering ac­complishment. The material to be excavatedtotalled 17,000,000 cubic yards, or 5 times thevolume of the Pyramid of Cheops, and theconcrete to be poured would amount to450,000 cubic yards". At the end of 1921 thePremier switched on an illuminated sign pro­claiming the station' as "The Largest Hydro­Electric Plant in the World". The GregoryCommission, looking into cost over-runs, de­clared it to be "a magnificent piece of engi­neering". The last unit was placed in service in1925.

As in other provinces, the government pro­vided a system of subsidies in 1921 to permitthe extension of the benefits of electricity torural areas. This resulted in a rapid expansionof the rural network. The farmers and ruralcommunities had, since 1912, been regaledwith the wonders of the electrical age for it wasin the summer of that year that Beck had puthis famous Hydro Circus on the road. House­hold and farm appliances were standard fea­tures of the exhibitions.

The burgeoning demand for electricity inOntario during the 1920s coincided with a sur­plus of power in Quebec. This led to the nego­tiation of contracts for supplies of energy fromthe Gatineau Power Company, the Maclaren-

Page 93: Electricity - The Magic Medium

-------~~---------------------------------------------

Des pionniersd'Ontario HydroPhoto: Ontario Hydro.

Pioneers of OntarioHydroPhotos courtesy of OntarioHydro

E.W.B. Snider, de St. Jacobs, Ontario.

E.W.B. Snider, St. Jacobs, Ontario:

L'echevin F.S. Spence, de Toronto, Ontario.

Alderman F.S. Spence, Toronto, Ontario.

Daniel B. Detweiler, de Berlin (maintenant Kitchener),Ontario.

Daniel B. Detweiler, Berlin (now Kitchener), Ontario.

Adam Beck, de London, Ontario.

Adam Beck, London, Ontario.

75

Page 94: Electricity - The Magic Medium

Quebec Power Company and the BeauharnoisLight, Heat and Power Company. At the sametime Ontario Hydro and the Ottawa ValleyPower Company undertook the joint develop­ment of Chats Falls on the Ottawa River. Thecontracts necessitated a 220,000 volt transmis­sion line from Paugan Falls in Quebec 230miles to the Leaside Transformer Station onthe outskirts of Toronto. The line was the lon­gest, and operated at the highest voltage, yetconstructed in Canada.

Despite a setback in the early 1930s, upwardgrowth in the demand for electricity contin­ued. Mining in Northern Ontario led to newgenerating stations and transmission lines.Then there was the Long Lac Diversion. Riversand lesser lakes whose flow was normallytowards Hudson Bay were diverted into theAguasabon River and thence to Lake Supe­rior-to increase water volume for generatingstations at Niagara Falls. Under the impetus ofwartime demand a further diversion from theOgoki augmented water availability for gener­ation on the Nipigon River, at Niagara and at .DeCew Falls. Newhydtaulic stations were de­veloped at Big Eddy on the Muskoka River andBarrett Chute on the Madawaska. In spite of allthese measures it became necessary to placerestrictions on the non-essential consumptionof electricity and to increase purchases fromQuebec.

The end of World War II brought no dimi­nution in the increasing demand. So rapid wasthe rate of increase that by the fall of 1946Hydro had to cut interruptible loads and ap­peal to all customers to curtail unnecessaI'yconsumption. In succeeding years low rainfalladded to the problems of shortage of generat­ing capacity. Hydro was given mandatorypowers by the Ontario Legislature "to prohibitthe use of electrical energy for specific pur­poses". Rotating blackouts were experienced attimes of peak loads during 1947-48-49.

Construction of coal-fired steam-electricgenerating units was begun at Toronto (HearnStation) and at Windsor (Keith Station) to closethe longer lead time of hydraulic develop­ments.

Ontarian Hydro developed plans for addi­tional hydraulic generating stations and newunits were to be ildded to existing stations allover the Province. Des Joachims (360,000 hp),Chenaux (120,000 kW) and La Cave (later ren­amed Otto Holden G.S.-220,000 kW) wereplanned for the Ottawa River. A 70,000 hpsecond unit for installation at DeCew Falls anda new plant at Stewartville on the MadawaskaRiver to deliver 54,000 hp were also in the

76

. works. In northern Ontario, Aguasabon C.S.on the Aguasabon River would add40,000 kW. A fourth unit would be added toAlexander C.S. on the Nipigon River while, onthe Mississaga River, Tunnel C.S. (later ren­amed C. W. Rayner C.S.) would be built to de­liver 47,000 kW. A fourth unit of 7,500 hpwould also be added at Ear Falls and, nearby,Hydro's first generating station to be con­trolled by radio link would be built at ManitouFalls to deliver 42,000 kW. At the same time anew development was planned for NiagaraFalls to take advantage of the additional wateravailable through the diversions from North­ern Ontario into Lake Superior and from theagreement with the United States regardinguse of Niagara River waters.

All of these foregoing projects to expandHydro's generating capacity were completedby the early 1950s.

Ontario Hydro's generation from the earli­est days of Niagara was mostly at 25 hertz fre­quency. This turned out to be.unfortunatemostly - because neighboring systems withinOntario, the Quebec system and the borderingU.S. system were already operating at 60 hertz.Ontario Hydro decided, in the late 1940s, tostandardize at 60 hertz. This was a bold deci­sion leading to improvement in performancefor lighting and greater flexibility of transmis­sion interconnections to surrounding systems.The changeover. was a huge task involvingmotor replacements or rewinds in 6,213,000frequency sensitive items of equipment. From1949 it took about a decade to complete thisfrequency conversion project.

Additional thermal units were installed inthe early 1950s at Hearn and Keith generatingsta~ions as delays continued with respect to un­dertaking the development of the St.Lawrence. The new hydraulic generating sta­tion at Queenston was begun at about the sametime. It involved the building of two 45-foot di­ameter, 5% mile long, concrete-lined tunnelsunder the City of Niagara Falls and would add1,370,000 kilowatts of generating capacity. Anancillary was the construction of a pumpedstorage station that would draw electricalpower from the system during the night-timelow-demand period in order to pump waterinto a 750-acre storage reservoir. During day­time peak-demand periods, the water wouldflow back through the pumps, now acting asturbines, and would be added to the waterflowing through the turbines of the main gen­erating station.

In 1950, the Canadian Covernment, restivewith the continuing impasse over the develop-

Page 95: Electricity - The Magic Medium

cette frequence. Par un geste aussi resolu, l'en­treprise parvient a ameIiorer I'efficacite del'eclairage et a faciliter les interconnexions.L'operation representa une tache immensepuisqu'il fallut remplacer les moteurs ou lesbobines de 6 213 000 appareils sensibles auxvariations de frequence. On mit environ dixans acompteI' de 1949 afin de terminer la con­version.

Par ailleurs, comme Ie debut des travaux surIe Saint-Laurent accusait un certain retard, oninstalla,_au debut des annees 50, de nouvellesgeneratrices thermiques dans les centralesHearn et Keith. A peu pres a la meme periode,on entreprit la construction de la centrale' hy­draulique de Queenston. II fallut alorsamenager, sous la ville de Niagara Falls, deuxtunnels recouverts de beton et faisant approxi­mativement 14 metres de diametre et 9 ki­lometres de longueur. L'usine ajouterait1 370000 kW au reseau. On eut egalementl'idee d'integrer au complexe une station depompage qui, pendant les heures creuses de lanuit, se servirait du courant de la centrale afinde remplir un reservoir de stockage de 300hectares. Pendant les heures de pointe, l'eauainsi accumulee retournerait dans les pompesqui, faisant office de turbines, permettraientd'ajouter a la capacite des installations princi­pales.

En 1950, Ie gouvernement canadien, impa­tiente par Ie non-aboutissement des pourpar­leI'S sur l'amenagement de la voie maritime duSaint-Laurent et sur la construction d'installa­tions hydroelectriques, annonce son intentiond'assumer seul l'entiere responsabilite des tra­vaux. En decembre 1951, Ie Parlement cana­dien adopte a l'unanimite la Loi sur l'Adminis­tration de la voie maritime du Saint-Laurentainsi que la Loi sur l'amenagement de l'energiedes rapides internationaux. Par cette dernieremesure, 1'0ntario Hydro se voit accorder Iedroit d'amenager, de concert avec un orga­nisme americain, des installations hydroelectri­ques sur la portion des rapides situee dans lapartie internationale du Saint-Laurent.

Avec la mise en service de la centrale SirAdam Beck 2, a Queenston en 1954 (en 1958,elle fut portee a sa capacite maximale de1 370000 kW, station de pompage comprise),il ne reste plus qu'un seul grand site hydrauli­que a exploiter. L'inauguration des travaux deconstruction de la centrale St. Lawrence (re­baptisee depuis centrale Robert H. Saunders) alieu en aOllt 1954, en presence de represen­tants des gouvernements canadien et ontarienet de delegues de l'Etat de New York, La memeannee, l'Ontario Hydro et I'Energie Atomique

du Canada, Limitee (E.A.C.L.) entreprennentd'explorer conjointement la possibilite d'utili­ser l'atome comme source d'energie. Lenucleaire arrivait a point nomme car 1'0ntario,a court de sites hydrauliques rentables, devaitencore une fois se tOUl'ner vel's Ie charbon afinde satisfaire la demande. Bient6t, la "houilleblanche" n'offrirait plus de perspectives dedeveloppement. II fallait trouver une nouvellesource d'energie.

Le 1er juillet 1959, la centrale St. Lawrenceest mise en service. Quelque 940000 kWd'electricite sont ajoutes au reseau. L'usine, quimesure plus d'un kilometre de long, a ete cons­truite en deux parties, l'une par les Americainset l'autre par les Canadiens. Sa capacite nomi­nale totale est de 1 880000 kW. Un reve deplusieurs decennies venait finalement de serealiser.

La houille blanche, qui se trouvait sur placeet pouvait s'exploiter a bon compte, avait mer­veilleusement contribue au bien-etre des Onta­riens. Par quai la remplacerait-on? Les recher­ches entreprises conjointement par l'OntarioHydro et l'E.A.C.L. aboutirent a la conceptiond'un modele de reacteur (20 MW), que l'onconstruisit a Rolphton, sur 1'0utaouais. Lestravaux furent realises par les deux societesprecitees, auxquelles s'est jointe la GeneraleElectrique du Canada. En juin 1962, on par­vint, pour la premiere fois au Canada, a pro­duire de l'electricite a partir de la fission del'uranium. ParalleIement a la mise en place dece prototype, une autre equipe avait com­mence a dessiner et a construire, a DouglasPoint, une centrale grandeur nature. Le nou­veau modele serait capable de produire200 MW. L'ere des centrales nucleaires venaitde s'ouvrir en Ontario. Et tout comme pourl'hydroelectricite, on pourrait les faire fonc­tionner en puisant dans les ressources locales.

Durant les annees 50, l'Ontario Hydro avaitentrepris des essais de transmission a treshaute tension (jusqu'a 500 kV). Une fois qu'oneut demontre la rentabilite economique de tel­les transmissions sur de longues distances, onentreprit des etudes de terrain en vue de cons­tmire une series de centrales hydrauliquesdans Ie bassin de la riviere Moose, au Nord-Est.Trois nouvelles centrales; construites a un peumoins de 100 kilometres au nord de Kapuska­sing, viennent donc se joindre a l'usine de55000 HP que la Spruce Falls Power & PaperCompany avait amenagee en 1928 a SmokyFalls, sur un affluent de la rivihe Moose,la Mattagami. Les trois installations-LittleLong (environ 130000 kW), Harmon (environ145 OQO kW) et Kipling (environ 145000 kW)-

77

Page 96: Electricity - The Magic Medium

ment of the St. Lawrence Seaway and the asso­ciated hydraulic generating facilities, indicatedthat it was prepared to proceed alone andcould and would make construction of theseaway its undivided responsibility. By De­cember 1951 the Canadian Parliament, withunanimous consent of all parties, passed boththe St. Lawrence Seaway Authority Act and theInternational Rapids Power Development Act.The latter empowered Ontario Hydro to un­dertake the construction of a hydro-electricpower development, together with a desig­nated U.S. power authority, in the interna­tional rapids section of the river.

With the opening of the Sir Adam BeckGenerating Station #2 at Queenston in 1954

.(completed in 1958 to its full capacity of1,370,000 kilowatts including the pumpedstorage facility) there remained but one largehydraulic site for development. Ground break­ing ceremonies for the St. Lawrence generat­ing station (later to be called the Robert H.Saunders Station) took place in August 1954with dignitaries from the Canadian Govern~

meot as well as the0ntario Government andthe State of New York. In the same year On­tario Hydro, in concert with Atomic Energy ofCanada Limited, began the exploration of thepower of the atom to generate electrical power.The latter was timely for Ontario had come tothe end of its economical hydro-electric sitesand was once again having to turn to coal-firedgeneration to meet the demand for electricalenergy. The limits of "white coal" were insight. A new raw source of energy wasneeded. '

On Dominion Day 1959 the St. Lawrencegenerating station was placed in service addingsome 940,000 kW of power to Ontario Hydro'ssystem in a 3,300-foot-long generating stationbuilt in two halves, part by Americans, part byCanadians, with a total capability of1,880,000 kW. A dream spanning decades wasfinally a reality.

"White coal", the indigenous lowccost sourceof energy, had contributed magnificently toOntario's well-being. What was to replace it incoming years? The joint studies by OntarioHydro and AECL led to the design and con­struction of a demonstration prototype NPD(Nuclear Power Demonstration) at Rolphtonon the Ottawa River. The plant was under­taken as a joint venture by AECL, CanadianGeneral Electric Company and OntarioHydro. With a capability of 20 MW, it pro­duced the first electrical power in Canada gen­erated from the fissioning of uranium in Juneof 1962. Concurrently with the design and

78

construction of this station, another team ofdesigners began the design and construction ofa full-scale demonstration plant to deliver 220megawatts of electricity at Douglas Point. Thenuclear age of electricity was under way in On­tario, and, as was the case with "white coal" ear­lier, would be able to draw upon an indigenousraw material source of energy.

During the 1950s Ontario Hydro began testson EHV (extra high voltage) transmission at500 kV. Once this method of transmitting elec­tricity over long distances was demonstrated tobe economical, studies were carried out for aseries of hydraulic generating stations on theMoose River system in northeastern Ontario.About 60 miles north of Kapuskasing threenew generating stations were built to join theSmoky Falls generating station (55,000 hpowned by the Spruce Falls Power & PaperCompany-built in 1928) on the MattagamiRiver (a tributary of the Moose River). Thesestations were Little Long G.S. (about130,000 kW), Harmon G.S. (about145,000~kW) and Kipling G.S. (about145,000 kW) and were completed in 1963,1965 and 1966 respectively. Nearby on theAbitibi River (also a tributary of the MooseRiver) Otter Rapids G.S. (about 180,000 kW)had its first two units placed in service in 1961and a further two units in 1963. Power fromthese generating stations was collected at Pin­ard T.S., located between Harmon G.S. andAbitibi G.S., by means of 230 kV lines andthence transmitted to Sudbury and Essa at500 kV. In more recent years, the flow of elec­trical power has been from Southern Ontarioto the north.

During these past twenty years Ontario's in­creasing requirements for electrical energyhave been met by additional thermal plants.Some of these have been oil-fired, some coal­fired and some nuclear-fired. The LennoxG.S. oil-fired station has since been moth­balled as an aftermath of the oil cartel formedby OPEC nations. Coal-fired stations havebeen installed on Lake Ontario near Toronto,on Lake Erie at Nanticoke, on the St. ClairRiver (Lambton G.S.) and in the northwestnear Thunder Bay. Nuclear plants have beenadded at Pickering and at the Bruce locationon Douglas Point.

The construction of Nanticoke G.S. (4,000megawatts) and Lennox G.S. (2,000 me­gawatts) led to the building of 500 kV lineslinking these two plants to the Toronto area.Completion of the CANDU nuclear generat­ing stations at Pickering (2,000 megawatts in1973) and on the Bruce peninsula (3,200 me-

Page 97: Electricity - The Magic Medium

sont respectivement achevees en 1963, 1965 et1966. Non loin, sur la riviere Abitibi, autre af­fluent de la Moose, la centrale Otter Rapids(environ 180000 kW) met en service ses deuxpremieres generatrices en 1961, suivies dedeux au tres en 1963. L'energie produite parces centrales est acheminee, sur des lignes de230 kV, au poste de transformation Pinard,situe entre les centrales Harmon et Abitibi. Dela, elle emprunte des lignes de 500 kV pour serendre aUK postes de transformation de Sud­bury et d'Essa. Depuis quelques annees, toute­fois, c'est Ie Sud de l'Ontario qui approvisionneIe Nord en electricite.

Au cours des vingt dernieres annees, il afallu construire d'autres centrales thermiquesafin de repondre a la demande d'electricite.Trois sources d'approvisionnement ont etemises a contribution: Ie mazout, Ie charbon etIe nucleaire. A la suite de la formation du car­tel de I'O.P.E.P., on decide toutefois de mettrehoI's service la centrale de Lennox, alimenteeau mazout. Des centrales au charbon sont cons­truites en bordure des lacs Ontario (Toronto)et Erie (Nanticoke) ainsi que sur la riviere St.Clair (Lambton) et dans Ie Nord-Ouest, presde Thunder Bay. Des reacteurs nucleairesviennent s'ajouter a Pickering et au site Bruce,it Douglas Point.

La construction des centrales Nanticoke(4000 MW) et Lennox (2000 MW) donne lieua l'edification de lignes de 500 kV destinees arelier ces deux installations a la region de To­ronto. II faudra par la suite installer de nouvel­les lignes de 500 kV afin d'absorber la produc­tion des centrales nucleaires CANDU, deconstruction recente (Pickering, 2000 MW,1973 et Bruce, 3 200 MW, 1979). De nouvellesgeneratrices viendront bientot doubler la capa­cite de ces deux centrales.

Par ailleurs, on s'affaire actuellement a cons­truire, pres de Bowmanville, une importantecentrale nucleaire. Elle s'appellera Darlingtonet devrait entrer en service au debut desannees 90. Le nucleaire fournira alors plus dela moitie de l'energie electrique consommeepar l'Ontario. La demande, qui ne cesse decroitre, s'etablit actuellement a 18896 MW du­rant les heures de pointe.

Les modestes roues hydrauliques et les vail­lantes machines it vapeur des annees 1880 ontete remplacees par un gigantesque reseau decentrales et de lignes de transport. Ces installa­tions constituent I'echine de I'industrie, ducommerce et de la vie moderne en Ontario.Sans elles, la province n'aurait pu atteindre Ieniveau de prosperite dont elle jouit au­jourd'hui et les centres urbains n'existeraient

pas dans leur forme actuelle. II ne fait aucundoute que Ie maintien du fort taux de crois­sance de la population ontarienne passe parI'amelioration, I'expansion et l'extension dureseau electrique de la province, queUe que soitla source d'approvisionnement: I'eau, Ie gaz, Iemazout, Ie charbon ou un combustiblenucleaire. L'electricite est une "prodigieuseenergie" qui peut etre transportee sur des dis­tances considerables et acheminee vel'S des mil­lions de points d'utilisation, afin que toute unepopulation puisse la commander au toucherdu doigt.

Manitoba"La lumiere (eIectrique) fut", a Winnipeg, unjour de l'annee 1873, lorsque I'Honorable R.H.Davis reussit it allumer "un extraordinaire arceIectrique" afin d'eclairer la fa<,;ade de I'hotelDavis House, rue Main. La meme annee, laWinnipeg Gas Company etait constituee, suivieun peu plus tard par la Manitoba Electric andGas Light Company. Les deux entreprises fu­sionnerent en 1881. L'annee suivante, Winni­peg voyait s'allumer dans ses rues les pre­mieres ampoules electriques au carbone.

Au cours des vingt annees qui suivirent, pasmoins de six entreprises se lancerent dans l'ex­ploitation de tramways eIectriques et la pro­duction d'electricite. La Winnipeg ElectricStreet Railway Company fut formee en 1892.En 1904, elle fut rebaptisee la Winnipeg Elec­tric Railway Company et, en 1906, cinq des sixsocietes avaient fusionne ou etaient devenuesdes filiales de l'entreprise de Winnipeg. Lasixieme, etablie a Brandon, ne se joignit augroupe que bien plus tard.

En 1906, toujours, la ville de Winnipeg faitfaire des etudes en vue de trouver, sur lariviere du meme nom, un emplacement pro­pice a la construction d'une centrale hydroeIec­trique. Le choix se porte sur Ie site de Pointe­du-Bois et, en 1911, une ligne de 120kilometres alimente la ville. En 1913, on ins­talle deux autres generatrices ainsi qu'uneligne de 69 kilovolts sur support a deux ternes.C'est ainsi que prend naissance la vocation dela Winnipeg Hydro, organisme public chargede fournir de l'electricite aux abonnes de Win­nipeg. En 1926, la capacite de la centrale dePointe-du-Bois est portee a 64000 HP puis a105000 HP en 1965. L'usine beneficie d'unehauteur de chute de 13 merres. La WinnipegHydro construit egalement, en plein coeur dela ville, une usine thermique qu'elle exploiteconjointement avec un systeme central dechauffage urbain. En 1982, 214 etablissements

79

Page 98: Electricity - The Magic Medium

gawatts in 1979) led to extensions to the500 kV transmission system. Currently addi­tional units coming into service will double thesize of both the Bruce and Pickering generat­ing stations.

Under construction at the present time isone of the largest nuclear generating stations,Darlington Station, located near Bowmanville,which is slated to come into service in the early1990s. By that time nuclear power will be sup­plying over 50 percent of a still growing de­mand for electrical energy in Ontario. Todaythis demand stands at 18,896 megawatts dur­ing peak periods.

What started out as a series of small waterwheels and steam engines in the 1880s has ex­panded to an enormous network of generating

Sir Adam Beck Generating Station I and 2 (right side ofriver), at Niagara, from downstream, Queenston Bridgein foreground. Photo courtesy of Ontario Hydro.

stations and transmission line grids. These arethe backbone of Ontario's industry, commerce,and modem way of life. Without these electri­cal developments the province could not havereached its present state of well-being. Itscities, as we know them, could not exist. Con­tinuing progress to support the ongoinggrowth of population at a high level most cer­tainly calls for improvement, expansion andextension of the electricity system regardless ofwhether it be fed by waterpower, gas, oil, coal,or nuclear fuel. Electricity is the magic me­dium that permits the movement of energyfrom remote generating sites to millions ofpoints where it is -called into service and con­trolled by millions of people "at the touch of afinger" .

Les centrales Sir Adam Beck I et 2 (a droite de la riviere),a Niagara, vues de ('aval, avec Ie pont Queenston enavant-plan. Photo: Ontario Hydro.

,,I,IIIIb

80

Page 99: Electricity - The Magic Medium

Les centrales Sir Adam Beck1 et 2 avec Ie reservoir enalTiere-plan. Photo: OntarioHydro

Sir Adam Beck GeneratingStations I and 2 withreservoir in background.Photo courtesy of OntarioHydro.

La centrale nucleaire dePickering, en 1985. Photo:Ontario Hydro.

Pickering NuclearGenerating Station, 1985.Photo courtesy of OntarioHydro.

81

Page 100: Electricity - The Magic Medium

Duncan Street Substation, 1914. Photo courtesy ofToronto Hydro Electric System.

Le paste de la rue Duncan, :1 Toronto, en 1914. Photo:Toronto Hydro Electric System.

Duncan Street Substation with extension, 1918. Photocourtesy of Toronto Hydro Electric System.

Constructing an extension to Duncan Street Substation,1916. Photo courtesy of Toronto Hydro Electric System.

Agrandissement du paste de la rue Duncan, en 19) 6.Photo: Toronto Hydro Electric System.

Le paste de la rue Duncan une fois agrandi, en 19) 8.Photo: Toronto Hydro Electric System.

82

Page 101: Electricity - The Magic Medium

Aujourd'hui, Ie paste de la rue Duncan continued'alimenter Ie centre-ville de Toronto. Photo: TorontoHydro Electric System.

Poste d'alimentation d'un ensemble d'immeubles debureaux du centre-ville de Toronto. Photo: Banque deCommerce Canadienne Imperiale et Toronto HydroElectric System.

Duncan Street Substation today, still serving in downtownarea. Photo courtesy of Toronto Hydro Electric System.

Modern power entrance station for downtown officebuilding complex. Photo courtesy of Canadian ImperialBank of Commerce and Toronto Hydro Electric System.

-----_._----_._.__._-----_._.._--_._-------_.-------.--.__._--- .._----._----_..-.._--_.._----

83

Page 102: Electricity - The Magic Medium

Power Distribution Station for downtown office buildingcomplex. Photo courtesy of Canadian Imperial Bank ofCommerce and Toronto Hydro Electric System.

Monitoring and Control Room for downtown officecomplex. Photo courtesy of Canadian Imperial Bank ofCommerce and Toronto Hydro Electric System.

Poste de distribution d'un ensemble d'immeubles debureaux du centre-ville de Toronto. Photo: Banque deCommerce Canadienne Imperiale et Toronto HydroElectric System.

Salle de surveillance et de commande pour un ensembled'immeubles de bureaux du centre-ville de Toronto.Photo: Banque de Commerce Canadienne Imperiale etToronto Hydro Electric System.

84

Page 103: Electricity - The Magic Medium

La rue Yonge, au nord de la rue Alexander, it Toronto,en 1937. Photo; Toronto Hydro Electric System.

La rue Yonge, au nord d'Alexander, en 1985. Photo;Toronto Hydro Electric System.

1937-Yonge Street North of AlexandeL Photo courtesyof Toronto Hydro Electric System.

1985-Yonge Street north of Alexander. Photo courtesy ofToronto Hydro Electric System.

85

Page 104: Electricity - The Magic Medium

Manitoba

"The Day the Light came on in Winnipeg", in was established at 110 kilovolts.1873, the Hon. R.H. Davis operated a "tre- By 1931 the Northwestern Power Company,mendous arc-light" to illuminate the front of a subsidiary of the Winnipeg Electric Com-his Davis House Hotel, on Main Street. The pany, had developed its Seven Sisters plant, 55Winnipeg Gas Company was also incorporated miles from Winnipeg, while the Winnipegin 1873. It was followed by the Manitoba Elec- Hydro had developed its Slave Falls generatingtric and Gas Light Company and the two station, 80 miles from Winnipeg.merged in 1881. The City of Winnipeg en- Back in 1919, the Manitoba Power Com mis-joyed its first electric street lighting, by carbon- sion was established to extend service to ruralarc lamps, the following year in 1882. towns and districts.

During the ensuing twenty-year period, to In 1953, the privately-owned Winnipeg1902, no less than six separate companies Electric Company passed over to public owner-within Manitoba entered into the electric street ship when The Manitoba Hydro-Electricrailway and electric power generation busi- Board, an agency of the Province, purchasednesses. The Winnipeg Electric Street Railway the common shares. Three years later anCompany was formed in 1892. In 1904 its agreement was concluded between the Winni-name was changed to Winnipeg Electric Rail- peg Hydro, The Manitoba Hydro-Electricway Company and, by 1906, five of the six Board and the Manitoba Power Commission.companies previously referred to had either Competition within Winnipeg between themerged or become subsidiaries of Winnipeg Winnipeg Electric Company amI the WinnipegElectric Railway Company. The sixth company .... Hydro was finally eliminated. Winnipegwas located in Brandon and did not become Hydro took over all power distribution withinpart of the system until much later. the city while relinquishing to Manitoba Power

The same year, 1906, the City of Winnipeg Commission all its power distribution facilitiescalled for engineering studies to find a suitable outside of the city.site along the Winnipeg River for water power Within the Province at that time there weredevelopment. Pointe du Bois was selected and, two provincial agencies: The Manitoba Hydro-in 1911, the plant was pumping electric power Electric Board-responsible for generatingover a 75 mile circuit to Winnipeg. By 1913 power-and the Manitoba Power Commis-two new generators and a new double-circuit sian-responsible for distribution of the power69 kilovolt transmission line were added. This outside the City of Winnipeg as it existed atwas the beginning of the Winnipeg Hydro as a that time. The two provincial agencies werepublicly owned utility to serve electricity cus- amalgamated by an Act of the Provincial Legis-tomeI's in Winnipeg. By 1926, the Pointe dtI lature in 1961.Bois plant capacity had been increased to To the extent that its largest hydraulic64,000 hp and by 1965 to 105,000 hp operat- power potential lies far to the north of its maining under a 43 foot head of water power. Win- load centres, Manitoba is similar to Quebec.nipeg Hydro also constructed a steam turbine Studies had shown that there was a potentialplant in the heart of the city which operates in approaching 7,000 megawatts of hydro-elec-conjunction with a central steam heating sys- tric power available on the Nelson River com-tern which, by 1982, was supplying steam heat- prising the most economic source of power foring to 214 core-area commercial customers. the Province. A system of generating stations

Meanwhile, three more companies asso- was planned for staged development. Variousciated with the Winnipeg Electric Railway schemes for transmitting the power 565 milesCompany, were formed betwti:en 1910 and to the market in Winnipeg were examined. A1920: Manitoba Power Company, Winnipeg high voltage dc (HVDC) system was selected.River Railway Company and Winnipeg River The first stage was rated 810 megawatts at 450Power Company. Later on they all joined the kilovolts dc and was placed in service in 1973.Winnipeg Electric Railway Company which, in Some years later this was expanded to 16201924, renamed itself Winnipeg Electric Com- megawatts operating at ± 450 kilovolts de.pany. This organization had developed a Subsequent stages of this bipole system ex-28,000 hp generating unit at Great Falls on the tended the capacity to 2620 megawatts byWinnipeg River which was increased to 1978. The Nelson River HVDC System was the186,000 hp in 1928. This site was 65 miles third such installation in Canada and is by farfrom Winnipeg and the transmission voltage the longest.

86

Page 105: Electricity - The Magic Medium

Le jour ou la lumiere apparut, it Winnipeg, en 1873.Photo: Manitoba Hydro et Manitoba Archives.

The Day the Light Came On in Winnipeg, 1873. Photocourtesy of Manitoba Hydro and Manitoba Archives.

Inauguration du tramway eleetrique de Winnipeg, Ie 5septembre 1892. Photo: Manitoba Hydro et ManitobaArchives.

Opening of Winnipeg Electric Street Railway-5thSeptember, 1892. Photo courtesy Manitoba Hydro andManitoba Archives.

Debuts de [,electrification rurale par la Manitoba PowerCommission. Photo: Manitoba Hydro.

Early Rural Electrilication, Manitoha Power Commission.Photo courtesy of Manitoba Hydro.

Debuts de ['electrification rurale par la Manitoba PowerCommission. Photo: Manitoba Hydro.

Early Rural Electrification, Manitoba Power Commission.Photo courtesy of Manitoba Hydro.

87

Page 106: Electricity - The Magic Medium

Construction of Seven Sisters project of North WestPower Corporation, \930. Photo courtesy of ManitobaHydro.

Kettle Generating Station on the Nelson River, 1980.Photo courtesy of Manitoba Hydro.

Construction du complexe des Seven Sisters par fa NorthWest Power Corporation, en 1930. Photo: ManitobaHydro.

Centrale de Kettle, sur la riviere Nelson, en \980. Photo:Manitoba Hydro.

88

Page 107: Electricity - The Magic Medium

Poste de conversion Radisson du systeme H.T.e.e. de lariviere Nelson. Photo: Manitoba Hydro.

Deux des plus longues lignes de transport a tres hautetension et acourant continu au monde, qui couvrent unedistance de 900 kilometres. Photo: Manitoba Hydro.

Radisson Converter Station of the Nelson River HVDeSystem. Photo courtesy of Manitoba Hydro.

Two extra-high-voltage direct current transmission lines,among the world's longest, follow a 900 kilometer routeto express power through tbe interlake region. Photocourtesy of Manitoba Hydro.

89

Page 108: Electricity - The Magic Medium

SaskatchewanElectricity was brought to Regina in 1890 topower electric lights, the first lights on thePrairies in part of the Northwest Territoriesthat was later to become the Province of Sas­katchewan. Peter Lamont, a local business manwho already operated a bookstore and tele­phone system, installed a "high-speed steamengine that produced just 75 hp". The plantoperated only during hours of darkness.

Within months the people of Moose Jaw andPrince Albert also were enjoying electric light.The Moose Jaw generator powered 350 lightbulbs, each of 16 candle power, at a cost of$1.50 per month per light. The municipalitiesoperated street lights only on nights whenthere was no moonlight.

Seeking to improve the reliability of service,the municipalities of Regina, Moose Jaw andPrince Albert began buying out the privately­owned companies and, by the time Saskatch­ewan was incorporated as a province in 1905,.all of the central generating stations weremunicipally-owned. In the boom years preced­ing World War I, municipally-owned generat­ing stations came to life in twenty centres.There was no construction during the waryears. Private entrepreneurs and municipal­ities alike frantically scrambled to meet the ex­panding demand during the post war period.By 1929 theI"e were over 119 generating sta­tions scattered across the Province serving only20 per cent of the population with almost asmany rate schedules as there were plants whilerural electrification was virtually non-existent.

After a two-year Royal Commission investi­gation the Saskatchewan Power ResourcesCommission tabled a report in 1926 recom­mending that the government set up and regu­late energy production and transmission. TheSaskatchewan Power Commission was thus es­tablished in 1929. Drought and the depressiondevastated the Prairies throughout most of the1930s resulting in deficit operations for theCommission until 1938. Activities during theyears of the second war were restricted tomeeting the power demands of military instal­lations.

In the years immediately following WorldWar II, the Commission purchased the Do­minion Electric Power Company, the PrairiePower Company and the plant and transmis­sion lines of Canadian Utilities Ltd. that werelocated within Saskatchewan. In 1949, theCommission became the government-ownedSaskatchewan Power Corporation. In the same

90

year, the Rural Electrification Act was passedwith the intention of supplying electricity to allfarms, villages and hamlets who wanted it.There followed an unprecedented mechanizedexpansion of the rural distribution system. By1960, this program reached about 67,000farms and all villages and hamlets in the popu­lated half of the Province.

Discoveries of oil and gas in the early fiftiesprovided fuel for generation and also created anew market for electrical power at conipressorstations and oil well operations. Then high­grade lignite coal was found within the Prov­ince. Saskatchewan was ready to develop large­scale thermal generating plants. One-atBoundary Dam near Estevan-originally con­sisted of 132,000 kilowatts of generating capac­ity. Using high-grade lignite fuel the plant ca­pacity was increased to 874,000 kilowatts. Theother thermal station-the Queen Elizabethplant near Saskatoon-also originally consistedof 132,000 kilowatts of generating capacity.This is_a multicfuel station eapable of utilizing' ..coal, bunker oil and natural gas for fuel. Thecapacity of this station was increased to232,000 kilowatts by 1971.

Hydro-electric generation had to await theSouth Saskatchewan River Development whichwas undertaken to provide irrigation and con­trol the !low of the main watercourse in theProvince. In 1959 the Power Corporationbegan construction of the Squaw Rapidshydro-electric project, the Province's firstm<00r hydraulic generating station, with apresent capability of 280,000 kilowatts. Thiswas followed by the Coteau Creek hydro-elec­tric plant, also on the South SaskatchewanRiver, completed in 1967.

Many early electric power companies acrossCanada had to compete initially with the gasinterests. It should be noted that in the case ofSaskatchewan the Power Corporation was anelectrical utility first and added distribution ofgas later.

AlbertaThe generation and sale of electrical energy inAlberta is a story best told in three parts whichhad their beginnings respectively in the City ofCalgary in southern Alberta, in the City of Ed­monton 200 miles farther north and in theTown of Vegreville 60 or so miles east of Ed­monton. For the sake of continuity we relateeach of these as distinct developments in spiteof many inter-relationships which have beeninvolved along the way.

Page 109: Electricity - The Magic Medium

commerciaux du centre-ville sont aInSlchauffes a la vapeur.

Entre-temps, trois autres entreprises sontereees entre 1910 et 1920: la Manitoba PowerCompany, la Winnipeg River Railway Com­pany et la Winnipeg River Power Company.Elles finirent par se joindre ala Winnipeg Elec­tric Railway Company qui, en 1924, prend Ienom de Winnipeg Electric Company. Celle-ciavait installe a Great Falls, sur la riviere Winni­peg, une centrale de 28000 HP, laquelle futportee en 1928 a 186000 HP. L'emplacement,situe a 105 kilometres de la ville, est dote d'unecapacite de transmission de 110 kilovolts.

En 1931, la Northwestern Power Company,filiale de la Winnipeg Electric Company, ins­talle sa centrale de Seven Sisters, a 90kilometres de Winnipeg. De son cote, la Winni­peg Hydro amenage la centrale de Slave Falls,a 130 kilometres.

Avant cela, en 1919, la Manitoba PowerCommission avait ete creee afin d'etendre Ieservice aux regions rurales.

En 1953, la Winnipeg Electric Company, quietait une entreprise privee, devient une societepublique. Le Manitoba Hydro-Electric Board,organisme provincial, avait en effet acquis lesactions ordinaires de la compagnie. C'est ainsique la ville de Winnipeg voit enfin se terminerI'ere de la concurrence entre la Winnipeg Elec­tric Company et la Winnipeg Hydro. Celle-ciprend sous sa responsabilite la distribution del'electricite dans toute la ville et cede a la Mani­toba Power Commission toutes les installationsqu'elle possede a I'exterieur de la municipa­lite.

La province comptait a l'epoque deux orga­nismes charges des questions energetiques: IeManitoba Hydro-Electric Board, responsablede la production de l'electricite, et la ManitobaPower Commission, dont Ie role consistait adistribuer l'energie a l'exterieur des limites deWinnipeg, telles qu'elles etaient alars definies.En 1961, les deux societes sont reunies par uneloi de I'assemblee legislative.

Etant donne que ses principaux sites hy­drauliques sont situes loin au Nord, Ie Mani­toba se trouve un peu dans la situation duQuebec. D'apres certaines etudes, Ie potentielenergetique du fleuve Nelson s'e!eve a pres de7 000 megawatts. C'est la que se trouve lasource d'energie la plus economique du terri­toire manitobain. C'est pourquoi on decida d'yconstruire, en plusieurs etapes, un reseau decentrales. Plusieurs moyens ont ete envisagesafin d'acheminer l'energie vers Winnipeg, aplus de 900 kilometres de la. Le choix se portasur un systeme de transmission a courant con-

tinu et a haute tension (C.C.H.T.). La premierepartie, d'une capacite de 810 MW a 450 kilo­volts de courant continu, fut mise en service en1973. En 1978, les autres parties de ce reseaubipolaire avaient amene la capacite de I'ensem­ble a 2 620 MW. Le reseau C.C.H.T. du fleuveNelson est Ie troisieme a avoir ete installe auCanada. II est egalement, et de loin, Ie plus im­portant en longueur.

SaskatchewanC'est en 1890 que I'electricite fait son appari­tion a Regina. On s'en servait alars afin d'ali­menter les premieres ampoules electriques enusage dans cette partie des Territoires duNord-Ouest, appelee a devenir plus tard laprovince de la Saskatchewan. Peter Lamont,entrepreneur local qui exploitait deja une li­brairie et un service telephonique, installa une"machine a vapeur tournant a grande vitesse etproduisant tout juste 75 HP". L'installation nefonctionnait que durant les heures d'obscu­rite.

Quelques mois plus tard, les citoyens deMoose Jaw et de Prince Albert beneficiaienteux aussi de I'eclairage electrique. La genera­trice de Moose Jaw alimentait350 ampoules de16 bougies chacune, au prix de 1,50 $ par moiset par ampoule. Les municipalites n'eclairaientles rues qu'en I'absence de clair de lune.

Afin d'ameIiorer la fiabilite du service, lesvilles de Regina, de Moose Jaw et de Prince Al­bert entreprennent de faire l'acquisition desproducteurs prives. En 1905, annee ou la Sas­katchewan est constituee en province, toutesles ceotrales soot de propriete municipale. Du­rant Ie boom economique qui precede la Pre­miere Cuerre mondiale, 20 municipalites met­tent en service des usines de production.Pendant la guerre, c'est Ie calme plat. Maisapres, les entrepreneurs prives comme les mu­nicipalites cherchent desespen~ment a raUra­per Ie temps perdu afin de repondre a une de­mande en pleine croissance. En 1929, oncompte plus de 119 centrales disseminees danstoute la province. Toutefois, a peine 20 pourcent de la population beneficient de l'electri­cite, les tarifs sont presque aussi nombreux queles centrales elles-memes et l'electrification ru­rale est pl"atiquement ioexistante.

A la suite d'une enquete royale, la Saskatche­wan Power Resources Commission recom­mande, en 1926, que la production et la distri­bution de l'electricite soient prises en chargepar les autorites provinciales. C'est ainsi qu'estereee, en 1929, la Saskatchewan Power Com­mission. La secheresse et la depression, quidevastent les Prairies pendant la mcUeure par-

91

Page 110: Electricity - The Magic Medium

Commission staff at entrance of original office in Regina,1930. Photo courtesy of Saskatchewan PowerCorporation.

Le personnel de la Comrnission, devant I'entree dupremier immeuble de I'entreprise, a Regina, en 1930.Photo: Saskatchewan Power Corporation.

Squaw Rapids Hydro-Electric Station, the first hydropower project on the Saskatchewan River System. Photocourtesy of Saskatchewan Power Corporation.

Squaw Rapids Dam. Photo courtesy of SaskatchewanPower Corporation.

Le barrage de Squaw Rapids. Photo: Saskatchewan PowerCorporation.

La centrale hydroelectrique de Squaw Rapids, lapremiere du reseau de la riviere Saskatchewan. Photo:Saskatchewan Power Corporation.

92

Page 111: Electricity - The Magic Medium

La centrale de la rivihePoplar, 11 Coronach, la plusreceme de la Saskatchewan.Photo: Saskatchewan PowerCorporation.

Poplar River Power Station atCoronach, the newestelectrical generating plant inthe province. Photo courtesyof Saskatchewan PowerCorporation.

Great Gus, une pelle enorme servant a extraire ducharbon pour Ia centrale de ta rivihe Poplar. Photo:Saskatcbewan Power Corporation.

Great Gus-a mammoth excavating dragline mining coalfor the Poplar River Power Station. Photo courtesy ofSaskatchewan Power Corporation.

93

Page 112: Electricity - The Magic Medium

The first part of this story began one darknight in 1886 when a man named Peter Anth­ony PI'ince slipped off a board side-walk andlanded in a muddy street in Calgary. Rightthere he decided that Calgary's streets shouldbe lit by electric lights. That was the momentofconception for the predecessors of both theCalgary Power and Trasmission Company andCalgary Water Power Company, which ultima­tely evolved as Calgary Power. Peter Prince wasthe Northwest Territories manager of the EauClaire Lumber operation, having been sentthere by his company from Eau Claire, Wis­consin. He won the rights to erect poles andstring wire in Calgary and, by 1889, had thestreet lie Initially he burned sawdust from hislumber yard to fuel a 75 kilowatt steam-drivengenerator. By 1893, however, he was generat­ing by water-power with a 280 hp water wheelunder a 12 foot head on the Bow River right inthe very heart of Calgary at First Avenue SWbetween First and Second Streets. The steamplant was kept in use during periods of lowriver water flow. This was a very modestlysized plant 'even in those days. Nevertheless,this plant was subsequently used to supplypower to a small subsidiary of Eau ClaireLumber-the Calgary Water Power Company

The first three presidents of CalgaryPower.Photos courtesy of TransAlta Utilities.

Limited, which was acquired by Calgary PowerCompany in 1928.

Twenty years after Peter Prince's lights firstappeared, a group of business men in Mon­treal, headed by W. Max Aitken (later LordBeaverbrook) conceived the Calgary PowerCompany Limited. From the start CalgaryPower was linked with Montreal Engineeringthrough Aitken's investment company RoyalSecurities. After a series of mergers and trans­actions involving the Calgary Power andTransmission Company, Calgary Power Com­pany emerged, in December 1909.

Starting with W.M. Aitken, Calgary Powerdeveloped under the leadership of eight moreillustrious presidents to ultimately serve a widearea in southern and central Alberta, provid­ing over two-thirds of Alberta's electric energyrequirements, and has become the largest in­vestor-owned electric utility in Canada. Thesesucceeding presidents form an impressive listof famous Canadians: W.M. Aitken (Lord Bea­verbrook), 1909; H.S. Holt,191O-1911;-R:B.

'Bennett, 1911-1921; V.M. Drury, 1921-1924;LW. Killam, 1924-1928; G.A. Gaherty, 1928­1960; G.H. Thomson, 1960-1965; A.W. How­

. ard, 1965-1973 and M.M. Williams, 1973-pres­ene

Les trois premiers presidents de laCalgary Power.Photos: TransAlta Utilities.

W.M. Aitken (Lord Beaverbrook), 1909 H.S. Holt. 1910-l911 R.B. Bennett. 1911-1921

94

-- ----~-----------~

Page 113: Electricity - The Magic Medium

tie des annees 30, forcent la Commission a ac­cumuler des deficits jusqu'en 1938. Pendant laSeconde Cuerre mondiale, on se borne a satis­faire la demande energetique des bases militai­res.

Dans les annees d'apres-guerre, la Commis­sion acquiert la Dominion Electric Company, laPrairie Power Company ainsi que la centrale etles lignes de transport que la Canadian UtilitiesLtd. possede dans la province. En 1949, laCommission prend Ie nom de SaskatchewanPower Corporation. La meme annee, Ie gou­vernement, desireux d'approvisionner toutesles fermes et taus les villages qui Ie souhai­taient, adopte une loi sur l'electrification ru­rale. II s'ensuit une expansion record dureseau rural. En 1960, environ 67 000 exploi­tations agricoles avaient ete touchees, de memeque tous les villages compris dans la moitiehabitee de la province.

Les decouvertes de petrole et de gaz nature!,effectuees au debut des annees 50, permettentd'alimenter les centrales en combustible etcreent paralleIement un nouveau debouchepour l'energie eleetrique, puisque les installa­tions petrolieres (compresseurs et puits) doi­vent fonctionner a l'e\ectricite. Puis on decou­vre du lignite de bonne qualite. LaSaskatchewan est prete, par consequent, a sedoter d'importantes centrales thermiques.L'une d'elles, a Boundary Dam, pres de Este­van, produisait a l'origine 132 000 kilowatts.Avec du lignite de bonne qualite, on finit parobtenir 874000 kilowatts. Une autre-Ia cen­trale Queen Elizabeth, pres de Saskatoon-,etait egalement capable de produire 132000kilowatts. L'usine, qui fait appel a un systememixte (charbon, fuels lourds et gaz naturel), avu sa capacite augmenter progressivementpour atteindre 232 000 kilowatts en 1971.

Quant aux installations hydroelectriques,elles ont du attendre les travaux de mise en va­leur de la riviere South Saskatchewan. Ceux-cifurent entrepris afin d'assurer l'ilTigation desterres et de contr61er l'ecoulement du plus im­portant cours d'eau de la province. En 1959, laPower Commission entreprendla constructionde la centrale hydraulique de Squaw Rapids.C'etait la premiere fois clue la province selaw;ait dans un projet hydroeIectrique d'enver­gure. L'usine peut produire aujourd'hui280000 kilowatts. Vint ensuite, en 1967, lacentrale de Coteau Creek, egalement sur laSouth Saskatchewan.

S'il cst vrai qu'au Canada de nombreuses en­treprises d'electricite ont du commencer parfaire concurrence au gaz, il est interessant de

constater que la Saskatchewan Power Corpora­tion s'est d'abord interessee a l'e\ectricite pourensuite se lancer dans la distribution du gaz.

L'histoire de I'electricite en Alberta se raconteplus aisement si on la divise en trois parties cor­respondant a trois centres urbains: Calgary,dans Ie Sud, Edmonton, a 320 kilometres auNord et Vegreville, a environ 95 kilometres aI'est d'Edmonton. Meme si les trois histoires serecouvrent en de nombreux endroits, ncms lesraconterons separement afin de mieux assurerla continuite du recit.

La premiere partie de notre histoire com­mence a Calgary, en 1886, lorsqu'un hommedu nom de Peter Anthony Prince, plonge dansI'obscurite d'une nuit sans lune, glisse sur untrottoir de bois pour aller atterrir dans une fla­que de boue. Des lors il se promet qu'un jourles rues de la ville seraient eclairees a l'electri­cite. C'est ainsi que se trouve plante Ie germede la Calgary Power and Transmission Com­pany et de la Calgary Water Power Company,qui finirent par donner naissance a la CalgaryPower.

Peter Prince avait ete envoye par la EauClaire Lumber, d'Eau Claire (Wisconsin), afinde diriger les activites de l'entreprise dans lesTerritoires du Nord-Ouest. Apres avoir ob­tenu les autorisations necessaires, il fit installer,dans tout Calgary, un reseau de poteaux et defils electriques. En 1889, les rues de la villeetaient eclairees a l'electricite. A l'origine,Prince brulait la sciure de bois de son exploita­tion afin de chauffer une generatrice a vapeurde 75 kilowatts. En 1893, cependant, il eut re­cours a une roue hydraulique qu'il avait ins­talIee sur la rivihe Bow, en plein centre de laville, plus precisement sur la premiere avenuesud-ouest, entre la pl-emiere et la deuxiemerues. L'installation, qui profitait d'une hauteurde chute d'un peu plus de 3,5 metres, pouvaitproduire jusqu'a 280 HP. Lorsque Ie niveau dela rivihe n'etait pas assez e\eve, la generatrice avapeur etait remise en service. Meme pourI'epoque, on considerait que la centrale etaitpassablement petite. II n'empeche que I'on s'encst servi ulterieurement afin c\'alimenter unefiliale de la Eau Claire Lumber, la CalgaryWater Power Company Limited, qui fut ab­sorbee en 1928 par Calgary Power Company.

Vingt ans apres que Peter Prince eut installeson reseau d'edairage, un groupe d'entrepre­neurs montrealais, avec a sa tete W. Max Ait­ken (qui allait devenir Lord Beaverbrook), crea

95

Page 114: Electricity - The Magic Medium

By 1911 Calgary Power completed the sec­ond hydro-electric plant on the Bow at Horse­shoe Falls about 50 miles upstream from Cal­gary. With four horizontal Francis turbinesand a driving head of 72 feet, the plant has apeak capability of 14,000 kilowatts. Two yearslater, in 1913, the Company installed a furtherhydro-electric plant on the Bow at Kananaskiswith two vertical Francis turbines. These plantshad sufficient capacity to supply the develop­ing demand for electricity until 1928. Duringthe interval the Federal Government, in 1924,constructed a hydro-electric power plant onthe Cascade River, a tributary to the Bow, tosupply power to Banff National Park 100 mileswest of Calgary.

In these early years of power developmentsthe natural flow in the Bow River duringspring floods occasionally exceeded 50,000cubic feet per second but shrank to only about200 cubic feet per second in the cold wintermonths. Calgary Power Company built waterstorage basins to partially overcome the natu­ral shortage of water during the winter, whenelectricity is needed the most. The winter-timeshortage also led to an agreement between Cal­gary Power and the City of Calgary for opera­tion of the City-owned Victoria Park thermalgenerating station to complement the hydro­electric plant outputs. Future potential forwater power from the Bow River and all its tri­butaries was much greater, however, thanthese early developments. Calgary PowerCompany set out to serve a wider territory bymore fully developing these resources.

By 1928 Calgary Power Company was shortof generating capacity. The Company made adecision to design and construct the GhostPower Project. Located downstream of bothHorseshoe and Kananaskis, this plant initiallyconsisted of two 18,000 hp generators plus a1250 hp unit to provide electrical service forthe station itself as well as residual water flowfor Calgary during periods when the two largeunits were shut down. The plant was placed inservice late ill 1929. Then the depression ofthe 1930s came and further hydro-electric de­velopments were suspended until the outbreakof World War II in 1939.

The first step towards meeting war-time de­mands was to improve storage capacity at LakeMinnewanka and Upper Kananaskis Lake.The company acquired the original CascadePlant from the Federal Government and newstorage facilities came into service in 1942. Anew Cascade power plant replaced the old oneand provided 18,000 kilowatts of power to sup­ply an explosives plant in Calgary. After the

96

war, in 1947, Calgary Power completed its Bar­rier Generating Station on the KananaskisRiver about 7 miles upstream from the Bow.With a head of 140 feet and a capacity of13,000 kilowatts, this became the first remo- ­tely-controlled hydro-electric plant in Albertaand among the first in North America.

During the decade of the 1950s CalgaryPower added 6 more hydro-electric plantsalong the Bow River Valley System and in­creased the capacities of 4 existing plants.Then the Company turned from hydro-elec­tric to steam-powered stations for additionalexpansIon.

_In 1956 Calgary Power undertook its firststeam-powered installation at Lake Wabamun42 miles west of Edmonton. Initially this sta­tion burned gas but was designed to burn bitu­minous coal as soon as it would become" avail­able from an adjacent strip mining operationon property purchased from the Alberta andSouthern Coal Company. From here on we areobliged to express output capacity in terms ofmegawatts instead of mere kilowatts. Thisplant's original output was 66 megawatts and itwas utlimately expanded to produce 569 me­gawatts.

In its next phase of expansion, and underagreement with the Provincial Government,Calgary Power constructed a storage dam andreservoir on the Brazeau River, a tributary ofthe North Saskatchewan. By 1961 storage wasavailable at this reservoir, the flow ofthe NorthSaskatchewan was improved, and pollutionproblems at Edmonton were partially relieved.By 1967 this project also added 355 megawattsof generating capacity to the Calgary PowerSystem.

In the meantime, Calgary Power began thedesign of a second steam generating station tobe located at Sundance and to be supplied withsub-bituminous coal from a strip miningoperation at the Highvale Mine on the SouthWabamun coal field. Six steam-turbine genera­tors of 300 to 375 megawatts, for a total of2,000 megawatts, were ultimately installed atthis site.

With continuing water shortage and pollu­tion problems at Edmonton, Calgary Power, incooperation with the Provincial Government,developed a second water storage and controlfacility on the North Saskatchewan River, theBighorn Project. This project created LakeAbraham, a 20-mile long reservoir describedas "Alberta's largest man-made lake". Com­pleted in 1972, the plant has a capacity of 120megawatts.

Page 115: Electricity - The Magic Medium

~~_----_~~__~__~_--_~_------------------------

la Calgary Power Company Limited. La nou­velle entreprise etablit tout de suite des rela­tions avec la Montreal Engineering, par I'en­tremise de la Royal Securities, societe deporte-feuille appartenant a Aitken. A la suited'une serie de fusions et d'operations diversesconcernant la Calgary Power and Transmis­sion Company, la Calgary Power Companyetait creee en 1909.

Avec a sa tere W.M. Aitken suivi de huit au­tres distingues presidents, la Calgary Powergrandit suffisamment pour pouvoir servir unegrande partie du Sud et du Centre de I'AI­berta, de sone qu'elle finit par satisfaire Iesdeux tiers des besoins de la province et qu'elleest devenue au Canada la premiere entrepriseprivee dans Ie secteur de I'e\ectricite. Les neufpresidents qui se sont sucCt~de fonnent un im­pressionnant tableau de personnalites cana­diennes: W.M. Aitken (Lord Beaverbrook),1909; H.S. Holt, 1910-1911; R.B. Bennett,1911-1921; V.M. Drury, 1921-1924; I.W. Kil­lam, 1924-1928; G.A. Gaherty, 1928-1960;G.H. Thomson, 1960-1965; A.W. Howard,1965-1973 et M.M. William depuis 1973.

En 1911, la Calgary Power termine les tra­vaux de construction d'une deuxieme centralehydroelectrique, sur la Bow, aHorseshoe Falls,qui se trouve aenviron 80 kilometres en amontde Calgary. Equipee de quatre turbines hori­zontales de type Francis, I'usine benebcied'une hauteur de chute de 22 metres et peutproduire jusqu'a 14000 kilowatts. Deux ansplus tard, une autre centrale, equipee cette foisde deux turbines verticales de type Francis, estinauguree sur la Bow, a Kananaskis. Les deuxusines peuvent repondre a I'accroissement dela demande jusqu'en 1928. Quelques anneesallparavant, soit en 1924, Ies alltoritesfedera!es, desireuses d'alimenter Ie parc natio­nal de Banff, a 160 kilometres a I'ouest de Cal­gary, avaient amenage, line centralehydroelectrique sur la riviere Cascade, lin af­fluent de la Bow.

En ces premiers temps de I'aventurehydroelectrique, Ie not normal de la Bow pou­vait atteindre au printemps plus de 1 400metres cubes a la seconde. L'hiver, cependant,on el1I'egistrait des chutes jusqu'a 6 metrescubes. La Calgary Power Company decidadone d'amenager des bassins de stockage afinde pallier les penuries hivernales, car c'etaitpendant la saison froide que l'electricite etait Ieplus en demande. Une autre solution au pro­bleme de penurie fut de passer, avec la ville deCaJgary, une entente selon laquelle la CaJgaryPower pouvait exploiter la centrale thermiquede Victoria Park, propriete de la municipalite,

afin d'ajouter a sa propre capacite de produc­tion. Le potentiel hydroelectrique de la Bow etde ses affluents etait toutefois de beaucoupsuperieur a ce que ron parvenait deja ~l pro­duire. La Calgary Power Company entrepritdonc de poursuivre la mise en valeur de cesressources afin de servir un territoire encorepJus etendu.

En 1928, I'entreprise ne parvient plus a suf­fire a la demande. Elle decide par consequentde concevoir et de realiser un pr~iet qu'ellebaptise "Ghost Power". Situee en aval des cen­trales Horseshoe et Kananaskis, I'installationest dotee a l'origine de deux generatrices de18 000 HP et d'une autre de 1 250 HP. Cettederniere sert aux besoins energetiques deI'usine tout en pennettant I'ecoulement deseaux vers Calgary, pendant les periodes d'arretdes generatrices principales. La mise en servicea lieu a la fin de 1929. La depression qui mar­que ensuite toutes les annees 30 met un termeaux nouveaux pr~jets. Les travaux ne repren­dront qu'avec la guerre de 1939.

Pour satisfaire la demande energetique sus­citee par la guerre, on commence par augmen­tel' la capacite de stockage des lacs Minne­wanka et Upper Kananaskis. La Calgary Powerachete la centrale Cascade qui appartient aI'administration federale et, en 1942, elle meten service de nouvelles installations de stoc­kage. L'ancienne centrale Cascade est rem­placee par une autre capable de produire18 000 kilowatts. On s'en sert pour alimenterune usine d'explosifs situee a Calgary. Deuxans apres la fin de la guerre, soit en 1947, laCalgary Power termine la construction de lacentrale Barrier, sur la Kananaskis, a environII kilometres en amant de la Bow. Dotee d'une

, hauteur de chute de 43 metres et d'une capa­cite de 13 000 kW, e1le est la premiere centraleteIecommandee en Alberta, et I'une des pre­mieres en Amerique du Nord.

Au cours des annees 50, la Calgary Powerinstalle six autres centrales hydroelectriquesdans Ie bassin de la rivihe Bow et augmente lacapacite de production de quatre usines dejaen place. Par la suite, eUe se tourne vers Ie ther­mique abn de realiser ses projets d'expansion.

En 1956, I'entreprise entreprend la cons­truction de sa premiere centrale a vapeur.Situee pres du lac Wabamum, a67 kilometres aI'ouest d'Edmonton, I'usine commence par em­ployer du gaz meme si elle a ete con<;:ue pourchauffer du charbon bitumineux. C'est queI'on attend de pouvoir s'approvisionner aupresd'une mine a ciel ouvert situee sur un terrainachete de J' Alberta and Southern Coal Com­pany. C'est a partir de Ia qu'il vaut mieux ex-

Page 116: Electricity - The Magic Medium

,....------------~--------------------

98

Eau Claire Generating Station, located on the Bow Riverin the heart of Calgary, 1893. Photo courtesy ofTransAlta Utilities.

Centrale d'Eau Claire, situee sur la rivihe Bow, au coeurde Calgary, en 1893. Photo: TransAlta Utilities.

Kananaskis Power Plant on the Bow River constructed in1913. Photo courtesy of TransAlta Utilities.

Centrale de Kananaskis sur la riviere Bow, COllSlTuite en1913. Photo:'TransAlta Utilities.

Ghost Power Project on the Bow River, placed in servicein 1929. Photo courtesy of TransAlta Utilities.

Projet Ghost Power sur la rivihe Bow, dOll! la realisatioIIL ---Ia ete terminee en J929. Photo: TransAlta Utilities.

Page 117: Electricity - The Magic Medium

Le complexe de fa riviere Brazeau, en 1967. Photo:TransAlta Utilities.

Brazeau River Power Development, 1967. Photo courtesyof TransAlta Utilities.

La centrale de Wabamum, en service depuis 1956 etsituee a65 kilometres a I'ouest d'Edmonton. On apen;:oitla centrale Sundance en arriere-plan. Photo: TransAltaUtilities.

Wabamum Generating Plant, operating since 1956,65kilometers west of Edmonton. Sundance Plant inbackground. Photo courtesy of TransAlta Utilities.

La centrale Sundance, au lac Wabamum. Photo:TransAlta Utilities.

Sundance Generating Plant at Lake Wabamum. Photocourtesy of TransAlta Utilities.

99

Page 118: Electricity - The Magic Medium

In 1981 Calgary Power was renamed "Trans­Alta Utilities Corporation". The Companycommissioned a second coal-fired generatingstation in the South Wabamun coalfield west ofEdmonton consisting of two units each rated375 megawatts. These two units were broughtinto service respectively in 1983 and 1984.

The second part of the Alberta story startedin Edmonton in 1891 when a 450 kilowattsteam-powered generator was installed by theElectric Light and Power Company. The sitewas at the edge of the North SaskatchewanRiver very close to the location of old Fort Ed­monton. Steam was produced by burning localcoal and operating hours were sunset to1.00 am in summer but were extended inwinter to include 5.30 pm to sunrise. The useof this generator was mainly to supply lightingfor homes and streets.

In 1902 the Edmonton town council voted topUl'chase the power system and the municipalutility "Edmonton Power" was born. The firstorder of business was to relocate the generat­ing plant to avoid the possibility of flooding.The site picked was that of thepresent~day

Rossdale generating station. On completion ofthe recommissioning, the second order of busi­ness was to establish 24-hour electrical service.As the town grew so did the station throughthe addition of further generating units.

In 1908 Edmonton became the first city be­tween Winnipeg and the west coast to have anelectric street railway system. The streetcar sys­tem was treated as an interruptible load andservice was frequently shut down over peakperiods to give preference to industrial anddomestic users. The trams began to give way totrolley buses in 1939 and had disappeared by1951. The electric trolley bus system continuesin operation today.

Edmonton Power scored a first in 1928when the world's first 10,000 kilowatt, 3600rpm steam-driven turbo generator was in­stalled. It is also claimed that, in 1931, Edmon­ton operated the largest steam boiler in Can­ada and in 1941, Rossdale was Canada's largestthermal power station. In the early fifties theCity converted its boilers to burn the abundantlow-cost natural gas that accompanied the de­velopment of oil fields throughout the Prov­ince. With the conversion completed in 1955,the municipal utility installed 30 megawattcombustion turbine sets in each of 1958 and1959. They were, at the time of their installa·tion, the largest such units in Canada. By 1966,Rossdale had grown from its initial 450 kilo­watt generator to a plant with capacity of390,000 kilowatts (390 megawatts).

100

.,

Edmonton's first steam boiler is delivered for RossdalePower Station, 1902, Today, Edmonton Power isCanada's largest municipaliy-owned electric utility withgeneratinK facilities and is Alberta's second-largestelectric utility with 220,000 customers and 1,300megawatts of installed capacity. Photo courtesy ofEdmonton Power and Provincial Archives of Alberta.

Livraison du premier generateUl' de la ville d'Edmonlon,a la centrale Rossdale, en 1902. Aujourd'hui. laEdmonton Power' cst la plus importante entreprisemunicipale cI'electricite du pays ayant des installations deproduction et Ie deuxieme fournisseur d'eleClricite deI'Albena. Elle compte en effet 220 000 abonnes et a unecapacite installee de BOO megawatts,

The Genessee Power Project is the largest constructionproject planned by the City of Edmonton. Photo courtesyof Edmonton Power.

Le projet Genesee, Ie plus irnpol'tant projet deconstruction jamais planifie par la Ville d'Edmonton.Photo: Edmonton Power.

- -- _.- -------------

Page 119: Electricity - The Magic Medium

----_._--- -_.- -- - _._- -- --------------------------

primer les capacites de production en mega­watts plutat qu'en simples kilowatts. L'usine,qui produisait a I'origine 66 megawatts, fin itpar etre amenee a 569 megawatts.

Dans la phase suivante de son expansion, laCalgary Power passe un contrat avec les auto­rites provinciales afin de construire un barrageet un reservoir sur un affluent de la North Sas­katchewan, la riviere Brazeau. En 1961, Iereservoir est pret a recevoir de l'eau et l'ecoule­ment de la North Saskatchewan se trouveameIiore, tandis qu'a Edmonton Ie taux de pol­lution diminue. Par ailleurs, en 1967, l'usineajoute 355 autres megawatts a la capacite deproduction du n~seau.

Entre-temps, la Calgary Power entreprend aSundance la construction d'une deuxieme cen­trale thermique. L'usine allait erre alimenteeen charbon subbitumineux fournie par l'ex­ploitation a cie! ouvert de Highvale, situeedans les terrains carboniferes de South Waba­mum. A la fin des travaux, six generatrices de300 a 375 megawatts, pour un total de 2 000megawatts, y avaient ete installees.

TOluours ennuyee par la penurie d'eau et lesproblemes de pollution a Edmonton, la Cal­gary Power s'allie au gouvernement provincialafin de realiser Ie projet Bighorn (amenage­ment d'un deuxieme reservoir sur la NorthSaskatchewan et regularisation de l'ecoule­ment des eaux). On cree pour l'occasion unreservoir de plus de 30 kilometres de long,qu'on appelle lac Abraham. C'est la plus vasteetendue d'eau artificielle en Alberta. Acheveeen 1972, la centrale est dotee d'une capacite de120 megawatts.

En 1981, la Calgary Power, rebaptisee Trans­Alta Utilities Corporation, met en service uneautre centrale au charbon sur les terrains deSouth Wabamum, a I'ouest d'Edmonton.L'usine comprend deux generatrices de 375megawatts, qui sonr entrees en service en 1983et en 1984 respectivement.

La deuxieme partie de l'histoire prend nais­sance a Edmonton, en 1891, lorsque la ElectricLight and Power Company installe unegeneratrice a vapeur de 450 kW. L'usine, quiemployait du charbon, etait situee en bordurede la North Saskatchewan, tout pres de I'an­cien fort Edmonron. Pendant l'ete, elle etait enservice du coucher du soleil a une heure dumatin tandis que l'hiver elle fonctionnait de17 h 30 au lever du solei!. L'e!ectricite produiteservait principalement a l'eclairage des mai­sons et des rues.

En 1902, sur resolution du conseil munici­pal, la ville d'Edmonton acquiert l'entreprise,qui devient la Edmonton Power. La premiere

question a l'ordre du jour est Ie demenage­ment de la centrale, car on veut eviter les ris­ques d'inondation. Le choix de l'emplacementse porte sur Ie site actuel de la centrale Ross­dale. Apres la remise en marche de l'usine, ondecide d'alimenter la ville 24 heures sur 24. Amesure que la population gross it, de nouvellesgeneratrices sont mises en service.

En 1908, la ville d'Edmonton est la pre­miere, entre Winnipeg et la cote du Pacifique,a s'equiper de tramways eIectriques. Le reseau,alimente sans garantie d'approvisionnement,est frequemment mis hoI'S service afin d'accor­del' la preference aux abonnes industrie!s etdomestiques. En 1939, les trolleybus font leurapparition et finissent en 1951 par remplacercomplCtement les tramways. Ils sont encore enservice aujourd'hui.

En 1928, la Edmonton Power realise unepremiere mondiale en installant un tur­bogenerateur a vapeur capable de tourner a3600 tr/min et de produire 10000 kilowatts.On pretend aussi qu'en 1931 la EdmontonPower a mis en service la plus grosse chaudierea vapeur du Canada et qu'en 1941 l'usine deRossdale crait la plus importante centrale ther­mique au pays. Au debut des annees 50 etjusqu'en 1955, la ville convertit ses chaudieresafin d'utiliser Ie gaz naturel qui, a la suite de lamise en valeur des terrains petroliferes de laprovince, etait devenu peu couteux et abon­damment disponible. Une fois terminee la con­version, I'organisme municipal installe deuxturbines a vapeur de 30 megawatts, l'une en1958 et l'autre en 1959. Celles-ci etaient alorsles plus grosses du Canada. En 1966, la cen­trale Rassdale, qui produisait 450 kilowatts al'origine, etait parvenue a une capacite de390 000 kilowatts ou 390 megawatts.

La demande d'electricite continue de croitreavec la ville. En 1979, la Edmonton Power ter­mine l'installation de la centrale Clover Bar,alimentee au gaz nature! et dotee de quatregeneratrices de 165 megawatts. Par ailleurs,l'organisme construit actuellement la centraleGenesee, qui sera alimentee au charbon. Laville retourne ainsi a I'utilisation d'un combus­tible qui se presente de nouveau comme lasource d'energie la plus economique pour I'ali­mentation de ses centrales a vapeur. Situee a50 kilometres d'Edmonton, l'usine fournira,apres la fin de la premiere partie des travaux,800 megawatts de puissance additionnelle.

La derniere partie de notre histoire s'ouvre aVegreville, en }926, avec la creation de la Ve­greville Utilities Ltd. La municipalite comptaitalors 1 600 habitants. En 1927, l'entreprise estachetee par la Mid-West Utilities et devient en

101

Page 120: Electricity - The Magic Medium

~------------------------------------~-- - - - ----------

With continuing growth of the City therecame a continuing growth in the demand forelectricity and in 1979, Edmonton Power com­pleted its Clover Bar Power Station whichburns gas in its four 165 megawatt generatingunits. Currently the utility has under construc­tion the Genesee Power Project which will seethe City return to coal-fired generation whichhas once again become the most economicalsource of energy for Its steam generating sta­tions. Located some 30 miles outside of Ed­monton, the first phase of this project will add800 more megawatts of capacity to the system.

The third part of the Alberta story started inVegreville in 1926 with the incorporation ofthe Vegreville Utilities Ltd. At that time Vegre­ville was a town of 1600 people. In 1927 Ve­greville Utilities was taken over by Mid-WestUtilities, renamed Canadian Utilities in 1928.Canadian Utilities, in turn, was a subsidiary ofInternational Utilities Corporation. CanadianUtilities took over various municipally-ownedsystems in Saskatchewan, British Columbiaand Alberta. In 1928, the parent, companybought out the Union Power Company Ltd.which supplied power in Drumheller. In 1935,Union Power was amalgamated with CanadianUtilities. This amalgamation, together with areorganization of the Company, permittedCanadian Utilities to reduce rates, extend thehours of service and improve the reliability ofits facilities.

In 1945 Northland Utilities, which later be­came a subsidiary of Canadia~ Utilities, wasformed. Northland acquired the power plantsand distribution facilities of Dominion ElectricPower Ltd. in Jasper, Athabasca, McLennanand Peace River in Alberta as well as DawsonCreek in B.C. and Winnipegosis in Manitoba.In ]947 the Saskatchewan Government tookover all of Canadian Utilities' plant and distri­bution facilities in Saskatchewan. In 1949, theB.C. Power Commission took over Northland'sDawson Creek system and in 1950, the Mani­toba Power Commission purchased North­land's Winnipegosis network. Thus, bothNorthland and Canadian Utilities were leftwith holdings mainly in Alberta. Both compa­nies undertook expansion programs. North­land had interconnected its isolated plantsthrough a 23 kv line by 1956 and in 1957began construction of a 72 kv interconnectionbetween its Fairview plant and Canadian Utili­ties Sturgeon plant. The line was completed in1961. By 1965, Canadian Utilities was operat­ing 19 power stations with an installed capacityof over 150 megawatts.

102

In 1978 Edmonton became the lirst North American citywith fewcr than one million population to have a light railtransit systcm, Photo courtesy of Larry Lilt, EdmontonTransit Photo Collection and Edmonton Power.

En 1978, Edmonton est devenue la premiere villenord-arnericaine de moins d'nn million de population ildisposer d'un resean de transport leger sur rails, Photo:Larry Lit, Edmonton Transit Photo Collection etEdmonton Power.

Edmonton's transportation system continucs also withtrolley bus faci lities, Photo courtesy of Larry Litt,Edmonton Transit Photo Collection and EdmontonPower.

Lc reseau de transport d'Edmonton comprend egalementdes trolleybus. Photo: Larry Lit, Edmonton Transit PhotoCollection et Edmonton Power.

Page 121: Electricity - The Magic Medium

- ~--~--- ----~------------------------------------------------~

1928 la Canadian Utilities, filiale de la Interna­tional Utilities Corporation. La Canadian Utili­ties fait l'acquisition de divers reseaux munici­paux de la Saskatchewan, de la Colombiebritannique et de I'Alberta. En 1928 toujours,la societe merc acquiert la Union Powcr Com­pany Ltd., qui alimcntait la localite de Drum­heller. En 1935, cette dcrniere entreprise fu­sionne avec la Canadian Utilities, de sorte qu'ilest possible de reorganiser Ie fonctionnementde l'ensemble, de proceder a la reduction destarifs, d'allonger les heures de service etd'accroitre la fiabilite du reseau.

En 1945, la Northland Utilities, appelee adevenir plus tard une filiale de la CanadianUtilities, voit Ie jour. La Northland acquiert lescentrales et les installations de distribution quela Dominion Electric Power Ltd. possede aJas­per, Athabasca, McLennan et Peace River (AL­berta) ainsi qu'a Dawson Creek en Colombiebritannique et a Winnipegosis au Manitoba. En1947, la Saskatchewan nationalise toutes lesinstallations que la Canadian Utilities exploitesur Ie territoire de la province. En 1949 et en1950, la British Columbia Power Commissionet la Manitoba Power Commission en font au­tant, la premiere avec Ie reseau de DawsonCreek et la seconde avec cclui de Winni­pegosis, qui appartenait a la Northland. Lesinstallations de la Northland et de la CanadianUtilities se retrouvent ainsi presque entiere­ment confinees sur Ie territoire albertain. Lesdeux entreprises se lancent alors dans des pro­grammes d'expansion. En 1956, la Northlandavait relie ses centrales isolees au moyen d'uneligne de 23 kVet, en 1957, elle entreprenait laconstruction d'une Iigne de 72 kV afin de rac­corder la centrale Fairview, qui lui appartenait,a I'usine Sturgeon de la Canadian Utilities. En1961, les travaux etaient termines. En 1961, laCanadian Utilities exploitait 19 centrales d'unecapacite nominale superieure a 150 mega­watts.

Une autre filiale, la Alberta Power, s'associe 'a la TransAlta Utilities afin d'entreprendre laconstruction de la centrale Sheerness, ali­men tee au charbon. La mise en service de lapremiere generatrice est prevue pour 1985 etcelie de la seconde pour I'annee suivante. Lacentrale, situce a environ 145 kilometres aunord-est de Calgary, sera dotce de generatricesa turbine de 400 megawatts.

Bien que l'histoire de l'electricite en Albertaait ete racontee en trois parties distinctes, il im­porte de failT remarquer au lecteur que lestrois grands producteurs de la province coor­donnent efficacement leurs activites respeeti­ves afin d'assurer au public Ie service Ie plus

sur qui soit au meilleur COllt possible. Jusqu'a lafin des annees 60, les efforts de coordination sefaisaient de manihe infonnelle. Depuis 1972,cependant, un organisme appele Electric Uti­lity Planning Council s'occupe de repondreaux divers besoins de la collectivite en coor­donnant la planification et Ie developpementdu service de I'electricite.

Colombie BritanniqueC'est en 1846, peu apres la fondation de FortVictoria, que I'on commeJ1(;:a a mettre en va­leur Ie potentiel energetique de la ColombieBritannique. Un charron de la Compagnie dela baie d'Hudson y fabriqua en effet un rouehydraulique qui fut installee sur la riviereMillstream, a Parson Bridge. Puis, au debutdes annees 1860, les rues de Victoria ainsi quecertains de ses etablissements et quelques de­meures sont eclaires au gaz, par les soins de laVictoria Gas Company, la plus ancienne de­vanciere de la B.C. Hydro.

En 1882, les conseillers municipaux, desi­reux d'ameliorer la fiabilite du systeme d'eclai­rage des rues, se rendent a Vancouver afin devisiter une installation etablie dans une scierie,pres de l'anse de Burrard.

Entre-temps, Robert Burns McMicking, untelegraphiste cle Victoria qui ne manquait pasd'idees, col1(;:oit pour la ville un systeme d'eclai­rage, si bien qu'en 1883 certaines rues peuventenfin etre eclairees. Pour ce faire, on installatrois poteaux de 45 metres au bout desquelsfurent fixees des ampoules electriques au car­bone. La puissance d'eclairage du systeme etaitde 50 000 bougies. C'est ainsi que fut cree Iepremier systeme public d'ecIairage de laColombie Britannique et l'un des premiers auCanada. Les ampoules avaient une puissance apeu pres equivalente a celle que donnent au­jourd'hui 25 lampes de 400 watts a vapeur demercure. McMicking vint a jouer un role depremier plan clans Ja mise sur pied de la Victo­ria Electric Illuminating Company, a qui re­vient Ia distinction d'avoir installe Ie premiersysteme public d'eclairage a incandescence auCanada. Une dynamo Edison, entrainee parune machine avapeur de 50 HP, alimentait 400ampoules de 16 bougies chacune.

En 1888, la ville de Victoria passe un contratpour l'installation d'un reseau de tramwayselectriques et la National Electric Tramwaysancl Lighting Company voir le jour. En 1891, Iereseau s'etend sur 20 kilometres et comprend1I voitures. Puis, en 1897, la Victoria ElectricRailway and Lighting Company el. la Consoli­dated Railway Company (fondees toutes lesdeux en 1894) sont acquises par la British Co-

103

Page 122: Electricity - The Magic Medium

Another subsidiary, Alberta, Power, joinedwith TransAlta Utilities to construct the coal­fired Sheerness generating station with a pro­jected in-service date for its first unit in 1985and the second in 1986. The plant is locatedsome 145 kilometers northeast of Calgary andwill feature 400 megawatt turbine generators.

Although we have described electric powerdevelopments in Alberta as a three-part storywe must now remind our readers that thethree major generating utilities of the provinceare well coordinated to supply electrical energyat the lowest practical cost consistent with anacceptable level of reliability. Until the end ofthe 1960s coordinated planning was carriedout informally by the three generating utilities.By 1972 the Electric Utility Planning Councilwas formally established and acts to coordinatethe on-going planning and developments forelectric power in the balanced interests of allAlbertans.

BritishColtimbia

British Columbia's first harnessed power camein 1846, shortly after the founding of Fort Vic­toria, when a water wheel was fashioned by aHudson's Bay Company wheelwright and in­'stalled at Parson's Bridge on Millstream. Bythe early 1860s Victoria's streets and some ofits businesses and homes had been lighted bygas supplied by the Victoria Gas Company,B.C. Hydro's earliest predecessor company.

By 1882, Victoria's city fathers wanted amore reliable street lighting system. They trav­elled to Vancouver to investigate an installa­tion at a sawmill on Burrard Inlet.

Meanwhile, a bright Victoria telegrapher,Robert Burns McMicking, developed his ownlighting system for the city and, by 1883, Victo­ria had its first electric street lights-carbon arclights totalling 50,000 candlepower on three150 foot masts. These were the first electricstreet lights in B.C. and among the first in allof Canada. They were roughly equivalent to 25modern lamps of the 400-watt mercury vaportype. Mr. McMicking went on to playa promi­nent role in organizing the Victoria Electric Il­luminating Company which had the distinctionof introducing the first public incandescentlighting system in Canada. An Edison dynamo,powered by a 50 hp steam engine, had the ca­pacity to supply four h~ndred 16-candlepower lamps.

In 1888 the City of Victoria signed an agree­ment for the construction of an electric streetrailway system and the National Electric Tram­way and Lighting Company was established.

104

By 1891 the sytem had expanded to twelvemiles of track and eleven streetcars. Then theVictor-ia Electric Railway and Lighting Com­pany (founded ]894) and Consolidated Rail­way Company (also founded 1894) were takenover by the British Columbia Electric RailwayCompany Ltd. in ]897. This latter Companybuilt the first hydro-electric plant on the Pa­cific Coast on the Goldstream River, Van­couver Island, in 1898. Located 15 miles fromVictoria, the plant comprised two 660 hp Pel­ton Water Wheels directly connected to two360 kW General Electric stationary field gen­erators.

On the mainland, in the same year, the WestKootenay Power Company installed two1,000 hP revolving field General Electric gen­erators at their Bonnington Falls hydro-elec­tric plant to supply power to the War EagleMining and Development Company (whose in­stallations were described earlier).

These installations led the way to the devel­opment of many power sites which are abun­dantly located throughout British Columbia..In 1905, the Vancouver Power Company com­pleted a hydro-electric development at Coquit­lam Lake, 18 miles northeast of Vancouver,and in 1906, the West Kootenay Power andLight Company installed the fourth 8,000 hpgenerating unit in its new power house.

Back on Vancouver Island, the B.C. ElectricRailway Company began construction of a newhydro-electric development on the JordanRiver, 37 miles from Victoria, in 1909. Duringthe same year, B.C. Electric Railway Companyalso brought into service a 10,000 hp hydraulicgenerating unit at Lake Buntzen. ,

The year 1911 was particularly important inthe development of electricity in the Province.A new hydraulic generating station was com­pleted near Revelstoke on the IIlicillewactRiver. The powerhouse, about two miles westof Revelstoke, replaced a 125 kilowatt hydrau­lic generator which had been installed in 1896and which was backed up by a gas-powered en­gine against clogging of the lllicillewaet byslush ice during winter months. The new plantembraced some elements of the old plant (a150 kilowatt three-phase generator and its tur­bine) together with a new 250 kVa, three­phase 50-cycle unit and a second rated450 kVa. The Prince Rupert Hydro-ElectricCompany Ltd. was formed to develop hydro­electric facilities to supply the City of PrinceRupert and surrounding area. The first steeltower line to be built in British Columbia wentinto service connecting the Western CanadaPower Company's Stave Falls generating sta-

Page 123: Electricity - The Magic Medium

lumbia Electric Railway Company Ltd. En1898, ceUe derniere amenage dans I'ile deVancouver, sur la riviere Goldstream, la pre­miere centrale hydroelectrique de la c6te dl!Pacifique. Situee a 25 kilometres de Victoria,I'usine comprend deux roues Pelton de600 HP raccoreU:es a deux generatrices achamp fixe de 360 kilowatts, fabriquees par laGenerale Electrique.

La meme annee, la West Kootenay PowerCompany installe, dans sa centrale hydrauli­que de Bonnington Falls, sur Ie continent,deux autres generatrices fabriquees par laGenerale Electrique. Les appareils, it champtournant et dotees d'une puissance deI 000 HP, servent aalimenter la War Eagle Mi­ning and Development Company (voir ci-des­sus).

Ces installations marquent Ie debu t d'unelongue serie de travaux sur tout Ie territoire dela province. En 1905, la Vancouver PowerCompany termine la construction d'une cen­trale hydroelectrique a Coquitlam Lake (29kilometres au nord-est de Vancouver) et, en1906, la West Kootenay Power and Light Com­pany installe dans sa nouvelle centrale unequatrieme generatrice de 8 000 HP.

Entre-temps, dans l'ile de Vancouver, la B.C.Electric Railway Company entreprendI'amenagement d'une installation hydroelectri­que sur la riviere Jordan, a 59 kilometres deVictoria. La meme annee, elle met en service,pres du lac Buntzen, une generatrice hydrauli­que de to 000 HP.

L'annee 1911 est particulierement impor­tante pour I'electrification de la province. Unenouvelle centrale hydraulique entre en servicepres de Revelstoke, sur la riviere IIlicillewaet.L'usine, situee a 3 kilometres environ deRevelstoke, remplace une generatrice hydrau­lique de 125 kilowatts, installee en 1896 et a la­quelle il avait fallu adjoindre un moteur it gazafin d'assurer Ie maintien du service lorsque,pendant les mois d'hiver, les eaux de l'IlIicille­waet se trouvaient encombrees par les glacesfondantes. Tout en conservant quelqueselements de I'ancienne (une generatrice tri­phasee de 150 kilowatts, avec sa turbine), lanouvelle centrale est equipee de deux genera­trices neuves triphasees a 60 hertz, I'une de250 kVa et l'autre de 450. Par ailleurs, laPrince Rupert Hydro-Electric Company Ltd.est creee afin d'entreprendre la constructiond'installations hydrauliques it I'intention de laville de Prince Rupert et des environs. Les pre­miers pyl6nes d'acier font leur apparition dansla province. lis servent a relier aux villes deVancouver et de New Westminster la centrale

que la Western Canada Power Company ex­ploite it Stave Falls. Deux ans plus tard, on ins­talle a Vernon la premiere generatrice au die­sel.

En 1920, la B.C. Electric Railway Companyavait pris Ie controle de fa Western PowerCompany of Canada. Les entreprises d'electri­cite situees dans les terres basses du continentsont desormais unifiees. Par ailleurs, les projetsde developpement se poursuivent sans relacheau cours des annees 20 et 30. En 1927, la B.C.Electric Railway Company installe asa centraleAlouette une generatrice hydraulique de10000 HP. En 1929, la West Kootenay Lightand Power Company venait a peine de termi­ner la construction de la centrale South Slocan(75000 HP) qu'elle entreprend aussitot leslevees de terrain necessaires it la constructiond'une usine de 40 000 HP sur la riviereAdams. L'annee suivante, la Vancouver IslandPower Company termine sur la Jor'dan I'instal­lation d'une generatrice hydroelectrique de18000 HP. Pour sa part, la Western PowerCompany, filiale de la B.C. Power Corpora­tion, met en service la centrale Ruskin tandisque la West Kootenay Power and Light Co. en­treprend, sur la riviere Kootenay, la construc­tion de sa quatrieme centrale. Quant a la Nor­thern British Columbia Power Co., die met enservice une generatrice de 6000 HP a sonusine hydroelectrique de la riviere Falls. En1938, la Western Power Co. installe a Ruskinune deuxieme generatrice de 17000 HP. Fina­lement, en 1940, la West Kootenay Power andLight Co. ajoute deux generatrices de25000 HP a sa centrale de Upper BonningtonFalls.

En 1943, Ie gouvernement de la ColombieBritannique cree la Rural Electrification Com­mittee. L'organisme aboutit a la formation dela B.C. Power Commission, dont Ie role consis­tera a unifier les services de production del'eIectricite. En 1945, la West Canadian Hydro­Electric Corp., la Nanaimo-Duncan UtilitiesLtd. et la Columbia Power Company sontnationalisees.

En 1948, a Bridge River, on met en serviceune centrale hydroelectrique appelee a pro­duire 600000 HP une fois les travaux ter­mines. En 1949, sur la riviere Campbell dansI'He de Vancouver, La B.C. Power Commissioninaugure la centrale hydraulique John Hart,d'une puissance de 112 000 HP.

La B.C. Electric, pour sa part, continued'etendre son reseau. Apres avail' amenage, aJones Lake, entre Hope et Rosedale, une cen­trale hydraulique de 80 000 HI>, elle entre­prend la construction d'une autre centrale

105

Page 124: Electricity - The Magic Medium

tion to Vancouver and New Westminster. Twoyears later, at Vernon, the first diesel electricgenerating plant in the Province was com­pleted.

By 1920 the B.C. Electric Railway Companyhad bought control of the Western PowerCompany of Canada thus merging electricalinterests on the lower mainland of the Prov­ince. Developments continued apace duringthe twenties and thirties with B.C. Electric Rail­way Co. installing a 10,000 hp hydraulic unit atits Alouette generating station in 1927 and theWest Kootenay Light and Power Companycompleting its 75,000 hp South Slocan Stationin 1929 and immediately beginning surveys fora 40,000 hp plant on the Adams River. Thefollowing year saw the Vancouver IslandPower Company complete its 18,000 hphydro-electric unit on the Jordan River whilethe Western Power Company (a subsidiary ofB.C. Power Corp.) completed its Ruskin Plantand the West Kootenay Power and Light Co.began construction of its fourth plant on theKootenay River. Northern British ColumbiaPower Co. placed in service a 6,000 hp unit atits hydro-electric development on the FallsRiver. In 1938 Western Power Co. installed asecond unit of 17,000 hp at the Ruskin Station.In 1940, the West Kootenay Power and LightCo. added two 25,000 hp units at its UpperBonnington Falls Station.

The year 1943 saw the formation of theRural Electrification Committee by the B.C.Government which led to the formation of theB.C. Power Commission to unify power gener­ation in the Province and in 1945, the B.C.Government took over the West CanadianHydro-Electric Corp., Nanaimo-Duncan Utili­ties Ltd. and Columbia Power Company.

In i 948, at Bridge River, first power was de­livered from a hydro-electric developmentwhich would provide 600,000 hp when com­pleted. In 1949, the B.C. Power Commissionplaced in service the 112,000 hp John Harthydro-electric development on the CampbellRiver on Vancouver Island.

B.C. Electric continued to make additions toits system having brought along an 80,000 hphydro-electric development at Jones Lake be­tween Hope and Rosedale and began construc­tion of a 912,500 kilowatt oil or natural gasfired thermal plant on Burrard Inlet. In 1962,the B.C. Government expropriated the facili­ties of the B.C. Electric Railway Company lead­ing to the formation of the present B.C. Hydroand Power Authority.

In 1961 the Columbia River Treaty wassigned by the Canadian and U.S. Administra-

106

tions. While the Treaty was ratified by theUnited States Senate, it was not I'atified by theCanadian Government until 1964. The Treatymade provision for the construction of storagedams in Canada at Duncan, Arrow and Micafor both flood control purposes and to im­prove generating capabilities on the river inthe United States as well as providing the in­stallation of generating facilities at the MicaDam. Because of the delay in ratification by theCanadian Government, B.C. Hydro wentahead with the development of the Peace RiverProject. The first dam on the Peace at PortageMountain included an underground power­house with provision for the installation of 10units and an ultimate capacity of 2,400 me­gawatts. Required also were two 500 kilovolt,575-mile long transmission lines to inten.:on­nect with the lower mainland. The dam wascompleted in 1967 and the fiI'stthree 227,000kilowatt generators were placed in service in1968. By 1980 the Portage Mountain projecton the Peace River was completed with I°gen­erating units ranging from 227,000 to 300,000kilowatts each.

In 1980 a second powerhouse on the PeaceRiver, called the Peace Canyon Generating Sta­tion, 12 miles downstream from the PortageMountain site, added a further 700 megawattsof generation.

Of special interest, insofar as the Columbiadevelopment i~ concerned, is the Mica Dam inwhich electrical geneI'ating facilities were to beinstalled. Construction began in the wildernesscountry in 1964, 237 miles nOI,th of the ArrowDam near the confluence of the Columbia,Canoe and Wood Rivers. The dam was com­pleted in 1973 and the powerhouse structurefollowed. A total of 2400 megawatts wasplanned to be in six units. Four units were in­stalled in 1976 and 1977. Although all genera­tors were provided by General Electric, two ofthe turbines were supplied by Hitachi ofJapanand two by Leningrad Metal Works of Russia.

Also on the Columbia River, but not part ofthe works covered by the Treaty between Can­ada and the U.S., the Revelstoke project wasbegun in 1977. Again the powerhouse hadprovision for the installation of six units of 450megawatts. By 1983 two units were installedand scheduled to feed energy into the grid in1984 with two further units to be installed in1984 and a further two to follow when theMica project is brought to full capacity.

As part of the projects covered by the Inter­national Treaty, the Kootenay Canal projectwas undertaken. Existing powerhouses on theKootenay at COrl'a Linn, City of Nelson,

Page 125: Electricity - The Magic Medium

hydroelectrique, cette fois sur la riviere Peace,it Portage Mountain. En 1962, les autorites de1£1 province exproprient les installations deI'entreprise et ouvrent ainsi la voie it I'actuelleB.C. Hydro and Power Authority.

En 1961, Ie Canada et les Etats-Unis signentIe traite de la riviere Columbia. Bien que 1'£1­tifiee par Ie Senat americain, l'entente ne seraapprouvee qu'en ]964 par Ie gouvernementcanadien. Celle-ci prevoit notamment l'amena­gement de reservoirs sur Ie territoire canadien,plus precisement a Duncan, a Arrow et it Mica.L'objectif de ces installations est triple: regula­riser les crues, accroitre la capacite de produc­tion d'e!ectricite en territoire americain etamenager une centrale au barrage de Mica.Comme Ie gouvernement federal tarde it don­ner son approbation, la B.C. Hydro prendI'initiative de mettre en valeur la riviere Peace.Le premier barrage, a Portage Mountain, com­prend une centrale souterraine capable de re­cevoir 10 generatrices totalisant 2 300 mega­watts. On avait aussi besoin de construire deux!ignes de transport de 500 kilovolts, d'une lon­gueur de 925 kilometI'es, afin de rejoindre Iereseau installe dans les terres basses du conti­nent. Le barrage est acheve en 1967 et troispremieres generatrices de 227 000 kilowattssont mises en service I'annee suivante. En1980, les travaux de Portage Mountain etaiententierement termines. Dix generatrices de227 000 it 300 000 kilowatts avaient ete misesen service.

En 1980, une deuxieme centrale sur lariviere Peace vient ajouter 700 megawatts aureseau. Appelee Peace Canyon, eUe est situee a]9 kilometres en aval de Portage Mountain.

Signalons par ailleurs, a propos de la mise envaleur du fleuve Columbia, la construction dubarrage de Mica, destine it recevoir des installa­tions hydroelectriques. Les travaux furent en­trepris en 1964, en pleine nature, a 381kilometres au norddu barrage Arrow, au con­fluent du fleuve Columbia et des rivieresCanoe et Wood. Le barrage fut termine en1973, suivi peu de temps apres par Ie batimentde la centrale. Quatre generatrices y ant eteinstallees en 1976 et en 1977. Bien que routesles dynamos aient ete fournies par la GeneraleElectrique, il convient de signaler que deux desturbines ont ete construites par la societe japo­naise Hitachi et les deux autres par une fabri­que de Leningrad, en U.R.S.S.

Le projet de Revelstoke, par ailleurs, con­cerne egalement Ie fleuve Columbia, mais n'apas ete realise dans Ie cadre du traite canado­americain. Les travaux, entrepris en 1977, per­mettront d'installer six generatrices de 450

megawatts. Les deux premieres etaient pretesen 1983 et devaient entrer en service I'anneesuivante. L'installation des deux autres etaitprevue pour 1984 et les deux dernihes sui­vront lorsque la centrale de Mica aura eteportee it sa pleine capacite.

Les travaux du canal de Kootenay, pour leurpart, font partie de la convention internatio­nale. Les centrales deja en service sur la rivieredu meme nom (a Corra Linn, a Nelson, aUpper et Lower Bonnington ainsi qu'it SouthSiocan) ne parvenaient pas a utiliseI' entiere­ment Ie potentiel resultant de la constructiondes reservoirs prevus par Ie traite de la riviereColumbia. On construit donc un canal dedetournement afin que les eaux du barrage deCora Linn puissent etre acheminees vel'S unenouvelle centrale, en aval du barrage de SouthSiocan. Celle-ci est dotee de quatre generatri­ces de 132 megawatts.

II y a lieu egalement de signaler qu'une ligneit courant continu, 1£1 premiere d'Amerique duNord, a ete etablie entre I'ile de Vancouver etIe continent. Mise en service en 1968, die estequipee d'elements de valve it vapeur de mer­cure et fonctionne it +260 kV. Dans 1£1 secondepartie de I'ouvrage, terminee en 1975 et fonc­tionnant it - 280 kV, les elements ont ete rem­places par des thyristors. La capacite totale del'installation s'eleve it 788 megawatts. La lignes'etend sur 74 kilometres, dont 33 sont plongesdans la mer.

En octobre 1983, une ligne it courant alter­natif de 500 kV entre en service afin de four­nil' 1 200 megawatts. On croit qU'elleconstituela ligne sous-marine a haute tension la pluslongue du monde.

L'Association canadienne del'electridteNous ne pourrions pretendre vous donner untour d'horizon complet de I'industrie cana­dienne de \'eleetricite sans vous parler de I' As­sociation canadienne de l'e1ectricite. L' ACE re­gl'Oupe les entreprises cI'elcctricite clu Canadaet. existe depuis d~ja pres d'un siecIe. Elle vise ~I

bvoriser Ie cleveloppement efficace des res­sources energet.iques ainsi que I'equilibre entrela protection de l'envil'Onnement et les besoinssans cesse croissants du pays en matiere d'ener­gie. Elle se veut aussi un lieu de recherche, dediscussion et d'echange d'information sur tousles sujets qui concernent ses membres. Enlin,\' ACE s'est donne comme mandat d'informerIe public, les gouvernemcnts et I'industrie desrealisations et des projcts des entreprisesqu'elle I'epresente.

107

Page 126: Electricity - The Magic Medium

Upper and Lower Bonnington and South Slo­can could not make full use of the regulatedflows resulting from the storage dams con­structed under the Col~mbiaRiver Treaty. Ac­cordingly the Kootenay diversion canal wasbuilt to carry flows from the Corra Linn Damto a new powerhouse below the South SlocanDam. This station houses four 132 megawattgenerators.

Of particular interest also is the fact thatNorth America's first DC transmission linkconnected Vancouver Island to the mainland.It was commissioned in 1968. Using mercury

arc valves, the line operated at +260 kV. Thesecond stage was completed in 1975. Thyris­tors were used in place of mercury arc valvesand this second line operates at -280 kV. Thecombined capacity of the two stages is 788 me­gawatts. The total line length is 74 kilometers,33 kilometers of which is submarine cable, theremainder being overhead construction.

In October 1983, a 500 kV ac line was in­stalled to serve Vancouver Island with a capac­ity of 1200 megawatts. It is claimed to be thelongest high-voltage submarine line in theworld.

'----- --~

108

Goldstream River Power project was built on VancouverIsland by the British Columbia Electric Railway Companyin 1898-the first hydro-electric plant on the Pacificcoast-l 5 miles horn Victoria. Photo courtesy of B.C.

. Hydro.

Le projet de la riviere Goldstream, execute sur l'ile deVancouver par la British Columbia Electric Railway en1898. Cette premiere cenlI"ale hydroelectrique de la cotedu Pacifique est siwee it 15 milles de Victoria. Photo: B.C.Hydro.

18.000 hp hydro-electric plant completed in 1930 on theJordon River by Vancouver Island Power Company.Photo courtesy of B.C. Hydro.

Centrale hydroelectrique de 18000 H.P.• sur la riviereJordon, terminee en 1930 par la Vancouver Island PowerCompany. Photo: B.C. Hydro.

Page 127: Electricity - The Magic Medium

-- -- -- --- ------------------------- -- -----------------------

L'Association organise parmi scs membresdes comites speciaux charges d'etudier la pro­duction, la distribution et I'utilisation de I'elec­tricite et execute des programmes de recher­che en collaboration avec des organismesgouvernementaux, scicntifiqucs, universitai­res, industriels ct autJ:es pour Ie benefice detous les Canadiens. Elle renute ses membresau sein des entreprises et de l'industrie manu­facturiere.

Le President de I'ACE declarait recemment:

Le barrage Ruskin, dont la construction a etc termince en1930 par Ia Western Power Company. Photo: B.C.Hydro.

"L'Association est depuis 95 ans un lieud'echange technique privilegie et a su se doter,au cours des dernieres decennies, d'un excel­lent programme de recherche et de devc1oppe­ment. Nouscomptons elargir encore Ie role decette grande organisation... Nous entendonsex primer notre point de vue sur les questionsqui nous touchent afin que tous les secteurs deI'economie canadienne aient une meilleurecomprehension de l'industric de l'electricite auCanada."

Ruskin Dam completed in 1930 by Western PowerCompany. Photo courtesy of B.C. Hydro.

109

Page 128: Electricity - The Magic Medium

Canadian Electrical Association(CEA)We cannot conclude our story of the develop­ment of Electric Power Utilities across Canadawithout mention of the Canadian Electrical As­sociation. Founded as an association of electricutilities, almost a hundred years ago, it fostersthe efficient development of energy resourcesand promotes a balance between protection ofthe' environment and the continuously grow­ing energy needs of the nation, provides aforum for study, discussion, exchange of infor­mation and further' development of all subjectsof interest to its collective membership. It isalso committed to informing the public, gov­ernment and industry of the achievements andgoals of the Canadian eIecn'ic utility industry.It organizes special committees of its membersto study the production, distribution and utili-

Mica Dam in the wilderness near confluence of Columbia,Canoe and Wood Rivers. Completed in 1973. Photocourtesy of B.C. Hydro.

zation of energy and promotes research pro­grams in conjunction with Government, Scien­tific, Academic, Industrial communities andkindred organizations to the benefit of allCanadians. The membership includes cor­porate members and private members fromUtilities and Manufacturers.

Recently the President of CEA stated: "TheAssociation has been an excellent sQurce oftechnical exchange for 95 years, In more re­cent times, it has mounted a superb user-drivenresearch and development program. We'regoing to take a good OI'ganization with excel­lent goals and take it one, maybe two, steps for­ward towards a greater role.... We intend tospeak out on issues of concern so that all sec­tors of the Canadian economy will have a bet­ter understanding of the- electric utility in­dusn'y in Canada".

Le barrage Mica, au confluent des rivieres Columbia,Canoe et Wood, terminI' en 1973. Photo: B.C. Hydro.

110

Page 129: Electricity - The Magic Medium

Projet hvdro-electrique ducanal Kootenay. On apen;oitla centrale et quatre vannes,en avant-plan, ainsi qu'unepartie du canal de trois millesde long. Ces installations sontsituees entre Nelson etCastlegar. Photo: B.C.Hydro.

Kootenay Canal hydro­electric power projectshowing powerhouse withfour penstocks in foregroundand portion of th ree-rnilelong canal snaking off indistance. Located ~midway

between Nelson andCastlegar. Photo courtesy ofB.C. HydI'D.

Le projet Revclstoke, sur larivihe Columbia, eotreprisen 1977, prolonge en 1984 etnon encore termine. Photo:B.C. Hydro.

Revelstoke project on theColumbia River, begun in1977, extended in 1984, butnot yet completed. Photo:ourtesy of B,C. Hydro.

II I

Page 130: Electricity - The Magic Medium

------ _.- -- - -

The Electrical Manufacturing IndustryBy Fred Kee

Many Canadian manufacturers have playedkey roles in the development of electric powerfrom the early days and have made significantcontributions to the country's expanding econ­omy. They are of two basic types: those whomanufacture electrical equipment and suppliesfor the electrical utilities and those who areheavy users of electricalpower and, asa result,account for growth of the utilities over theyears. Some of these have contributed back­ground material for portions of this book.

The individual stories of these manufactur­ing companies constitute important historicalhighlights within the overall story of power.We have selected three early pioneering exam­ples: Canadian General Electric Co. Ltd., Wes­tinghouse Canada Inc. and the AluminumCompany of Canada Limited, known through­out the world as "Alcan".

Canadian General Electric, in a historicalbooklet, traces its origins to two previous com­panies both incorporated in 1882: Edison Elec­tric Light Company of Canada and Thomson­Houston Electric Light Company of Canada.The former was originally established in Ha­milton, Ontario, with shareholders: ThomasAlva Edison and Grosvenor Porter Lawrey ofNew York City, E. Hearle of Montreal, JamesSutherland of Woodstock (Ontario) and Alex­ander MacInnes of Hamilton. The latter wasoriginally established in Montreal. In keepingwith the rapid developments of the times, sub­sidiaries were formed and a branch plant wasestablished in Sherbrooke, Quebec. The Edis­ion company was selling and installing isolatedplant systems of lighting and power for in­dustry as well as central stations for illuminat­ing companies to supply electricity for lightingcities and towns.

In 1889 the Edison General Electric Com­pany of New York was formed to consolidate

112

the many manufacturing operations of theEdison interests including those in Canada. By1890 the Sherbrooke plant, employing 175men, had insufficient capacity to meet the rap­idly expanding volume of business. A largerplant was constructed at Peterborough, On­tario consisting of t1ll'ee buildings 272 feet longwith total manufacturing area of 74,000 sq. ft.which closely resembled the Edison shops. iI1Schenectady, N.Y. The entire Sherbrooke staffwas transfen-ed to Peterborough and then ex­panded to 400 persons to manufacture dyna­mos, motors for stationary power and electricalrailway purposes, mining locomotives, under­ground conductors, electrical instruments, ap­pliances, electric cables and insulated wire.

In 1892 the operations and assets of theEdison, Thomson-Houston and Brush Electricwere consolidated into the General ElectricCompany of New York. Within a few monthsCanadian General Electric was formed tomerge the assets, in Canada, of Edison GeneralElectric and Thomson-Houston.

From this beginning, Canadian GeneralElectric, with manufacturing centered at Peter­borough, expanded into a major Canadianmanufactlll'er with multi-plants in various lo­cations and highly trained sales staff in allareas of Canada. The output of these plantshas served the needs of Canadians and consid­erable export business in all segments of theelectrical market: industrial, residential, trans­portation, municipal, commercial and institu­tional. Over the years many new product lineswere added and many old ones dropped. Thecompany still operates in a wide field of Utilityproducts, lighting, home appliances and rotat­ing equipment for light and heavy industry forboth domestic and export markets.

Our second example of pioneering in thefield of electrical manufacturing is known

Page 131: Electricity - The Magic Medium

;;

Les fabricants d'Cquipements electriques

Par Fred Kee

Plusieurs fabricants canadiens ant joue un roleessentiel dans I'implantation et Ie developpe­ment de I'industrie de I'electricite ainsi quedans l'expansion de notre economic. Ces fabri­cants se divisent en deux grandes categories:ceux qui produisent du materiel pour les four­nisseurs d'electricite et ceux qui consommentde fortes quantites d'energie electrique et qui,de ce fait, ant contribue au developpement desentreprises d'electricite. Certains de ces fabri­cants nous ont d'ailleurs gracieusement fournides documents pour la realisation de ce livre.

L'histoire de leurs realisations est ponctueede faits importants qui s'inscrivent dans lagrande histoire de l'electricite. Nous vous par­lerons quant a nous de trois grands pionniers:la Compagnie Generale Electrique du Canada,la Westinghouse Canada Inc. et l' Aluminiumdu Canada Limitee, connue mondialementsous Ie nom d'''Alcan''.

U ne brochure relatant I'histoire de la Com­pagnie Generale Electrique du Canada fait re­manter les origines de cette entreprise a deuxautres compagnies qui avaient toutes deux eteincorporees en 1882: Ia "Edison Electric LightCompany of Canada" et la "Thomson-Hous­ton Electric Light Company of Canada." Lapremiere fut fondee a Hamilton, en Ontario,et ses actionnaires etaient: Thomas Alva Edi­son et Ie Gouverneur Porter Lawrey, de NewYork, E. Hearle, de Montreal, James Suther­land, de Woodstock (Ontario) et AlexanderMcInnes, de Hamilton. La seconde fut etabliea Montreal. Afin de faire face aux progres ra­pides de cette epoque, on mit sur pied des filia­les et on ouvrit une usine a Sherbrooke, auQuebec. La Edison vendait et installait alorsdes systemes d'eclairage et d'alimentation pourl'industrie ainsi que des pastes centraux pouralimenter et eclairer les villes.

En 1889, on fonda la "Edison General Elec­tric Company of New York" pour consoliderles activites de fabrication de I'entreprise, ycompris les operations au Canada. Des 1890,I'usine de Sherbrooke, qui comptait 175 em­ployes, ne pouvait plus suffire a la demande.C'est pourquoi on construisit une usine plusgrande a Peterborough, en Ontario, qui com­prenait trois bfltiments de 272 piecls de lon­gueur et de 74000 pieds caITes de surface.Tout Ie personnel de Sherbrooke fut mute ~l

Peterborough et on porta alors Ie nombred'employes ~l 400. L'entreprise y fabriquait desdynamos, des moteurs, des locomotives pourles mines, des conducteurs souterrains, diversinstruments et appareils electriques, des diblese1ectriques et du fil isole.

En 1892, aux Etats-Unis, on regroupa lesoperations de la Edison, de la Thomson-Hous­ton et de la "Brush Electric" pour former la"General Electric Company of New York." Onfit de meme au Canada, alors que l'on fusionnales actifs de la "Edison General Electric" et dela Thomson-Houston pour fonder la "Cana­dian General Electric".

Cette nouvelle societe canadienne, dont lesactivites de fabrication etaient concentrees aPeterborough, devint une des grandes entre­prises industrielles du pays, exploitant des usi­nes dans plusieurs villes et ayant des represen­tants hautement qualifies dans toutes lesregions du Canada. Ses produits ant perm is derepondre aux besoins de ses clients canadienset etrangers de tous Ies secteurs du marche del'electricite: industrie, commerce, transport,gouvernements et grand public. Plusieurs nou­velles gammes de produits furent introduiteset plusieurs autres eliminees. La CGE fabriqueencore, pour ses marches canadien et etranger,des equipements pour les entreprises d'electri-

113

Page 132: Electricity - The Magic Medium

today as Westinghouse Canada Inc. From ahistorical pamphlet issued by the company in1978 we extract some interesting highlights:

"Westinghouse Manufacturing CompanyLimited was established in Hamilton, Ontario,in 1896 to manufacture air brakes for Cana­dian railroads. By 1903 this business was em­ploying about 200 people". Up to that time theelectrical products of Westinghouse in the U.S.were already being distributed in Canada byMessrs. Ahern and Soper Limited of Ottawa.Then, in 1903, the Canadian WestinghouseCompany Limited was formed, at the recom­mendation of George Westinghouse, to consol­idate Westinghouse interests in Canada, withshareholder investment divided between: Wes­tinghouse Electric and Manufacturing Com­pany, Westinghouse Air Brake Company and"representative Canadian persons or corpora­tions".

Thus, the airbrake manufacturing plant inHamilton was expanded to manufacture elec­trical products for home and industry. The keyto transmission of electric power over long dis­tances had been found in recognition of themerits of alternating current and developmentof the transformer. Westinghouse had pion­eered in both.

The company went on to develop "the basicproducts used in generating, distribution andapplication of electricity-generators, trans­formers, motors, switchgear, circuit breakers,meters, lamps and lighting." The 1909 annualreport disclosed that: "The distinction restswith your company of having manufacturedduring the past year, the only transformingand switching apparatus yet produced in Can­ada for operation in connection with linestransmitting electrical energy at a pressure of110,000 volts, the highest transmission voltageyet attempted in any part of the world".

Later the company expanded to serve bothresidential and industrial markets. In more re­cent times (1971) the name was changed to"Westinghouse Canada Inc." which has be­come a diversified company serving the utility,industrial, construction and defence markets.Product scope now includes: turbines, genera­tors, transformers, nuclear products, motors,electronics, control and power distributionproducts.

Westinghouse Canada Inc. employs over5800 people in its various manufacturingplants, service and repair centres, and sales lo­cations across Canada and abroad.

Our third example of electrical pioneering isAluminum Company, of Canada Limited(Alcan). Here we have a company deeply en-

114

gaged as a manufacturer of wire and cable andas a very large producer and consumer of elec­tricity. From company bulletins, dated 1964and later, we quote:

The water resources of the Province ofQuebec first attracted the pioneers of thealuminum industry at the turn of the cen­tury, then led the province to become oneof the great light-metals-producingcentres of the world. In 1900, because ofthe development on the St. Maurice River,Alean's first powerhouse and aluminumsmelter was established at Shawinigan. Asthe market for aluminum developed, it be­came apparent that the available capacityof the St. Maurice system was insufficientto satisfy the growing needs for the metaland other industries which had followedAlcan in establishing plants in Shawini­gan.

Power resources were available in theSaguenay-Lake St. John system and it washere in 1925 that Alcan expanded. In theprocess this created work for thousands ofpeople. - .

In 1948, Alean surveyed the Kitimat­Kemano area in British Columbia to assessits potential as an aluminum smelter site.Needed were an abundant supply ofhydro-electric power, a deep water portwith access to the Pacific Ocean, and anarea large enough for a smelter capable of550,000 tons of aluminum annually as wellas a town that could grow to house 50,000citizens.

Many of the developments which fol­lowed in what was a wilderness, 400 milesnorthwest of Vancouver on the British Co­lumbia coast line at the head of a longfjord, 80 miles from the open sea, are nowhistory. This $440 million project is thelargest financial and engineering projectever undertaken in Canada by private en­terprise.

Today the Kitimat Smelter and its re­lated hydro-electric generating station atKemano, together with Alcan smeltersand hydro-electric developments in Que­bec, produce about 20% of the world's alu­minum. Fifteen percent of our aluminumingot production is processed into sheet,foil and other forms at fabricating workslocated across Canada including thoseowned by the company in Vancouver,B.C., Arvida and Shawinigan, Que., andEtobicoke, Kingston and Toronto in Ont.The balance of our production must besold in world markets.

Page 133: Electricity - The Magic Medium

------- --------------

CIte, des appareils d'eclairage, des appareilsmenagers et des machines tournantes.

Dans une brochure sur l'histoire de la Wes­tinghouse Canada Inc., on affirme que la"Westinghouse Manufacturing Company Li­mited" s'est etablie ~l Hamilton, en Ontario, en1896, dans Ie but de fabriquer des freins a aircomprime pour Ie marche ferroviaire cana­dien. Cette entreprise employait dej~l 200 per­sonnes en 1903." Jusqu'a ce moment, les pro­duits electriQues de cette compagnie avaientete fabriques aux Etats- U nis et distribues auCanada par Messrs Ahern and Sopher Li­mited, d'Ottawa. En 1903, selon la recomman­dation de M. George Westinghouse, on formala "Canadian Westinghouse Company" afin deconsolider les interets canadiens de I'entre­prise. Les actions de la nouvelle compagnie fu­rent divises entre la "Westinghouse Electricand Manufacturing Company", la "Westing­house Air Brake Company" et "des entreprisescanadiennes ou des citoyens canadiensrepresentatifs."

On agrandit alors l'usine de Hamilton afind'y fabriquer des produits electriques residen­tiels et industriels. C'est acette epoque qu'on adecouvert que Ie courant alternatif et les trans­formateurs constituaient les elements cles dutransport de l'energie electrique sur Ie longuesdistances. La Westinghouse fut un pionnierdans ces deux domaines.

L'entreprise continua de developper desequipements de base pour la production, ladistribution et I'utilisation de I'electricite:generatrices, transformateurs, moteurs, com­mutateurs, disjoncteurs, instruments de me­sure, lam pes et appareils d'eclairage. Le rap­port annue! de 1909 de la Westinghousesouligne: "Au cours du dernier exercice, votreentreprise s'est distinguee en produisant Iepremier equipement de transformation et decommutation au Canada pour des lignes pou­vant transporter de l'energie a une tension de110 000 volts, soit la plus haute jamais atteinteau Inonde."

La Westinghouse etendit ensuite ses activitesau marche residentiel. Plus recemment (en1971), elle devint la "Westinghouse CanadaInc.". Ses marches sont aujourd'hui diversifieset comprennent Ies entreprises d'electricite,I'industrie, Ie b5.timent et la defense. Lagamme de ses produits comprend des turbi­nes, des generatrices, des transformateurs, desproduits nucleaires, des moteurs, des appareilselectroniques ainsi que des equipements decommande et de distribution cl'energie electri­que.

La Westinghouse Canada Inc. compte 5800employes dans ses usines, ses centres d'entre­tien et de reparation et ses points de vente auCanada et ~l I'etranger.

L' Aluminium du Canada Limitee (Akan) estun grand prodllctellr de fils et de cables ainsiqu'un productellr et un consommateur tresimportant d'electricite. NOllS vous presentonsun extrait d'un bulletin qui retrace I'historiquede cette entreprise:

Les ressources en eau de la province deQuebec ont commence ~l attirer les pion­niers de I'industrie de I'aluminium audebut du siecle et ont fait de cette provinceI'un des grands producteurs de metauxlegers du moncie. En 1900, Ie developpe­ment des rives de la riviere St-Mauriceamena I' Akan a etablir sa premiere cen­trale electrique et sa premiere fonderie ~1

Shawinigan. A mesure que Ie marche deI'aluminillm se developpa, il devint evi­dent que Ie bassin du St-Maurice etait in­suffisant pour repondre aux besoins sanscesse croissants des autres industries quis'etaient etablies ~l Shawinigan apresI'Alcan.

Le bassin du Sagueney-Lac-St-Jean dis­posait d'un potentiel energetique impor­tant et c'est dans cette region que I'Aka I'!

decida de poursuivre son expansion en1925, ce qui crea des milliers d'emplois.

En 1948, I'Alcan etudia Ie potentie! de Iaregion de Kitimat-Kemano dans Ie but d'yconstruire une fonderie. Elle avait besoin,pour s'y etablir, d'abondantes ressourceshydmelectriques, d'un port en eau pro­fonde permettant d'acceder au Pacifique,d'un site assez grand pour y eriger unefonderie d'une capacite de 550 000 t0l1l1eset d'une ville pOllvant atteindre 50 000 ha­bitants.

Plusieurs evenements qui se sont pro­duits par la suite dans ce lieu sauvage,situe ~l 400 milks au nord-ouest de Van­couver et ~l 80 milles de la mer a la tered'un long fjiord, font desormais partie del'histoire. Ce projet de 440 millions de dol­lars est techniquement et financierementIe plus importantjamais execute par I'en­treprise privee au Canada.

Aujourd'hui, la fonderie de Kitimat et lacentrale hydroelectrique de Kemano dememe que les installations quebecoises deI' Alcan assurent environ 20% de la pro­duction mondiale d'aluminium. Quinzepour cent de notre production de Iillgotsd'aluminium est transformee en feuilles,

liS

Page 134: Electricity - The Magic Medium

We view the Alcan story as a prime exampleof the development of Canadian water powerresources for heavy industry manufacturing,employment, Canadian made electrical prod­ucts, products which support other manufac­turing plants, as a source of foreign currencyon a large scale from around the world, and asan electrical energy producer for the commu­nities which develop in the areas surroundingthe industrial sites. Other examples include thesteel and pulp and paper industries.

We have cited only three examples of majorelectrical industries to illustrate the pioneeringrole which has been played by Canada's electri­cal manufacturing organizations. There are lit­er"ally hundreds of others which could be in­cluded except for space limitations. Most ofthese are represented by the Electrical andElectronic Manufacturers Association of Can­ada.

The Electrical and ElectronicManufacturers Association ofCanada (EEMAC)This association was formed in 1976 from twoprevious organizations: Canadian ElectricalManufacturers Association (dating from 1944)and tbe Electronics Industries Association ofCanada which developed out of the RadioManufacturer"s Association of Canada (datingfrom 1929).

A brief account of the purposes and activi­ties of this organization as a promotional forcewithin the electrical industry is extracted fromtwo information bulletins:

EEMAC has one purpose: to serve and de­velop the Canadian electronics and elec­trical industries.

116

EEMAC's priorities are:Research and Development: promote a

favourable climate for R&D under­taken by private industry.

Education: promote responsiveness byeducational institutes to industryneeds.

Energy: promote the use of electricityin industrial and residential marketsfor economic benefit of all the prov­rnces.

International Trade: give associationleadership in the electrotechnical in­dustry for international trade.

Consumer Markets: promote publicawareness of the quality and stan­dards of electrical products made byCanadian industries.

EEMAC's Success:The Association represents over 200member companies in the industrialheartland of Canada.

EEMAC members employ 135,000Canadians who collectively earn $2 bil­lion annually.

EEMAC members serve a domesticmarket in excess of $15 billion and anexport market in excess of $4 billionannually.

EEMAC provides counsel and datato its membership on: national and in­ter"national marketing; resear"ch anddevelopment; codes and standards;employee relations; government rela­tions; public affairs; statistics and eco­nomic information ... and, in fact, onpractically all aspects of successful elec­trical and electronics industry opera­tions.

I

I

~----- ------------------------------------------

Page 135: Electricity - The Magic Medium

en papier et en d'autres produits dans desusines canadiennes, dont celles de l' Alcan,situees a Vancouver (C.-B.), a Arvida et ~I

Shawinigan (Quebec) ainsi qu'a Etobicoke,Kingston et Toronto (Ontario). Le restede Ia production est vendu sur les marchesmondiaux.

Les realisations de l'Alcan constituent unexemple eloquent de l'exploitatiqn des res­sources energetiques des eaux canadiennes envue de creer des industries lourdes, de creerdes emplois, de fabriquer du materiel electri­que et du materiel pour d'autres usines, depermettre l'entree de devises etrangeres surune grande echelle et de produire de l'energieelectrique pour les communautes qui se deve­loppent autour des emplacements industriels.Les industries de l'acier ainsi que des pates etpapiers constituent egalement a cet egard desexemples interessants.

II existe des centaines d'autres entreprisesqui ont joue un HJle important dans Ie develop­pement de I'industrie canadienne de l'eIectri­cite et dont nous ne pouvons vous parler fauted'espace. La majorite d'entre elles font partiede I' Association des manufacturiers d'equipe­ment electrique et electronique du Canada.

L'Association desmanufacturiers d'equipementelectrique et electronique duCanadaCette association, l'ondee en 1976, resulte de lafusion de deux autres organisations: l'Associa­tion des manul'acturiers d'equipement electri­que du Canada (formee en 1944) et l' Associa­tion des industries de l'eIectronique du Canada(nee de la "Radio Manufacturers Associationof Canada, fondee en 1929).

Nous vous presentons un apen;u des objec­til's et des activites de cette organisation de pro­motion de I'industrie de l'equipement electri­que.

L'Association des manufacturiel"s d'equipe­ment electrique et eJectronique a comrne objec­tif de servir et de developper I'industrie del'equipement electrique et eIectronique.

Ses prim"ites sont les suivantes:Recherche: Assurer un climat favora­

ble a la recherche et au developpe­ment au sein de l'industrie privee.

Enseignement: Faire en sorte que lesmaisons d'enseignement soient auxecoutes des besoins de l'industrie.

Energie: Favoriser l'utilisation del'electricite par l'industrie et Ie grandpublic au benefice de toutes les pro­Vlllces.

Commerce international: Jouer unrole de premier plan au sein de I'in­dustrie de l'electro-technique en cequi concerne Ie commerce interna­tional.

Consommation: Informer Ie public deIa qualite des produits electriques l'a­briques par I'industrie canadienne etdes nonnes qui les n~gissent.

L' Association representc plus de 200 entre­prises qui sont au coeur de la production in­dustrielle du Canada.

Ses membres emploient 135000 Canadiens,dont la masse salariale annuelle est de 2 mil­liards de dollars.

Le marche annuel des entreprises qu'ellerepresente depasse 15 milliards de dollars auCanada et 4 milliards de dollars a l'eo"anger.

L' Association conseille et informe ses mem­bres sur les sujets suivants: Ie marketing ~I

l'echelle nationale et internationale, la recher­che et Ie developpement, les codes et les nor­mes, les relations du travail, les relations avecles gouvernements, les affaires publiques, lesstatistiques et l'economie et, evidemment, pres­que tous les aspects de I'industrie de I'equipe­rnent electrique et eIectronique.

117

Page 136: Electricity - The Magic Medium

Early construction of electrical machinery manufacturingplant in Peterborough, Ontario, 1891. Photo courtesy ofCanadian General Electric Company Limited.

Floor of Main Machine Shop, Canadian General Electric'splant in Peterborough, Ontario, 1894. Photo courtesy ofCanadian General Electric Company Limited.

Construction d'une des premieres usines d'equipementseiectriques a Peterborough, Ontario, en 1891. Photo:Compagnie Generale Electrique du Canada Limitee.

L'atelier principal de I'usine de la Generale Electrique, aPeterborough, Ontario, en 1894. Photo: CompagnieGenerale Electrique du Canada Limitee.

118

Page 137: Electricity - The Magic Medium

Les directeurs et les chefs des ventes de Ja WestinghouseCanada Lirnitee, en 1904. Photo: Westinghouse CanadaLimitee. . -

Ce moteur cc. inversible de 5000 H.P., installt en 1931,servait a actionner les equipements d'acierage de l'usinede Sault Ste-Marie de I'Algoma Steel Corp. et eta it Ie plusgros moteur cc. de l'epoque. Photo: The Thomas FisherRare Book Library of the University of Toronto.

Directors and Sales Managers, Canadian WestinghouseCompany Limited, 1904. Photo courtesy of WestinghouseCanadaillc.

Installed 193 J, 5000 hp DC reversing motor driving a3-stand 3-high mill at the Sault Ste. Marie plant ofAlgoma Steel Corporation, was the largest DC motor inCanada at that time. Photo counesy of The ThomasFisher Rare Book Library of the University of Toronto.

119

Page 138: Electricity - The Magic Medium

-----------------~---~----------~---~---- --- - --

Electrical Drive Equipment atDOFASCO hot strip mill in Hamilton,Ontario. This mill is among the mostmodern in the world and incorporatesthe latest automation equipment utilizingmain frame computers andminicomputer control.

Equipement electrique de l'usinethermique de la DOFASCO, aHamilton,Ontario. Cette usine est une des plusmodernes au monde. Elle comprend lese9uipements d'automatisation les plusrecents, dont des ordinateurs centraux etdes mini-ordinateurs.

Roughing Mill Main Drive Motors rated 8000 hp each at35 rpm. Photo courtesy of DOFASCO Inc. and ceE.

Roughing Mill Control during automatic slab rolling.Photo courtesy of DOFASCO Inc. and CGE.

Moteurs principaux de l'atelier de degrossissage, d'unepuissance nominale de 8000 H.P. chawn a 35 t/min.Photo; DOFASCO Inc. et ceE.

Commande du degrossissage durant Ie laminageautomatiquedespanneaux. Photo: DOFASCOInc.et CeE.

120

Page 139: Electricity - The Magic Medium

Interieur de la salle de cuves de l'usine de Kitimat, en1979. Photo: Alcan Aluminium Limitee.

Lingot d'aluminium devant etre transforme en feuille.Photo: Alcan Aluminium Limitec.

Aluminum Ingot for processing into sheet. Photo coutesyof Alcan Aluminium Limited.

Interior view of Kitimat Potroom, 1979. Photo courtesyof Alean Aluminium Limited.

121

Page 140: Electricity - The Magic Medium

PartTwoElectrical Engineering andTechnology Education

By Raymond D. Findlay

1854: The Teaching ofEngineering in Canada BeginsIn the days before Confederation, the univer­sities in British North America were elitist in­stitutions pandering to the whims of the upperclasses, especially to adherents of the Churchof England. However, the vast majority of peo­ple in what is now Canada were decidedly ofthe opinion that ancient Greek and Latin, to­gether with a rigorous grounding in the pre­cepts of the Church of England, did littletowards preparing a young man to live in a pi­oneering community. Consequently they roseup in indignant wrath, first in an effort to sup­press the institutions, then to open their own"people's" universities, and finally to wrestcontrol of the offending, state-supportedschools from the clutches of the clergy. Univer­sity College in Toronto, later to hlll under theumbrella of the University of Torouto, cameunder early attack. Adherents of the Churchof Scotland, unable to obtain satisfaction, fi­nally subscribed their own university, Queen's,in the City of Kingston. With the financial as­sistance of the city, Queen's University was es­tablished in spite of the lack of support fromthe provincial government. The University ofToronto, as a state-supported school, enjoyedthe largess of the provincial government.

Nowhere was the fight to free an institutionfrom Anglican dogma more bitter than in NewBrunswick, where repeated efforts were made

122

in the legislature to close that province's uni­versity, King's College. Two decades of quarreland acrimonious debate in the provincial legis­lature were not enough to convince the collegegovernors that the church-oriented, Oxfordstyle of education was inappropriate to theneeds of the province. Finally, in exasperation,Sir Edmund Head, the Lieutenant-Governor,suggested that means be found to make the in­stitution more practical. Accordingly, he con­vinced the College Council to appoint a lec­turer in Civil Engineering. The University,later to become the University of New Bruns­wick, opened its doors to twenty-six students inthe new course on the fifteenth of February,1854. This was the first course of lectures inengineering to be offered in a university inBritish North America.

Head realized that the engineering coursewould be seen as a temporary solution only,and that a more structured approach tochange was required. With the agreement ofthe government, he appointed a commission ofinquiry into means to improve the college.Members of the commission included EgertonRyerson, then Superintendent of Education inUpper Canada, and William Dawson, Superin­tendent of Education in Nova Scotia. The com­mission's report, authored by Ryerson, andpublished in 1855, recommended the perma­nent establishment of courses in engineering.

Before the New Brunswick report could beacted upon, Head was appointed to the post of

Ray Findlay-historian anduniversity lecturer. Rayreceived his Ph.D. degree inelectrical engineering,University of 1'Ol"Onto, 1968.After serving on the staff atUniversity of New Brunswickuntil 1981 he accepted anoffer from McMasterUniversity in Hamilton,Ontario, where he is nowassistant Dean ofEngineering. He is currentlyoccupied with publishing abook on the origins ofengineering education inCanada.

Page 141: Electricity - The Magic Medium

"""""",¥¥#,,,,__..idilib... Em;;

Deuxieme partieL'enseignement du genieet de la technologieelectrique

Par Raymond D. Findlay

Ray Findlay, historien etmaitre de conferencesuniversitaire. M. Findlay aobtenu un doctorat en genieelectri'lue de I'Universite deToronto en 1968. II atravaille pour I'Universite duNouveau-Brunswickjusqu'en1981. Il a ensuite accepte uneoffre de l'UniversiteMcMaster de Hamilton,Ontario, ou il est main tenantVice-doyen de la faculte deGenie. II publiera bientot unlivre sur les origines del'enseignement du genie auCanada.

1854: On ~ommence

l'enseignement du genie ~u

CanadaDans les annees qui precederent laConfederation, les universites de I'Ameriquedu Nord Britannique etaient des institutionselitistes qui se pliaient aux caprices de la hautesociete et specialement des membres deI'Eglise anglicane. Toutefois, la grande majo­rite des habitants de ce qui est aujourd'hui IeCanada etaient convaincus que Ie grec et Ielatin anciens, combines a une rigoureuse ins­truction dans la doctrine de l'Eglise d'Angle­terre ne preparaient certes pas trop bien lesjeunes gens a aflronter la vie dans une com­munaute de dHricheurs. C'est pourquoi, ilsexprimerent leur indignation, d'abord en es­sayant de faire abolir ces institutions, puis enetablissanr leurs propres universites "du peu­pie", et enfin en essayant de briser I'empriseqU'exen;:ait Ie c1erge sur les ecoles en questionque I'Etat subventionnait. University Collei{ede Toronto, qui tombera plus tard sous la tu­telle de l'Universite de Toronto, a ete I'un despremiers a subir les premieres attaques. Lesmembres de I'Eglise d'Ecosse, ne pouvant pasobtenit" gain de cause, fonderent finalemenrleur propre universite, Queen's, dans la Citede Kingston. Avec l'aide financiere de la ville,I'Universite Queen's fut erablie meme sansI'aide du Gouvernement provincial. L'Univer­site de Toronto, etant une ecole subven-

tiormee par I'Etat, beneficiait elle des largessesdu Gouvernement provincial.

C'est au Nouveau-Brunswick, plus que nullepart ailleurs, que s'est livree la lutte la plusacharnee pour liberer l'enseignement du jouganglican, et cela en revenant a la charge a lalegislature pour faire f'ehner l'universite pro­vinciale, King's College. Vingt ans de querelleet de debats acerbes a la legislature provin­ciale ne reussirenr pas a convaincre les gou­vemeurs du college que I'enseignement basesur les principcs c1ericaux et dispense dans Iestyle d'Oxford n'etait pas approprie aux be­soins de la province. A la fin, en desespoir decause, Ie Lieutenant-Gouverneur, Sir EdmundHead, proposa de trouver des moyens de ren­dre I'institution plus pratique, et pour ce faire,il persuada Ie Conseil du College de nommerun charge d'enseignement en genie civil.L'universite, qui deviendra plus tard I'Univer­site du Nouveau-Brunswick, accueillit vingt­six etudiants pour Ie nouveau CaUl's qui com­menc;:a Ie 15 fevrier, 1854. C'etait la lapremiere serie de cours en genie qu'ofTraitune universite en Amerique du Nord Britan­I1lque.

Head sentit gu'on ne percevrait ce cours degenie que comme une solution temporaire etqu'un cheminemenr vel'S Ie changement de­vait se faire d'une fac;:on plus planifiee. AvecI'assentiment du Gouvenlcmcnt, il nommaune commission d'enquete qui etudia lesmoyens d'ameliorer I'enseignement au

123

Page 142: Electricity - The Magic Medium

Governor-General of Canada, which at thattime encompassed what is now Ontario andQuebec. Among his first duties was to advisethe college council at the ailing McGill Univer­sity in Montreal on the appointment of a newprincipal. Head recommended William Daw­son, then Superintendent of Education inNova Scotia, and a noted naturalist and geolo­gist. It should be remembered that in that era,most university appointments were chosenfrom Britain. It was almost unheard of to rec­ommend a "colonial" for such a prominent po­sition: it was equally unheard of for a univer­sity to accept such a recommendation. Butaccept it they did, and most providentially forthe fortunes of McGill. As an applied scientist,Dawson was able to perceive the need to imple­ment more practical subject material into theuniversity curricula. In keeping wiih his ex­pressed opinions before the New BrunswickCommission, Dawson's inaugural address (No­vember, 1855) included provision for the es­tablishment of an engineering program:

"A course of Civil -Engineering. This willembrace English Literature, Mathematics,Natural Philosophy (physics), Chemistry,Geology and Minerology, Surveying andCivil Engineering, including constructionof machinery."

In 1856 (the session following the address)Dawson appointed Thomas Keefer to give thefirst set of engineering lectures at McGill.

Up to this time engineering had not beentaught at Toronto, although provision hadbeen made for it as early as 1851. We may eas­ily conjecture that Governor-General Head'sinvolvement as Visitor to the University ofToronto provided the stimulus necessary to ef­fect the establishment of the engineeringcourse there also. By 1858 Toronto's programhad begun. It is certain that Head was directlyresponsible for the program at New Bruns­wick, and indirectly responsible for that atMcGill. Dawson was an outspoken proponentof engineering education within the universitysystem. Even Ryerson, not generally noted forhis favorable attitude to engineering, hadstrongly supported its implementation in hisreport on the situation at King's College, NewBrunswick.

For their parts in the stories of these firstprograms in Canada, Head, Ryerson and Daw­son, none of them engineers, but all of themprofound thinkers of their time, may justly becalled the fathers of engineering education inCanada.

124

Engineering education got off to a ratherslow start. In spite of the early successes, thedepression which preceded Confederation,slowing railway construction and industry ingeneral, caused a decline in interest for practi­cal courses of instruction at the university level.It was not until the late seventies that engineer­ing again came to the fore, and not until theformation of the American Institute of Electri- .cal Engineers in 1884, that the discipline ofelectrical engineering gained any great promi­nence. The first program in electrical engi­neering in North America had been startedonly two years before, at Massachusetts Insti­tute of Technology. Electrical engineeringprograms were begun shortly thereafter inCanada. The first was at McGill in 1890, fol­lowed by Toronto and New Brunswick m1891, then at Queen's about 1896.

William Dawson, Principal of McGill University in 1855,introduced anengineering education program. Photocourtesy of McGill University Archives.

William Dawson, Recteur de I'Universite McGill en 1855,a instaure Ie premier programme d'enseignement dugenie. Photo: Archives de I'Universite McGill.

Page 143: Electricity - The Magic Medium

College. La commission comptait entre autres,M. Egerton Ryerson, alars SUI'intendant del'Education au Haut Canada, et M. WilliamDawson, Surintendant de l'Education en Nou­velle-Ecosse. Le rapport de la commission,redige par M. Ryerson, et publie en 1855, re­commandait I'etablissement de cours perma­nents en genie.

Avant qu'on ait pu mettre en pratique Ierapport du Nouveau-Brunswick, Head etaitnom me Gouverneur-General du Canada, le­quel comprenait alors ce qui est maintenantl'Ontario et Ie Quebec. L'une des premierestflches du gouverneur-general a ete de propo­ser au conseil du college de L'UniversiteMcGill ;1 Montreal, qui passait par uneperiode difficile 3 I'epoque, Ie nom d'une per­sonne pour Ie poste de principal. Head avaitoffert Ie nom de William Dawson, alors Surin­tendant de l'Education en Nouvelle-Ecosse, etun naturaliste et un geologiste de renom. IIfaut se rappeler qU'3 cette epoque, la plupartdes nominations universitaires etaient faitesen Angleterre. II crait fort rare de recomman­del' un "colon" pour un poste aussi important.II etait egalement inconcevable pour une uni­versite d'accepter une telle recommandation.Mais ils I'accepterent et des plus providentiel­lement pour Ie bien de McGill. Etant unhomme de sciences appliquees, Dawson a ete3 meme de sentiI' Ie besoin d'introduire plusde sujets pratiques dans les cours de l'univer­site. Fidele 3 ses principes exprimes devant laCommission du Nouveau Brunswick, Dawson,dans son discours inaugural (en novembre1855), annonl;:a I'etablissement d'un pro­gramme de genie:

"Un cours de Genie Civil. II comprendra,entre autres, litterature anglaise,mathematiques, philosophie naturelle(physique), chimie, geologie et mineralo­gie, arpentage et genie civil, et la cons­truction de machinerie."

En 1856, (3 la session qui suivit Ie discours)Dawson nomma Thomas Keefer pour donnerles premiers COUl'S de genie 3 McGill.

JUSqu'3 ceUe date, Ie genie n'avait pas eteenseigne a Toronto, bien qu'on avait prevuoffrir cette matiere des 1851. On peut facile­ment imaginer que Ie fait que Ie Gouverneur­General Head etait 'Visiteur' 3 I'Universite deToronto a fourni Ie srimulant necessaire pouramener I'etablissement d'un COUl'S de genie 13aussi. En 1858, Ie programme commenl;:ait 3Toronto. II est certain que Head a ete directe­ment responsable de I'implantation du pro-

gramme au Nouveau-Brunswick et indirecte­ment a McGill. Dawson etait un supporteuravere d'une education en genie au sein dusysteme universitaire. Meme Ryerson, quin'etait pas generalement reconnu pour avoirune disposition favorable 3 l'egard du genie,avait appuye fortemenr sa mise en pratiquedans son rapport sur la situation a King's Col­lege, au Nouveau-Brunswick. Pour leur roledans I'etablissement de ces premiers program­mes d'etudes au Canada, Head, Ryerson etDawson, qui n'etaient pas eux-memes desingenieurs, mais tous des grands penseurs deleur temps, peuvent, a juste titre, etre recon­nus comme les peres de I'enseignement dugenie au Canada.

L'enseignement du genie demarra plutorlentement. Malgre les succes du debut, ladepression d'avant la Confederation, quicausa un ralentissement dans la constructiondu chemin de fer et dans I'industrie engeneral, entraina une baisse d'interet pour lescours de sciences pratiques au niveau univer­siraire. Ce n'est que vel'S la fin des annees soi­xante-dix que I'enseignement du genie emer­gea de nouveau, et ce n'est qu'apres lafondation de l'Institut americain desIngenieurs en Electricite (American Instituteof Electrical Engineers), en 1884, que la disci­pline du genie eIectrique acquit une certaineimportance. Le premier programme d'etudesen genie electrique en Amerique du Nordavait commence seulement deux ans plus rotau Massachusettes Institute of Technology.Les cours en genie electrique commencerent£leu apres au Canada: Ie premier fut donne aMcGill en 1890, puis a Toronto et a I'Univer­site du Nouveau-Brunswick en 1891 et enfin 3QueeI~'s vel'S 1896.

L'Ecole Polytechnique: Debut etprosres de l'enseignement dugenIe au QuebecDans la periode immediatement apres laConfederation, alors que I'economie passaitpar une crise plurat serieuse, I'enseignementdu genie a souffert d'une penurie d'etudiantsaussi bien que d'une penurie de professeursqualifies. Quand la situation economique com­mefl/;:a a s'ameliorer, la province de Quebecfut la premiere a en profiter. Non seulementoffrait-on 3 McGill un cours qui avait ete bienrepense, mais aussi on avait prepare Ie terrainpour I'epanouissement d'une des meilleuresinstitutions de genie au Canada, l'Ecole Poly­technique. Celle-ci connut des debuts plutotmodestes: eUe s'installa, en janvier 1874, au

125

Page 144: Electricity - The Magic Medium

Engineering Building, from pamphlet "Formal Openingof the Engineering and Physics Buildings, McGillUniversity, 1893". Photo courtesy of McGill UniversityArchives.

Ecole Polytechnique: The Riseof Engineering Education inQuebecDuring the rather turbulent economic timesimmediately after Confederation engineeringinstruction suffered both from a want of stu­dents as well as from a want of trained faculty.When times began to improve the Province ofQuebec was the first to take advantage. Notonly did a very much rejuvenated program ap­pear at McGill, but also the seeds were sownfor the rise of one of Canada's foremost engi­neering institutions, Ecole Polytechnique. Ithad rather humble beginnings, starting in Jan­uary, 1874, on the first £1001' of I'Ecole du Pla-

126

L'immeuble de la faculte de Genie, tel qu'il apparait dansla brochure "Formal Opening of the Engineering andPhysics Building, McGill University, 1893". Photo:Archives de l'Universite McGill.

teau in Montreal. The founders were M. UrgelEugene Archambault, the first principal, theHonourable Gedeon Ouimet, on behalf of theGovernment of Quebec, and M. Charles Pfis­ter, perhaps the single individual most respon­sible for establishing the school. It was underM. Pfister's hand that the first program tookshape. It was a very carefully conceived gen­eral program incorporating the principles ofcivil engineering, mining, metallurgy, metal­working and industrial production techniques.The first class ofJanuary 1874 included twelvestudents of whom only six remained at the firstexamination in March. In September four en­tered the full program while another three stu­dents began a preparatory course to equip

Page 145: Electricity - The Magic Medium

premier etage de l'Ecole du Plateau aMontreal. Au nombre des fondateurs oncompte M. Urgel Eugene Archambault, Iepremier principal, I'Honorable Gedeon Oui­met, representant du Gouvernement duQuebec, et M. Charles Pfister, I'individu quipeut etre considere comme Ie plus grand res­ponsable de I'etablissement de I'Ecole, car c'estsous sa direction que fut institue Ie premiercours. C'etait un programme general tres soi­gneusement con<;:u qui comprenait I'enseigne­ment des principes fondamentaux du geniecivil, du genie minier, de la metallurgie, dutravail des metaux et des techniques de la pro­duction industrielle. La premiere classe, enjanvier 1874, comptait douze etudiants dontseulement six restaient pour Ie premier exa­men au mois de mars. En septembre, quatreetudiants commen<;:aient Ie programme com­plet tandis que trois autres entraient au courspreparatoire qui leur permettra de SUiVl"e Iecours complet. En tout, il y avait six profes­seurs, dont M. Emile Balete qui contribuaconsiderablement au succes de l'Ecole pen­dant les vingt-quatre annees qui suivirent. Lapremiere classe de diplomes, en 1877, comp­tait cinq finissants, un nombre tres apprecia­ble pour Ie temps. Etant donne la renommeequ'avait acquise l'Ecole en une si couneperiode de temps, Ie Gouvernement et I'Ecoleelle-meme ne tarderent pas a prendre les me­sures necessaires afin d'assurer son avenir.Partant, en 1887, I'Ecoie s'affiliait a I'Univer­site Laval, a son campus de Montreal. QuandIe campus de Laval ~I Montreal fut incorporesous ses propres titres d'Universite deMontreal, en 1920, I'Ecole Polytechniquetransfera son affiliation a cette nouvelle uni­versite, tout en conservant son independancefinanciere.

Le legs de Sir WilliamMacdonaldEn 1891, un marchand de tabac en vue deMontreal, M. William Macdonald, contribua$40,000 pour doter une Chaire de Genie Elec­trique a McGill. M. Macdonald avait deja faitun don appreciable pour la construction etI'equipement d'un nouvel edifice de genie. Lefonds de construction original avait ete sous­crit par Ie don de $60,000 de M. ThomasWorkman, mais cette somme etait beaucouptrop faible pour Ie besoin. Le cours avait eteannonce dans Ie prospectus de McGill en1890, mais ce n'est qu'un an plus tard, apresI'etablissement de la chaire, que Ie nouveaucours de genie electrique se mit en branle,

dans son edifice et avec son corps professoral.

L'Universite duNouveausBrunswick et latheorie de r electdcite

En 1889, I'Universite du Nouveau-Bruns­wick cn~ait une chaire de sciences experimen­tales (un cours qui comprenait les deuxmatieres, Ie genie electrique et la physique),et, en 1890, elle nommait comme titulaire M.Alexander Wilmer Duff. Ce dernier quittadeux ans plus tard et fut remplace par M.George Miller Downing, qui avait termine sesetudes a Penn State College en 1888, de la, iletait entre au M.LT. pour remplir Ie poste demoniteur de physique et de genie eIectrique,puis il s'etait inscrit au Polytechnique Institutede Brooklyn, OU il avait obtenu Ie grade de ba­chelier en genie eIectrique. Par deferencepour Ie grade detenu par Downing, on chan­gea Ie nom du poste a celui de Chaire de Phy­sique et de Genie Electrique. En 1892, Dow­ning institua un programme de quatre anspreparant au grade d'ingenieur electrique. Ladescription du programme se lisait commesuit dans Ie calendrier de l'annee suivante:

"On approfondit la theorie de I'electriciteet on y ajoute du travail en laboratoire.L'Universite a obtenu la permission de seservir des dynamos, des moteurs, -des li­gnes, etc., de la Fredericton Electric Ligh­ting Company, l';t, une fois par annee, onles utilisera pour failT des experiencesqui permettront a I'etudiant de se familia­riser avec plusieurs des appareils em­ployes a la generation et a la distributionde I'electricite." -

La troisieme annee du programme compor­tait Ie calcul integral, la mecanique appliquee,la physique, la theorie de la machine a vapeur,la dynamo, la transmission de I'energie parl'eIectricite et les mesures electriques; tandisque la qu~trieme annee comprenait la physi­que, la statique, la theorie de I'electricite, latheorie du courant alternatif et la conceptionde la dynamo et du transformateur. II n'y eutque deux inscriptions au cours en 1893. Lemanque d'equipement, une calamite aussi dif­ficile a enrayer autrefois qu'aujourd'hui, para­lysait I'enseignement du cours. Quane! I'Uni­versite refusa d'affecter des fonds pour I'achatd'equipement de laboratoire, M. Downing sechargea lui-meme du probleme: "Je me suisadresse a M. Frederic Nicholls, Ie directeur­genel"al de la Canadian General Electric Com-

127

Page 146: Electricity - The Magic Medium

them for work in the fuJI program. Altogetherthere were six faculty including M. Emile Ba­lete, who played a very substantial role in es­tablishing the fortunes of the school over thenext twenty-four years. The first graduatingclass in 1877 numbered five students, a veryrespectable size for the times. Due to the repu­tation of the school, so quickly established, itwas not long before the government and theschool itself sought means to ensure its future.Consequently, in 1887 the school became affil­iated with the Montreal campus of Laval Uni­versity. When the Montreal campus of Lavalwas incorporated under its own right as theUniversity of Montreal in 1920, Ecole Poly­technique transferred its affiliation to the newuniversity, although retaining its financial in­dependence.

Sir William Macdonald and HisLegacyIn 1891, William Macdonald, a prominentMontreal tobacco merchant, contributed$40,000, to endow a Chair in Electrical Engi­neering at McGill. Macdonald preceded this

-endowment with a sizable donation to enableconstruction and equipping of a new engineer­ing building. The original building fund hadbeen started from a bequest of $60,000 byThomas Workman. However, this amount fellfar short of that actually needed. The programwas advertized in the McGill program for1890; but it was not until the following year,with the establishment of the Chair, that thenew electrical engineering program got under­way, with both building and faculty.

University of New Brunswickand the Theory of ElectricityIn 1889 the University of New Brunswick es­tablished a Chair of Experimental Science (aposition which included both electrical engi­neering and physics as subject material), ap­pointing Alexander Wilmer Duff to the posi­tion in 1890. Duff left after two years. Hisreplacement was George Miller Downing, whograduated from Penn State College in 1888,proceeding thence to MIT as an instructor inphysics and electrical engineering, and fromthere to the Polytechnic Institute of Brook­lyn, where he obtained the degree of Bachelorof Electrical Engineering.. In' deference toDowning's status the appointment waschanged to the Chair of Physics and ElectricalEngineering. Downing laid the foundationsfor a four-year diploma program in electricalengineering in 1892. The description of the

128

-------~----

program in the calendar for the following yearread:

"The Theory of Electricity is thoroughlytaught, and is supplemented by an exten­sive laboratory practice. The Universityhas been granted the use of the dynamos,motors, lines, etc., of the Fredericton Elec­tric Lighting Company, and each year anumber of practical tests will be made,which will enable the student to becomefamiliar with many of the appliances usedin the generation and distribution of Elec­tricity."

The third year of the program included cal­culus, applied mechanics, physics, theory ofthe steam engine, dynamo-electricity, electrictransmission of energy and electrical measure­ments; while the fourth year included physics,statics, theory of electricity, alternating currenttheory and dynamo and transformer design.Only two students registered for the programin 1893. Lack of equipment, a blight as diffi­cult to eradicate then as now, hindered theteaching of the program. When no Universityfunds were made available to supplement theequipment budget for the laboratory, Down­ing took the matter into his own hands: "Imade an appeal to Mr. Frederic Nicholls, Gen­eral Manager of the Canadian General ElectricCompany. After some correspondence, he re­sponded by presenting to the university:-one3 kW compound dynamo with rheostat, one3 kW shunt motor with starting box, two 25ampere double-pole fused switches, one 0-150volt voltmeter, and one 0-25 ampere ammeter.The aggregate listed price of these machinesand associated instruments is over $300.00.The Company rounded out this handsome do­nation by paying the freight charges to Fre­dericton." Which shows that even at that earlydate there was cooperation between industryand university.

The School of Practical Sciencein TorontoThe School of Practical Science opened itsdoors for students under the cooperative en­deavour of the University of Toronto and theDepartment of Education in 1878. However, itwas not until a reorganization of the school in1890 that any mention was made of electricalengineering, and then only as an adjunct tomechanical engineering. In 1891 ThomasReeve Rosebrugh, a Demonstrator in the labo­ratory, and graduate in mathematics and phys­ics, was elevated to the post of Lecturer in Elec­trical Engineering. Although the diplomacourse was nominally of three years duration,

Page 147: Electricity - The Magic Medium

pany. Apres un echange de quelques lettres, ildonna en cadeau a I'universite: une dynamode 3k W avec rheostat, un moteur shunt de3kW avec boite de contact, deux intcnupteursbipolaires avec fusibles de 25 amperes, unvoltmetre de 0-150 volts, et un amperemetrede 0-25 amperes. Le prix courant total de cesappareils et de leurs accessoires est de plus de$300.00. De plus, la Compagnie <~outa a cegenereux don les frais de transport jusqu'aFredericton". Ceci demontre que, meme acette epoque lointaine, il existait une excel­lente collaboration entre I'industrie et J'uni­versite.

R..'JEcoR<e <dl<eS §d.<elI11C<eS lP'lt"«ll11:ll\C1[1!.1le§ 211f([J>JrOlI11ltoL'Ecole des Sciences Pratiques ouvrit ses por­tes aux etudiants en 1878, a la suite de I'actioncombinee de l'Universite de Toronto et duMinistere de J'Education. Cependant, ce n'estque lors de 1£1 reorganisation de l'ecole en1890, qu'on a parle d'un cours de genie elec­trique, et encore seulement commecomplementaire au genie mecanique. En1891, M. Thomas Reeve Rosebrugh, undemonstrateur du laboratoire, et un diplameen mathematiques et en physique etait promuau poste de charge d'enseignement en genieelectrique. Bien que Ie caurs preparant a undiplame n'etait, en fait, que de trois ans, onencourageait les etudiants a faire une autrean nee qui leur permettrait d'obtenir un certi­ficat pour leurs travaux de laboratoire. Ceneannee post-diplame mena a la creation dugrade de Bachelier en Sciences Appliquees,qui a ete decerne pour la premiere fois aux fi­nissants de 1893. En 1896, Ie Departement deGenie Mecanique et Electrique avait deja a sadisposition un nouveau tableau d'interrup­teurs, un 'transformateur rotatif, construitspecialement pour l'ecole pour lui permettred'obtenir du courant triphase ou quadriphase,et un moteur a induction triphase, en plus deJ'equipement de mesure, y compris des galva­nometres et des electrometres.

U lI11 e1!:«lllblli, lUllI11 llliJlO1!:<elUllt" eli<ec1l:lt"ll~lUl<e

elt lUllI11 OlUl <dl<elUlX 1!:OlUllt"§Le Reverend George Grant, qui avait accom­pagne Sir Sandford Fleming lors de sonvoyage historique d'arpentage du trace de lavoie fenee devant passer a travers les Rocheu­ses, fut nomme principal de l'UniversiteQueen's, a Kingston, en 1877. Sa nominationa ete une benediction pour la cause de I'ensei­gnement du genie, non seulement a cause de

ses convICtIOns person nelles, mais aussi acause de ses relations amicales avec M. Fle­ming. C'est grace a I'enthousiasme et a I'ener­gie de M. Grant que Queen's a ete parmi lespremieres institutions ;1 enseigner Ies sciencesnature lies au Canada. La Faculte des SciencesPratiques a ete etablie aQueen's ~l tenips pourI'annee universitaire de 1894-95, ayant em­prunte a I'Ecole des Mines, qui commen<;ait,une partie de ses locaux et quelques uns deses charges d'enseignement. M. N.R. Carmi­chael (M.A. Queen's) prit Ie poste de moni­teur en genie dectrique, mais disposait de trespeu d'equipement de laboratoil'e. Comme Ienotait un diplome, en parlant de !'equipmentde laboratoire pour Ie programme complet degenic: "Nous avions un etabIi, un moteur elec­trique, un ou deux tours et bien peu d'autreschoses."

Malgre la modicite des moyens, Ie manqued'equipement et I'exigu'ite des locaux, Ie pro­gramme survecut et produisit des diplamestres competents meme pour ces premieresannees. M. Charles Legeyt Fortescue etait l'unde ceux-lil, recevant son grade en 1898. II eutune carriere tres brillante dans la conceptiondes machines electriques a Westinghouse. IIest surtout celebre pour la formulation de Jatheorie des composantes symetriques, memes'il a obtenu plusieurs brevets d'invention etest aussi !'autelll- d'un tres grand nombred'ecrits scientifiques. Au nombre des premiersdiplames de Queen's, on rcmarque aussi M.H.S. Baker qui commen<;a sa brillante carrierechez Westinghouse avant de se joindrc al'Hydro-Ontario Otl il aida, par ses hautes qua­lites de gestionnaire et d'inventeur, a poser Iesfondements de I'industrie de I'energie electri­que dans Ia Province.

Une grande rivalite regnait entre l'Univer­site de Toronto et Queen's a savoir qui auraitI'appui financier elu Gouvernement ct il exis­tait probablement beaucoup el'animosite depart et d'autre etant donne que peu de fondspublics etaient alloues a I'enseignement uni­versitaire. M. James Louden, Ie president deI'Universite de Toronto, etait inite par les ef­forts repetes du principal Grant qui essayaitd'obtenir des subventions du gouvernementpour promouvoir l'enseignement des sciencesappliquees a Queen's. En 1900, M. Loudenavait passe la remarque suivante: "Ia demanded'aide provinciale par l'Universite Queen's apris une nouvelle tournure, et si Ie Gouverne­ment decide d'ignorer les reclamations de sonpropre enfant (Toronto), ou bien l'adoptiondevra etre integrale et I'enfant adoptif soumis~l un contrale absoIu, ou bien I'argent devra

129

Page 148: Electricity - The Magic Medium

an extra year was encouraged to obtain a cer­tificate based on laboratory work. This post­graduate year led to the establishment of thedegree of Bachelor of Applied Science, ofwhich the class members of 1893 were its firstrecipients. By 1896 the Department of Me­chanical and Electrical Engineering had ac­quired a new switchboard, a "rotary trans­former", built especially for the school toprovide either three or four phase power, anda three-phase induction motor, in addition tomeasuring equipment including galvano­meters and electrometers.

A Bench an Electric Motor andone or two LathesRev. George Grant, who accompanied SirSandford Fleming on his historic survey tripfor the railway through the rockies, was ap­pointed principal of Queen's University inKingston in 1877. His appointment was fortui­tous for the cause of engineering education,not only due to his personal convictions, butalso to his friendship with Fleming. It wasGrant's drive and energy which placedQueen's among the early scientific educationalinstitutions in Canada. The Faculty of PracticalScience was established at Queen's in time forthe session of 1894-5, using some of the facili­ties and lecturers of the fledgling School ofMining. N.R. Carmichael (M.A., Queen's) tookon the post of instructor in electrical engineer­ing, but with very little in the way of laboratoryequipment. As one graduate noted, speakingof equipment for the whole engineering pro­gram: "We had a bench, an electric motor, oneor two lathes and little else".

In spite of the want of facilities, equipmentand space, the program survived to turn outvery creditable graduates even in those earlyyears. Charles Legeyt Fortescue was among thefil'st, graduating in 1898 and going on to a verydistinguished career in electric machine designwith Westinghouse. He is remembered princi­pally for his articulation of the theory of sym­metrical components, although he obtainedmany patents and authored a profusion ofpapers as well. Also among the first graduatesof Queen's was H.S. Baker who began his dis­tinguished career at Westinghouse beforemoving on to Ontario Hydro, contributing hisgreat management and invention skills to thefounding of the electrical power industry ofthe province.

There was great rivalry between Torontoand Queen's for public support, and perhapsno small amount of animosity owing to the

130

sparsity of public funding for higher educa­tion. James Louden, the president of the Uni­versity of Toronto, was incensed at PrincipalGrant's repeated efforts to obtain public fund­ing for applied sciences at Queen's. Louden re­marked in 1900 that: "a new feature (has) ap­peared in the demand of Queen's Universityfor Provincial aid and should the Governmentchoose to ignore the claims of its own child(Toronto), either the adoption must be com­plete and the child subject to full control, orelse the money must be given to irresponsiblehands (Grant's) to expend." The Governmentagreed in some measure with these sentiments,providing no funding for the faculty in theearly years, although providing limited sup­port to the School of Mining which was looselyaffiliated with Queen's. However, to appeaseToronto, the government also provided fund­ing to Toronto to implement a competing de­partment of mining. Fortunately, althoughlacking in government support, Queen's hadthe overwhelming support of the citizens ofKingston. They subscribed enough funds,principally through private donations, to en­able the new faculty to begin operations. Thedegree program was to be of four years dura­tion in one of the four regular disciplines ofengineering. Supported both morally and fi­nancially by Sir Sandford Fleming as Chancel­lor, Grant managed to overcome the expresseddisapproval of the Provincial Government andobtained tacit agreement to the engineeringprogram by the turn of the century.

Charles LeGyt Fortescue,born at York Factory,Manitoba, 1876, son of chieffactor of Hudson BayCompany-was the firstelectrical engineeringgraduate of Queen'sUniversity. After graduationFortescue joinedWestinghouse Electric andManufacturing Company atEast Pittsburgh and attaineduniversal fame for hiscontributions to theengineering principles andanalysis of powertransmission and distributionsystems. He is especiallynoted for development ofpolyphase systems analysis bythe symmetrical componentsmethod. Photo courtesy ofIEEE Center For TheHistory of ElectricalEngineering.

Charles LeGyt Fortescue estne en 1876 it York Factory,au Manitoba. Son pere etaitagent principal it laCompagnie de h~ B,<lied'Htidson. II fut Ie premierdiplome en genie electriquede l'Universite Queen's.Apres ses etudes, il s'est jointit la Westinghouse Electricand ManufacturingCompany, it East Pittsburgh.Ses travaux sur les principesd'ingenierie et l'analyse desreseaux de transport et dedistribution d'energie lui ontvalu une renommeeinternationale. On lui doitnotamment Ie .developpement d'une analysedes systemes polyphases selonla methode des cornposantssymetriques. (Photo: IEEECenter For The Historyof Electrical Engineering.

Page 149: Electricity - The Magic Medium

Le "Gymnase", construit en1904 pour devenir plus tardl'immeuble de la faculte deGenie de I'Universite duNouveau-Brunswick.

The "Gymnasium", built in1904, later became theElectrical EngineeringBuilding at University ofNew Brunswick.

Universite c1u Nouveau-Brunswick. Le plus ancienb{niment universitaire encore en exploitation au Canaela.II a ete construit en 1829. On Ie voit ici tel qu'ilapparaissait avant 1878. C'est dans ce bfrtirnent qu'eurentlieu les premiers cours de genie elect rique,

etre mis entre des mains irresponsables (cellesde Grant) pour etre gaspille." Le Gouverne­ment partageait en partie ces sentiments, aupoint de n'affecter aucun fonds pour la Fa­culte au debut, encore qu'il accordait un cer­tain appui a l'Ecole des Mines qui etait vague­ment affiliee a Queen's. Cependant, pourapaiser Toronto, Ie Gouvernement accordaaussi des fonds a I'U niversite de Toronto pourmettre en oeuvre un department de genie mi­nier concurrent. Par bonheur, bien que nebeneficiant pas d'appui provincial, Queen'spouvait compter sur l'appui enthousiaste descitoyens de Kingston. lis avaient souscrit assezd'argent, surtout sous forme de dons prives,pour permettre ~l la nouvelle faculte de com­mencer ses COUl'S. Le pt'ogramme preparantau diplome serait de quatre ans pour l'une ouI'autre des quatre disciplines regulieres desciences appliquees. Avec I'appui, tant moralque financier, de Sir Sandford Fleming, Iechancelier du temps, M. Grant reussit a sur­monter la desapprobation expresse du Gou­vernement provincial si bien qu'il avait obtenu

University of New Brunswick-the oldest functioningunivet'sity building in Canada, built in 1829, This viewshows the building as it was prior to 1878. The tirstelectrical engineering classes were held here.

un consentement tacite I'autorisant a intro­duire Ie programme de genie avant Ie debutdu siecle.

lLes etudiamrtts e\U!.x~memes

tContrillnxent a. !'erectlon dl'uJrll.autre edifice

Le manque d'espace et d'equipement conti­nuait a gener toutes les universites, quoiqueToronto parvenait a puiser dans les coffrespublics avec un certain sucd~s et que McGillcontinuait a jouir des largesses de ses bienfai­teurs. En 1899, l'Universite du NouveauBrunswick etait toujours entierement logeedans un seul edifice vieux de soixante-dix ans.Sa situation etait devcnue si precaire que lesetudiants cux-memes reclamerent dcs installa­tions plus convenables ct plus d'espacc. LeSenat de I'Universite se rendit a leur demandequand il devint evident que les etudiantsetaient prets, non seulement a recueillir dessouscriptions a un fonds de construction, maismeme a fournir cux-memes des sommes

131

Page 150: Electricity - The Magic Medium

Students Give Their Own Cashfor aNew Building .The want of space and facilities continued- tohinder all of the programs, although Torontomanaged to pump the public purse with somesuccess, while McGill continued to enjoy thelargess of its benefactors. In 1899 the Univer­sity of New Brunswick was still entirely housedin a single seventy year old building. The situa­tion there had become so acute that the stu­dents themselves petitioned for more adequatefacilities and space. The University Senate ac­cepted the argument when it became clear thatthe students were prepared not only to assist inobtaining subscriptions to a building fund, butalso to subscribe substantial amounts towards itthemselves. It was generally recognized thatthe whole university would benefit from theaddition of a new building.

The building was completed in 1900 andopened with considerable pomp and ceremonyby James Louden, pr'esident of the Universityof Toronto, to an audience which includedrepresentatives of academe from the entirewestern world. A similar building program wasunderway at Queen's with subscriptiontowards Fleming Hall. Toronto was blessedwith exceptional governmental support for itsbuilding program (although the faculty atToronto did not agree with this sentiment inany measure!)

Several Waveshapes andFrequencies-in 1899In contrast to other Canadian programs andmany others elsewhere in the wodd, McGill'sprogram was rich in both facilities and qualityof faculty. The calendar for 1899 lists R.B.Owens, an electrical graduate of Columbia, asthe Macdonald Professor of Electrical Engi­neering. Louis Herdt, a graduate of McGillwho also had the degree of M.E. in E.E. fromthe Electrotechnical Institute of Belgium, wasappointed as lecturer, while Ernest Rutherfordwas appointed as Macdonald Professor ofPhysics. Subject material included, in additionto the fundamental material in mathematicsand physics, "direct current dynamo-electricmachinery, alternating currents and alternat­ing current machinery, electric lighting andsystems of electric distribution, and electricrailways." It was also noted that the MontrealStreet Railway Company had made a specialtest car available for the students to use in theirinvestigations. For the electrical laboratory itwas noted that; "Alternating current of several

132

wave shapes and of frequencies up to 150periods per second, and of voltages up to200,000 is available." In addition there was adynamo laboratory with "twenty-five commu-

- tating machines, generators, motors, boosters,motor-generators, dynamotors, converters,closed and open coil arc machines, varying incapacity from a fraction of a kilowatt to 75 kilo­watts-twelve alternating current machines,including generators, synchronous motors,compensators, and synchronous converters,together with a large amount of stationary androtary induction apparatus".

The Baccalaureus In ArteIngeniariaThe McGill degree program in electrical engi­neering met with both recognition and success.Four students graduated in the first class of1894. By 1909, 214 students had graduatedfrom this, the most successful of the early pro­grams in Canada. In contrast there were twodiplomates in 1894 from the University ofNewBrunswick, but by 1909 there had been only 1Idegree recipients in electrical engineering.Others took somewhat longer to establish. Al­though there was provision for a professionaldegree at the School of Practical Science, thoseproceeding to a degree usually took theB.A.Sc. through the University of Toronto, ofwhich S.P.S. was an affiliate. In contrast toMcGill, the electrical program at Toronto wasmuch slower in formation. Until 1911, thethree year diploma course was given in thejoint Department of Electrical and MechanicalEngineering. Although provision was madefor the award of the professional degree ofE.E., it was not a popular option. Studentscould also take the degree of B.A.Sc. The for­tunes of the Toronto program were very muchintertwined with, and subject to the whims of,the Mechanical Department.

The program at UNB was not popular, eventhough the total engineering student popula­tion constituted about a third of the entire stu­dent body. The want of a degree programaroused some discontent among the students,leading them in 1899 to petition the senate toestablish a degree in engineering. The petitionwas granted establishing the Baccalaureus inArte Ingeniaria. Unfortunately, the studentswere not altogether happy with this choice ofname, petitioning again in 1907 for a more"modern" version. One could speculate thatthe modern student of engineering might ap­preciate the significance of the B.A. I. rathermore than the students of yesteryear.

Page 151: Electricity - The Magic Medium

appreeiables a eet dfet. Tout Ie monde ctaitd'avis que I'universitc en entier beneficieraitde I'addition d'un autre edifice. La construc­tion etait finie en 1900, I'edifiee fut ouvert engrande pompe et cercmonie par M. JamesLouden, president de l'Universite de Toronto,en presence d'une assemblee qui reunissaitdes representants d'universites de tout Iemonde occidental. Queen's avait aussi entre­pris une campagne de souscriptions pour laconstruction de Fleming Hall. Toronto jouis­sait d'une aide gouvernementale exception­nelle pour son projet de construction (memesi Ie corps professoral de Toronto ne parta­geait guere ce sentiment!).

En 1899-de nombreusesformes d'ondes et diversesfrequencesA I'inverse des autres programmes eanadienset de nombreux autres ailleurs dans Ie monde,Ie programme de McGill etait bien nanti et parses installations et par la qualite de ses profes­seurs.

Le ealendrier des cours pour 1899 annonc;aitque M. R.B. Owens, un diplome en electricitede Columbia, etait Ie Professeur Macdonald deGenie Electrique. M. Louis Herdt, un diplomede McGill qui detenait aussi Ie grade M.E. enG.E. de l'Institut Electro-technique de Belgi­que, etait no'mme charge d'enseignement, tan­dis que M. Ernest Rutherford etait affecte auposte de Professeur Macdonald de Physique.Outre les matieres fondamentales telles lesmathematiques et la physique, Ie cours com­prenait les sujets suivants: "Ia dynamo a cou­rant continu, les differents courants alterna­tifs, la machinerie a courant alternatif,1'eclairage a I'electricite et les systemes de dis­tribution de l'eIectricitc, et les chemins de fereIectriques." On notait aussi que la MontrealStreet Railway Company avait mis un tramwayspecial d'essai a la disposition des etudiants quis'en serviraient dans leurs recherches. Quantau laboratoire d'electricite, il ctait a noter que:"il s'y trouvait une source de courant alternatifpouvant atteindre jusqu'a 200,000 volts, quiproduit plusieurs formes d'ondes et desfreguences allant jusqu'a 150 periodes par se­conde." En outre, il y avait un laboratoire dy­namo-electrique ou 1'on trouvait: "vingt-cinqmachines a courant interchangeable, desgeneratrices, desmoteurs, des 'boosters' ou dy­namos auxiliaires, des moteurs-generateurs,des dynamoteurs, des convertisseurs, des ma­chines a arc a bobine solenoi'de fermee ou ou­verte, tous ces appareils pouvant varier en ca-

pacite d'une fraction de kilowatt jusqu'a 75kilowatts-douze machines a courant alterna­tif, y compris des gencratrices, des moteurssynchrones, des compensateurs, et des conver­tisseurs synchrones, ainsi qu'un grand nombred'appareils a induction stationnaires et rota­tifs."

Le GBaccalaureus In ArteIngeniaria'A McGill, Ie programme de genie eIectriquemenant a un diplome a joui d'une bonne re­nommee et d'un franc sucd:~s. La premierec1asse a recevoir un grade en 1894 comptaitquatre etudiants. Dans les guinze ans qui suivi­rent, 214 etudiants avaient rer,:u leur diplomedans ce cours, qui, des premiers cours donnesau Canada, avait eu Ie plus de succes. En guisede comparaison, il y avait eu deux diplomes en1894 a l'Universite du Nouveau-Brunswick,mais en 1909, seulement onze finissants yavaient rec;u leur grade en genie eIectrique.Les autres universitcs prirent un peu plus detemps a partir. Meme si l'on offrait un gradeprofessionnel a l'Ecole des Sciences Pratiques,les etudiants qui desiraient obtenir Ie grade debachelier en sciences appliquces (B.A.Sc.), de­vaient poursuivre leurs etudes a1'Universite deToronto, a laquelle l'Ecole etait affiliee. A I'in­verse de McGill, Ie cours d'eIectricite aTorontoprit beaucoup plus de temps a se developper.Jusqu'en 1911, Ie cours de trois ans preparantau diplome etait donne par Ie Departementconjoint du Genie Eleetrique et Mecanique.Meme si I'on avait prevu qu'il serait possible dedecemer Ie grade professionnel d'ingenieur enclectricite (E. E.), cette option n'etait pas popu­laire. Les etudiants pouvaient aussi recevoir Iediplome de bachelier en sciences appliquces.Le sort du programme a Toronto ctait etroite­ment lie a celui du Departement de GenieMecanique et sujet aux caprices de ce demier.Le cours offert a I'Universite du NouveauBrunswick n'etait pas populaire, meme si Ienombre total d'etudiants en genie constituait Ietiers de I'ensemble des etudiants. Le fait de nepas avoir de cours preparant a un diplome en­gendrait quelque mecontentement chez Iesetudiants, tant et si bien que, en 1899, ilsadresserent une petition au Senat demandantd'ctablir un grade en genie. On se rendit aleurdemande en creant Ie 'Baccalaureus in Arte In­geniaria'. Malheureusement les etudiants nefurent pas entierement satisfait du choix de cenom, et en 1907, ils presenterent une autrepetition demandant une appellation plus 'mo­deme'. On peut se demander si l'etudiant d'au-

133

Page 152: Electricity - The Magic Medium

Programs East and WestElectric street railways, telephone and com­munication systems, the invention of wirelesstelegraphy all contributed over the next de­cades towards an enthusiastic acceptance ofthings electrical. More and more electrical en­gineering graduates were needed to satisfy theneeds of industry as electrification became areality. By 1911 Toronto's graduating class of24 rivalled McGill's in size. In 1909 two newschools were opened to help satisfy the de­mand. The first, Nova Scotia Technical Col­lege, was established to provide the last twoyears of a five year engineering program. Stu­dents took their first three years at one of theliberal arts and science colleges of Nova Scotia,Prince Edward Island or New Brunswick. TheElectrical program was begun in the fall of1909, coinciding with the opening of the col­lege.

When the University of Manitoba requesteda substantially increased grant from the prov­ince in 1907, the province responded with anincrease but only on condition that the univer­sity implement progr~lins in civil and electricalengineering. Edward Phillips Featherston­hau~h, an 1899 graduate in electrical engi­neerIng from McGill University, became thefirst Professor of Electrical Engineering atManitoba with the establishment of the depart­ment in 1909. The department was temporar­ily housed in various makeshift facilities whilethe newly created Manitoba legislature at­tempted to come to grips with the problem ofproviding permanent accommodation to theuniversity. In 1915 the engineering depart­ments were established in "the old Deaf and~umb Institute", an act which doubtless gaverIse to many a ribald jest from the Arts facul­ties, which had been established in the old ia~courts building. There were two graduateswith the degree of B.E.E. in ]9] 1. Since thenthe department has grown in prominence andprestige commensurate with its early found­mg.

H.M. Tory and H.J. MacLeodand the Westward MovementMcGill's great tradition of scientific and educa­tional accomplishment" was carried westward in1906 by Dr. Henry Marshall Tory, who estab­lished McGill University College of British Co­lumbia. In keeping with the McGill traditionthe ~ollege a~p()inted an instructor in engi­neenng, openmg its doors in that first sessionto 15 students in applied science. With the in­corporation of the school as the University of

]34

British Columbia in 1908, and for some yearsther~after, only the first two years of the engi­neenng program were completed, studentsthen proceeding to McGill University for thefin~l years. Shortly after the founding of theschool in British Columbia, Dr. Tory was luredto Alberta to assume responsibility for a newuniversity for that fledgling province. As Presi­dent of the University of Alberta, Tory movedquickly to hire faculty to teach applied scienceand engineering. The Department of Electri­cal Engineering was established in 1913 underDr. R.W. Boyle. Hector J. MacLeod, a 1914graduate of McGill, was appointed as instruc­tor in the department shortly thereafter, ob­taining his M. Sc. from Alberta in 1916. TheWestern University Battalion (I 96th) wasformed and went overseas in the fall of 1916with Captain H.J. MacLeod commanding theCompany. After obtaining his Ph. D. fromHarvard in 1921 Dr. MacLeod returned to Al­berta and was later appointed as Head of theElectrical Engineering Department. In ]936,some twenty~two years after his arrival on Al­berta's campus, he transferred his service tothe University of British Columbia, becominghead of the Department of Electrical Engi­neering there. World War II saw him activelye~gaged in r~search on behalf of his countrywith the National Research Council. For hisservice he was awarded the O.B.E. in 1943. In] 973 Dr. MacLeod, by this time, Dean Emeri­tus of Engineering at UBC, was awarded theMacNaughton Medal by the Canadian Regionof IEEE.

Marching Off to WarAs the "Great War" descended upon theworld, the population of the universities took aturn for the worse. In some cases programsfolded up completely. The pre-engineeringprogram begun at Saskatchewan in 1916closed its doors when its entire facultymarched off to war. Alberta's fledgling pro­gram came to a halt, not recovering again until1920. Manitoba's program reached a hiatus in1917, while enrollments in the larger schoolswere cut to a quarter. On the other hand, atwar's end, the returning veterans brought withthem a strength of purpose that served theuniversities well in the longer run. The veter­ans also helped to increase the popUlarity ofthe programs.

After World War IAfter the degree program in electrical engi­neering was begun at the University of BritishColumbia in 1922, no new programs were

Page 153: Electricity - The Magic Medium

M. Hector]. MacLeod,diplome de McGill en 1914,et Mme MacLeod, recevant laMedaille McNaughton en1973.

Dr. Hector]. MacLeod, 1914graduate of McGill, and Mrs.MacLeod, receivingMcNaughton Medal in 1973.

jourd'hui aimerait Ia designation B.A.I. mieuxque les etudiants d'autrefois.

Les programmes «:l'e1tlll.dles dlalI11.sL'Est et dans I'Olll.es1tLes tramways e1ectriques, Ie telephone et lessystemes de communications, I'invention de latelegraphic sans-fil, tout contribua, dans lesdecennies qui suivirent, aI'acceptation enthou­siaste des choses electriques. On avait besoin deplus en plus de dipl6mes en genie Clectriquepour satisfaire la demande de I'industrie aumoment Oll I'electrification devenait unerealite. En 1911, 1'1 dasse de finissants a To­ronto comptait 24 dipl6mes, nombre egal ;1celie de McGill. En 1909, deux nouvelles ecolesavaient ete ouvertes afin d'aider it satisfaire Iademande. La premiere, Ie Nova Scotia Techni­cal College, avait ete fondee pour donner lesdeux dcrnieres annees d'un cours de cinq amen sciences appliquees aux etudiants qui pre­naient les trois premieres annees dans I'un descolleges d'arts liberaux et de sciences de laNouvclle-Ecosse, de l'Ile-du-Prince-Edouardou du Nouveau-Brunswick. Le COLlI'S de genieelectrique debuta ;1 I'automne de 1909 avecI'ouverture du Nova Scotia Technical College.

Lorsque, en 1907, l'Universite du Manitobasollicita des subventions beaucoup plus fortes'de 1'1 province, celle-ci accorda une augmenta­tion, mais seulement ;\ la condition que I'uni-

versite institue des cours de genie civil et e1ec­trique. M. Edward Phillips Featherstonhaugh,qui avait re<;:u son grade en genie eIectrique aI'Universite McGill, en 1899, devint Ie premierprofesseur de genie electrique au Manitobalars de la creation du departement en 1909. Cedepartement fut installe pour un certain tempsdans divers locaux improvises alors que lalegislature du Manitoba, nouvellement etablie,essayait de trouver un edifice pour y logerI'universite d'une fa<;:on permanente. En 1915,les departements de genie furent installes dans"I'ancien Institut pour les Sourds et Muets", ungeste qui, sans doute, a donne lieu a de nom­breuses mechantes boutades de la part des etu­diants en arts qui avaient ete installes dans I'an­cien palais de justice. En 1911, on decerna Iegrade de bachelier en genie e1ectrique (B.E.E.)a deux diplomes. Depuis, Ie departement agrandi en importance et en prestige faisanthonneur ;1 ses debuts.

ILe mOIUlVemeR1l1t veJrs rOll1les1tavec HJ~1L Tory elt lHI.JJ 0

MacILeodlEn 1906, Ie Dr Henry Marshall Tory trans­planta dans I'ouest la belle tradition de McGillde realisation scientifique et educationnellequand il fonda Ie McGill University College enColombie Britannique. Comme c'etait la prati­que it McGill, Ie college nomma un moniteuren genie quand il ouvrit ses portes a 15 etu­diants en sciences appliquees pour cettepremiere session. En 1908, I'ecole obtint sacharte et devint I'Universite de Colombie Bri­tannique. Pour quelques annees par la suite oncontinua a n'offrir que les deux premiereannees du programme de genie, et les etu­diants s'inscrivaient ;\ I'Universite McGill poursuivre les derniere anrH~es du cours. Peu apresla fondation de I'ecole en Colombie Britanni­que, Ie Dr Tory fut attire en Alberta pour assu­mer la direction de la premiere universite as'etablir clans ceUe province nouvellementcreee. A titre de president de l'Universite deI'Alberta, Ie Dr Tory s'empressa d'embaucherdes professeurs pour enseigner les sciences ap­pliquees et Ie genie. Le Departement de GenieElectrique a et.e institue en 1913 sous la direc­tion du Dr R.W. Boyle. M. Hector J. MacLeod,un diplt>me de McGill en 1913, fut nom me mo­niteur au departement t6t apres et obtint Iegrade de M.Sc. de I'Universite de l'Alberta en1916. A I'automne de 1916, Ie Western Univer­sity Battalion (196th) etait mobilise et s'embar­quait pour outre-mer avec son commandant, Iecapitaine H ..J. MacLeod. Apres avoir re<;:u son

135

Page 154: Electricity - The Magic Medium

Work Station, Electrical Engineering Power Laboratory,University of New Brunswick, 1918. Photo courtesy ofUNB.

begun in Canada for more than two decades.The eight universities with the electrical pro­grams continued to supply the needs of Cana­dian government and industry with electricalgraduates. The principal needs during thistime were in the burgeoning area of power de­velopment. Telephonic systems took a fewgraduates, while commercialization of thewireless also took increasing numbers. As radiobecame more popular, there was an upsurge ofinterest in it as well, although the lack of equip­ment deterred any substantial laboratory workin the subject. The stock market crash in 1929caused a decline in enrollments since prospectsfor graduates during the next several yearswere generally poor. The exception was in thegrowing field of commercial radio, althoughradio facilities in the schools themselves werenot good. Even up to 1929, the only experi­mental station operated by a university in Can­ada was that at the University of New Bruns­wick.

The program at UNB was also enriched bythe installation of a commercial radio transmit­ter on the campus in the late twenties. Spacewas made available on the top floor of a newForestry building to operate the transmitter

136

Poste de travail, au laboratoire de genie eIectrique deI'Vniversite du Nouveau-Brunswick, en 1918. Photo:Universite du Nouveau-Brunswick.

for radio station GFNB. Much of the operationwas done with the assistance of the students,together with Alfred Foster Baird, a 1914graduate of UNB who had returned to takecharge of the Electrical Department.

Amateur and educational broadcasting sta­tions were also operating at several Universi­ties across Canada. At Alberta, for example, aUniversity Radio Station, CKUA, went on theair on November 21, 1927. It was used by theElectrical Engineering Department for studiescarried out by the students. Dr. George Sin­clair, a 1933 graduate, used it in his thesis todevelop a method for determining the imped­ance of an antenna using a counterpoise inplace of the traditional ground system. Dr. EdJordan was another graduate of Alberta (1934)who, during his thesis work, used the radio sta­tion to develop an automatic volume controlamplifier for the station-a Canadian first.

In spite of this new field of endeavour, classsizes did not increase dramatically. Due toworld factors such as the Great Depression andthe increasing threat of a new war which fol­lowed, there was not a great deal of increasedinterest in electrical engineering career oppor­tunities.

Page 155: Electricity - The Magic Medium

Le laboratoire de genieelectrique de l'Universite duNouveau-Brunswick, auxenvirons de 1880, avec sesdeux moteurs c.c. de 32 volts.Photo: Universite duNouveau-Brunswick.

Electrical Engineering PowerLaboratory, UNB, showing2-32 volt DC machines circa1880. Photo courtesy ofUNB.

Machine reconstituee pour Ielaboratoire de genieclectrique et faisantmaintenant partie du Museedu Genie elect rique deI'Universitc du Nouveau­Brunswick.

Restored machine for PowerLaboratory, now in ElectricalEngineering Museum, UNB.

137

Page 156: Electricity - The Magic Medium

The First French LanguagePrograms in ElectricalEngIneering

The establishment of electrical engineeringtraining in the French Education Schools was along and difficult birth process. In commonwith most schools there were electrical coursestaught at Ecole Polytechnique before the turnof the century. However it was not until 1910that an attempt was made to regularize electri­cal engineering. In that year it was offered as aseparate option. However, it was an unsuccess­ful experiment and was abandoned about 1923when the program was extended from four tofive years, becoming once again an entirelygeneral program.

The outbreak of the Second World Warcaused a change in the public attitude to ap­plied science, especially engineering. With in­creased awareness across the country therealso came recognition in Quebec that there wasa dire need for electrical engineers from theFrench speaking populace. Partly in responseto the need for gtaduates, and to make avail­able appropriate instruction in the disciplinefor French speaking students, Laval Universityfounded an electrical engineering school inMarch of 1942. M. Rene Dupuis was its firstdirector, guiding the program through its firstformative five years. Thanks to that coopera­tion for which McGill had already establishedits reputation, the new school was able to inau­gurate a program full-blown, with students al­lowed to take their programs cooperatively be­tween McGill and Laval. This allowed the firstgraduating class only two years later, in 1944.The school found immediate support amongindustry and government alike.

Shortly thereafter the program at EcolePolytechnique was reorganized to accommo­date a degree in Mechanical-electrical engi­neering. This program was an effort at com­promise between the general program, forwhich the school had become famous, and thespecific disciplines clearly needed for the wantsof the country. The first three years were en­tirely common to all disciplines with the fourthyear allowing about twenty-five percent specia­lization, and the fifth about eighty percent.The electrical offering was modest, includingonly that material which tended to enhance themechanical program, especially electrical cir­cuits and machines. The electrical program didnot become a reality at Ecole Polytechniqueuntil 1958 when the program was reorganizedfor each of the separate disciplines.

138

The War and the RadioSchoolsIt will be seen from Table II that registrationcontinued to increase during the war years,doubling before the end of the war, and in­creasing by a factor of almost seven by 1949 be­fore falling off again. Such drastic increasesover a relatively short period of time broughtwith them enormous pressure on the facilities,faculties and resources of the engineeringschools. They were exacerbated during thewar and thereafter by the additional needs ofthe country to train technicians, especially inradio technology and radar. Electrical engi­neering became the favoured discipline, overboth civil and mechanical. Technical coursesimplemented through the universities by theDepartment of Labour, for both soldiers andcivilians employed in the war industries, had aremarkable effect on increasing the awarenessof the public to the uses of a technical educa­tion. There was an advanced course in com­munications for the R.C:A.F. at McGill, radiodirection finding and other like courses atQueen's, R.C.A.F. and R.C.N. courses at Al­berta, and radar and radio courses for theR.C.A.F. and R.C.N. at UNB. These coursesproved to be rather demanding. Beginning atUN B in 1941, approximately 100 studentswere rotated through the four month radiotechnician course every four months. Tempo­rary faculty were added, then doubled and tre­bled as the war progressed.

In contrast to the procedures adopted in theUnited States, prospective engineering stu­dents were encouraged to continue with theireducation. Compulsory service was postponedin order to allow them to do so. South of theborder, the only students allowed to continue,even in engineel-ing, were those deemed medi­cally unfit. Partly in response to the need formore trained men, and partly in response tothe needs of returning veterans, Saskatch­ewan, which for many years had r.un a partialprogram, implemented a degree program in1945. The first graduating class of twenty­three appeared two years later.

After World War IIFollowing the war, a more mature lot of stu­dents returned, bringing with them an aware­ness of the value of engineering educationand a determination to continue with pursuitof those studies. Enrollments continued toclimb, unchecked for the next few years, toaccommodate the returning veterans. At Ajax,immediately outside Toronto, an old shell-fill-

Page 157: Electricity - The Magic Medium

-----------------------------------------------------------

doctorat (Ph.D) a Harvard en 1921, Ie DrMacLeod retourna a I'Vniversite de l'Albertapour plus tard etre nomme Chef du Departe­ment de Genie EJectrique. En 1936, quelquesvingt-deux ans apres sa premiere arrivee sur Iecampus de I'Vniversite de I'Alberta, il passa aI'universite de la Colombie Britannique pour ydevenir Chef du Departement de Genie Elec­trique. Durant la Seconde Grande Guerre, encollaboration avec Ie Conseil national de re­cherches, il se lan<;:a dans des recherches pourIe pays. En reconnaissance de ses services, onlui decerna I'O.B.E. en 1943. En 1973, Ie DrMacLeod, maintenant Doyen Emerite duGenie a VBC, a ete decore de la MedailleMcNaughton par la Region canadienne deI'IEEE.

Ala guerre!Quand la 'Grande Guerre' eclata, Ie nombred'etudiants dans les universites se mit adegrin­goler. Dans certains cas, des programmes en­tiers furent abolis. Le caul's pre-genie qui avaitcommence en 1916 a l'Universite de la Saskat­chewan fut discontinue quand Ia faculte touteentiere partit pour Ia guerre. Le cours nouvel­lement etabli a I'Universite de l'Alberta futarrete et ne repris sa marche qu'en 1920. Lecours a l'Universite du Manitoba fut inter­rompu en 1917 alors que les inscriptions dansIe plus grandes ecoles n'etaient plus que Iequart de ce qu'elles avaient ete. D'un autrecote, une fois Ia guerre terminee, Ies veteransqui revenaient demontraient un si grandinter3et que Ies universites en beneficierent ala longue. Les veterans contribuerent aussi aaccroitre la popularite des programmes.

Apres la Premiere GuerreMondialeAucun COut's en genie eIectrique menant a ungrade n'a ete initie au Canada pendant lesvingt ans qui suivirent I'etablissement d'unprogramme a l'Vniversite de la Colombie Bri­tanique en 1922. Les huit universites qui of­fraient des cours en electricite suffisaient acombler les besoins du Gouvernement cana­dien et de I'industrie en diplames en electricite.A cette epoque, on avait surtout besoin de cesderniers dans Ie domaine de la productiond'energie qui etait en plein eSSOL Les systemestelephoniques requeraient un certain nombrede dipl6mes ainsi que la commercialisation dusans-fil qui en employait de plus en plus.Quand la popularite de la radio s'accnlt, il yeut un sUl'croit d'interet dans ce domainememe si la penurie d'equipement empechait

de faire beaucoup de travaux en laboratoire.La chute des cours en Bourse de 1929 causa undeclin des inscriptions etant donne que leschances d'emploi pour les diplomes dans lesannees qui suivirent etaient plutat minces.C'etait different dans Ie domaine de la radiocommerciale qui etait en pleine croissanceme-me si les installations dans les ecoles de ra­diophonie n'etaient pas des meilleures. Avant1929, la seule station experimentale opereepar une universite au Canada etait celie del'Universite du Nouveau-Brunswick.

On ameliora Ie cours a VNB en installant untransmetteur radiophonique commercial sur Iecampus vel's la fin des annees vingt. On fit dela place sur Ie plancheI' superieur du nouveledifice du Genie Forestier pour y installer Ietransmetteur de la station de radio CFNB. Vnebonne part de I'operation etait effectuee parles etudiants sous la direction de M. AlfredFoster Baird, un diplame de 1914 a UNB, quietait revenu a I'univnsite POUI' prendre chargedu Departement de Genie Electrique.

Des pastes de transmission de programmeseducationnels ct des pastes amateurs etaientaussi en operation dans plusieut's universites atravers Ie Canada. A I'Universite de I'Alberta, parexemple, la station de radio de l'universite,CKUA, a commence ses transmissions Ie 21 no­vembre 1927. Le Departement de Genie Electri­que I'utilisait dans ses cours aux etudiants. Le DrGeorge Sinclair, un diplome de 1933, l'utilisadans ses travaux de these pour mettre au pointune methode servant a determiner l'impedanced'une antenne en employant un contrepoidsplutat que Ie systeme dassique de mise a la terre,Le Dr Ed Jordan etait un autre diplame de I'Vni­versite de I'Alberta (1934) qui, dans ses travauxde these, utilisa la station de radio pour mettreau point un amplificateur de contr61e automati­que de volume pour la station de radio-unepremiere canadienne.

En depit de ce nouveau domaine d'activites,Ie nombre d'etudiants par classe n'augmentaitpas sensiblement. A cause de facteurs affectantIe monde entier telle la Grande Depl-ession etla menace croissante d'une autre guerre quis'ensuivit, il n'y avait pas grand accroissementd'interet a poursuivre une carriere en genieelectrique.

Les premiers cours de genieelectrique en fran~ais

L;etablissement de cours de genie dectriquedans les institutions d'enseignement franco­phones a ete Ie resultat d'un long et penible ac­couchement. Tout comme la plupart desecoles, l'Ecole Polytechnique offrait des COut'S

139

Page 158: Electricity - The Magic Medium

ing plant occupying 446 acres and 111 build­ings was taken over by Toronto's freshmanengineering class comprised mostly of return­ing veterans. The first two years of the pro­gram were carried out at Ajax, with some2500 engineering students in attendance.

The story was similar elsewhere: UNB

leased the Canadian Basic 1nfantry TrainingCentre on what is now Fredericton's Exhibi­tion Grounds. That, together with the

C.W.A.C. quarters, was renamed AlexanderCollege (in honour of Governor-GeneralViscount Alexander). The 50 buildingshoused the entire freshman class of 490 andprovided accommodation as well. This did notentirely' meet the needs of the returning vet­erans; so additional army huts were moved tothe main campus to help cope with the influx.There was a very decided shift to university

Returning veterans engineering classes were held atAlexander College named after Viscount Alexander.

education and to technical education as well:classes all over were enormous. The classspirit engendered among the returning veter­ans became a legacy which influenced theirchildren, and probably their grandchildren.The classes never again returned to their for­mer tiny sizes. From this point on andthrough the sixties expansion became thewatchword.

The situation was much the same In thewest. At Manitoba engineering classes wereheld in an old ice rink with temporary parti­tions. 1n the winter months the studentsclaimed the building insulation levels weresuitable for a good ice surface. In the otherseasons, since the partitions were open to therafters, said to be the habitat of the pigeonpopulation of the entire city, there was acertain natural hazard to both students andfaculty.

Des cours de genie ont ete donnees ades ancienscombattants a leur retour de la guerre au collegeAlexander, aujourd'hui Ie Viscount Alexander.

140

Page 159: Electricity - The Magic Medium

-~ -- ---------------

d'electricite avant Ie debut du sieck. Toutefois,ce n'est qu'en 1910 que I'on a tente de donnerau genie eJectrique un caractere permanent.Cette annee-Ia Ie cours fut offert sur une baseoptionnelle, mais cette tentative ne donna pasles resultats escomptes et on l'abandonna vel's1923 alors que la duree du COUl'S etait etenduede quatre a cinq ans, Ie rendant de nouveau uncours entierement general.

La seconde guerre mondiale occasionna unchangement d'attitude de la part du public ~I

regard des sciences appliquees, en particulierIe genie. Dans tout Ie pays on ressentait un be­soin croissant d'ingenieurs en electricite et Iememe besoin d'ingenieurs de langue fnll1(,:aisese faisait aussi sentiI' au Quebec. En partiepour repondre a la demande pour desdiplomes et en partie pour fournir aux etu­diants franulphones l'avantage d'une forma­tion appropriee dans cette discipline, I'Univer­site Laval fonda une ecole de genie electriqueen mars 1942. M. Rene Dupuis en a ete Ie pre­mier directeur et dirigea Ie cours durant lescinq premieres annees de son existence. Gracea la collaboration de McGill pour laquelle cettederniere etait renommee, la nouvelle ecolereussit a inaugurer un COUl'S tout monte quipermettait aux etudiants de suivre des cours aMcGill et a Laval sur une base cooperative.Cela permit aux etudiants de la premiere c1assede recevoir leur grade seulement deux ansapres, en 1944. L'ecole re(,:ut J'appui immediatde J'industrie aussi bien que du gouverne­ment.

Peu apres, Ie cours a I'Ecoie Polytechniqueetait reorganise de manihe a permettre l'adju­dication d'un grade en Genie Mecanique-Elec­trique. Ce cours formait une sorte de com pro­mis entre un cours general pour lequel l'ecoleetait devenue celebre et un cours dans les disci­plines specifiques requises pour repondre auxbesoins du pays. Les trois premieres anneesetaient communes a toutes les disciplines tan­dis que la quatrieme annee permettait 25% despecialisation et la cinquieme a peu pres 80%.Le contenu en eJectricite etait modeste et necompl'enait que les sujets qui etaient de natureaagremenrer Ie cours de mecanique, en parti­culier, l'etudes des circuits et des machineseJectriques. Le cours d'electricite n'a pas ete re­connu comme tel a I'Ecole Polytechnique avant1958 alors que Ie cours etait reorganise pourchacune des differentes disciplines.

La glUlell"rre ett reiCole de rradioOn verra au tableau 11 que I'inscription avaitcontinue d'augmenter tout Ie temps de laguerre, avait double avant la fin de celle-ci et

avait atteint presque sept fois son nombre ini­tial en 1949, avant de diminuer de nouveau.

Une si forte augmentation sur une periodede temps relativement courte imprima d'enor­mes pressions sur les amenagements, les fa­cultes et les ressources des ecoles de genie. Cespressions furent exacerbees durant la guerreet apres par Ie fait que le pays avait un plusgrand besoin de fonner des techniciens,specialement en radiophonie et en radar. Legenie eIectrique devint la discipline preferee,en comparaison avec Ie genie civil ou mecani­que. Les cours techniques que Ie Ministhe duTravail avait mis sur pied dans les universites,pour les soldats aussi bien que pour les citoyensqui avaient travaille dans les usines de guerre,ont eu un dIet indeniable sur I'accroissementde l'interet du public pour une formation tech­nique. A McGill, on offrit un cours avance encommunications pour l'Aviation (R.C.A.F.); aQueen's, un cours de radar et d'autres sembla­bles; a' I'Universite de )'Alberta, des cours pourl'Aviation et la Marine (R.C.N.) et a I'UNB, descours de radar et de radio pour l'Aviation et laMarine. Ces cours se sont averes plutotonereux. En 1941, a rUNB, on comment;ait uncours de radio de quatre mois pour environ100 etudiants qui etaient remplaces apres leurperiode de formation par un autre groupesemblable. On embaucha des professeurs tem­pOl'aires, dont Ie nombre doubla puis tripla aufur et a mesure que la guerre avant;ait.

A I'inverse de la pratique aux Etats-Unis, onencourageait les etudiants qui montraient deI'interet pour Ie genie a poursuivre leursetudes, et Ie service obligatoire etait alars re­porte pour eux. De l'autre cote de la frontiere,les seuls etudiants qui pouvaient poursuivreleurs etudes, meme en genie, etaient ceux quietaient exemptes pour raison medicale. Autantpour repondre ala demande pour plus de per­sonnel competent, que pour satisfaire aux be­soins des anciens combattants demobilises,l'Universite de la Saskatchewan qui, pendantplusieurs annees, avait offert un courstronque, mit sur pied en 1945 un cours prepa­rant au g,'ade. Les premiers finissants au nom­bre de vingt-trois recevaient leur diplome deuxans plus tard.

Apll"es Rat §eiCOll1Hdle CGilUlelI'rreMOll1ldiaReApres la guerre, des etudiants plus muns sepresenthent a I'universite et demontrerentune meilleure comprehension de la valeurc!'une education en genie et une ferme deter­mination de continuer dans la poursuite de

141

Page 160: Electricity - The Magic Medium

Albert Foster Baird graduated from UNB in 1914.During and after World War II he supervised the UNBRadio Schoo!. Here he presents certificate to successfulcandidate under watchful eye of commanding officer.

RCN Radio School at UNB, 1945. Photo courtesy ofUNB.

Albert Foster Baird a obtenu son dipl6me de I'Universitedu Nouveau-Brunswick en 1914. Pendant et apres laseconde guerre mondiale, it a supervise I'ecole de Radiode I'Univcrsite du Nouveau-Brunswick. Sur cette photo, ilpresente un certiflcat a un de ses etudiants sous l'oeilattentif de l'offlcier-commandant.

L'ecole de Radio de I'Universite du Nouveau-Brunswicken 1945. Photo: Universite du Nouveau-Brunswick.

142

--- -- -- -------------

Page 161: Electricity - The Magic Medium

ces etudes. Les inscriptions continuerent aaugmenter, sans contrale pour quelquesannees encore, pour repondre aux besoinsdes anciens comba~tants demobilises. A Ajax,tout pres de Toronto, une ancienne usine deremplissage d'obus qui comprenait III bati­ments disperses sur 446 acres de terrain futaffectee a une classe d'erudiants de premiereannee en genie, de I'Universite de Toronto,composee surtout d'anciens combattants quirevenaient de la guerre. A Ajax, on donnaitles deux premieres annees du programme aquelques 2500 etudiants.

L'histoire se repetait ailleurs: I'UNB loua IeCentre de formation de base pour l'infanteriecanadienne (Canadian Basic Infantry Train­ing Centre), Ia OU sont maintenant les Ter­rains de l'exposition de Fredericton et Ienomma Alexander College (en honneur duGouverneur-General, Ie Viscount Alexander),apres lui avoir adjoint les casernes des

C.W.A.C. Les etudiants de premiere annee,au nombre de 490, etaient tous loges dans les50 batiments ou l'on donnait aussi les cours.Cet arrangement ne repondait pas entiere­ment aux besoins des anciens combattants;c'est pOUl'quoi d'autres baraques de I'armeefurent demenagees sur Ie campus afin depouvoir parer a l'affluence. Cela demon traitune tendance tres nette vel's une educationuniversitaire et vel's un enseignement techni­que aussi: partout les classes etaient enormes.L'esprit de cIasse qui animait Ies veterans de­vint un legs qui passa a leurs enfants et peut­etre aussi a leurs petits-enfants. Les classes neretournerent jamais plus a ce petit nombrequ'elles avaient ete. Durant les annees soi­xante, 'expansion' devint Ie mot d'ordre.

La situation etait plutat la meme dansl'Ouest. A l'Universite du Manitoba, les coursde genie etaient donnes dans une anciennepatinoire a glace divisee par des cloisons tem-

TABLEAU I-ESTIME DU NOMBRE D'INSCRIPTIONS ALA DERNIERE ANNEE DES COURS DEGENIE ELECTRIQUE

T ABLE I-ESTIMATED ENROLLMENTS FOR THE SENIOR YEAR OFELECTRICAL ENGINEERING PROGRAMS

1923 1933 1943 1953 1963 1973 1983 TotalMcGill 25 17 14 30 57 78 162 3248Toronto 21 + 40 65 55 93 129 4192VNB 12 + 12 13 22 26 49 1200Queen's 13 + 21 27 36 44 79 1838Nova Scotia + II 11 31 40 19 35 1292Manitoba 13 + 34 16 45 85 103 2495Alberta + 16 16 10 41 72 89* 2222VBC + + 18 23 52 58 101 2155Laval 9 21 21 80 1197Saskatchewan 9 33 48 45t 1193RMC 19 14 45* 415Western 10 26 52 445Ottawa 17 34 85 645Quebec a Sherbrooke II 38 45 555Ecole Polytechnique 63 77 114 1607Waterloo 24 III 156 1893McMaster 8 29 65* 566Windsor 13 18 43t 439Carleton 7 54 95 692Concordia 74 68* 702Calgary 37 54 498Quebec aTrois-Rivieres 29 24 181Memorial 13 124Lakehead 25 126ReginaVictoria

TOTAL 166 233 574 1095 1768 29920

N.B.-Ces estimes sont tires de donnees disponsibles/These estimates are taken from published data wherever known.Sources: The Engineering Institute of Canada (EIe)

Engineering Manpower News et des renseignements obtenus de diverses universites/and informationreceived from individual universities

'Comprend Genie informatiqueJIncludes Computer Engineering:j:Rapporte comme Genie informatique/Reported as Computer Engineering+Pas de rapport/Not reported

143

Page 162: Electricity - The Magic Medium

General McNaughton and HisCathode Ray Direction FinderPrior to the war there was very)ittle effort toestablish applied research programs in the ac­ademic communities. In 1916 the FederalGovernment had established an Honorary Re­search Council to promote research. Thisgroup became the National Research Councilin 1925, and, under the chairmanship of Dr.Henry Marshall Tory, used its meagre re­sources to encourage research through theaward of scholarships to promisin'g students,and grants to university researchers. Dr. Toryserved as its first president from 1928 to1935, succeeded by Gen. A.G.L. McNaughtonfrom 1935 to 1939. Gen. McNaughton, agraduate in electrical engineering in the 1910class at McGill, had obtained his M.A. Sc.from McGill in 1912 and announced his in­tention of pursuing an academic career. Butfor the intervention of war he might well havedone so. However, after serving in the firstwar, he was pursuaded to continue in theforCes. He continued his scientific inquiriesadditionally, pioneering research on the"cathode ray direction finder" as well as onelectronic ballistic missile control. Gen.McNaughton's stewardship was as ha~per~d

by want of funds as that of Dr. Tory, III spiteof the growing menace of a second world war.At the outbreak of war he was recalled to ac­tive service, turning over control of NRC toDr. C.]. Mackenzie, the Dean of AppliedScience at Saskatchewan, and a 1909 graduatein engineering from Dalhousie. Dr. RobertWilliam Boyle (UBC) took over as Director ofPhysics and Electrical Engineering to coordi­nate the radar research· efforts. With addi­tional inputs from Queen's, McGill, UBC andToronto, Canada's war research efforts wereborn, and with them the establishment of aviable university research effort in electricalengineering.

Graduate Schools: anExpanding UniverseThe increased efforts to establish applied re­search in the engineering schools did not im­mediately bring commensurate increases inpost graduate enrollments in the years imme­diately following the end of the war: It wasnot until after the great influx of veterans hadbeen cleared through the system that suffi­cient resources were available to allocate tograduate instruction. In the mid-fifties pro­grams began to expand, as will be seen from

144

Table III. Whereas during the era prior to

the second world war, when graduate degreeswere awarded sporadically and then only by afew schools, by 1958 there were eleven schoolsoffering graduate programs. By 1983 thisnumber had more than doubled, to twenty­four. In the same time the total number ofgraduate students registered had grown from107 to 1549. The later programs have a largenumber of students registered either part­time or in cooperative programs, reflecting agrowing awareness in industry of the impor'­tance of continuing education and furthertraining.

A Plethora of New Programsfor the Computer EraThe invention of the electronic computer hadhad little impact on industry in those earlyyears after the war. However, as the commer­cially exploitable advantages of the new t00lwere recognized, so was the need to train per­sonnel in· the design, application and imple­mentation of these devices. As the effectswere felt in the industrial commllnity formore and better trained personnel, the de­mand for electrical engineers grew. Westernand Sherbrooke were the first universities. toimplement electrical engineering programs inthis new wave, ~ both starting in 1954, withWestern's first class graduating in 1958 andSherbrooke's the following year. There fol­lowed in rapid succession new programs atCarleton (1957), Ottawa (1957), Ecole Poly­technique (1958), and Royal Military Colleg~

(1959). Many of these had engineeringschools long before. For example, RMC wasoriginally founded as a military engineeringschool, opening its doors to its first class ofeighteen students in 1876. RMC had estab­lished an electrical engineering program in1951 which continued through a four yearprogram with intended degree recipients re­quired to attend another institution in thefinal year. Similarly, Ecole Polytechnique hadenjoyed a long and distinguished reputationas one of the first engineering programs inCanada, founded 18 November 1873. Al­though there was an electrical course as partof the regular general program fot; manyyears, the first actual degree program in elec­trical engineering did not come about untileighty-five years after its founding. Over thenext few years, as more and more graduatesfrom these new schools joined the work-force,the output of EE graduates more than dou­bled.

Page 163: Electricity - The Magic Medium

poraires. Dans les mois d'hivel", les etudiantsdisaient que I'isolation de la batisse etait bonnepour maintenir une bonne surface de glace.Dans les autres saisons, etatH donne que lescloisons ne rejoignaient pas les solives que l'ondisait ctre I'habitat de tous les pigeons de laville, il y avait un cel"tain danger nature! tantpour les etudiants que pour les professeurs.

Le General McNaughton et sondetecteur de direction parrayons cathodiquesAvant la guerre, on n'avait a peu pres rien faitpour mettre sur pied des programmes de re­cherches scientifiques dans les milieuxacademiques. En 1916, Ie Gouvernementfederal avait cree un Conseil honoraire de re­cherches pour promouvoir la recherche scien­tifique. Ce Gt"oupe devenait Ie Conseil natio­nal de recherches en 1925, et, sous lapresidence du Dr Henry Marshall Tory, utili­sait ses maigres ressources pour encourager larecherche en accordant des bourses a des etu­diants meritants et des octrois aux chercheursdans les universites. Le docteur Tory en fut Iepremier president de 1928 a 1935, I'annee ouIe General A.G.L. McNaughton lui succedapour occuper Ie poste jusqu'en 1939. Legeneral McNaughton, un diplhme en genieeiectrique en 1910 a McGill, avait obtenu Iegrade M.A.Sc. de McGill en 1912 et fit part deson intention de poursuivre une carriereacademique. N'eut ete de la guerre qui eclata,il aurait certes poursuivi cette carriere. Maisayant deja servi lors de la premiere guerre, onIe persuada de rester dans Ie service. II conti­nua ses recherches en plus, il fut un des pion­niers de la recherche sur Ie 'detecteur de di­rection par rayons cathodiques' ainsi que surIe contrt>le electronique des missiles ballisti­ques. L'administration du general McNaugh­ton a ete aussi genee par la rarete de fondsque celie du docteur Tory, malgre la menaceincessante d'une seconde guerre mondiale.Quand la guerre eclata, il fut rappele en ser­vice anir, remettant les renes du C.N .R. audocteur c.]. Mackenzie, Ie Doyen des SciencesAppliquees a l'Universite de la Saskatchewan,et un diplome de 1909 en genie a Dalhou:,ie.Le Dr Robert William Boyle (UBC) assuma Ieposte de Directeur de Physique et de GenieElectrique afin de coordonner les travaux derecherches sur Ie radar. De concert avec lesuniversites Queen's, McGill, UBC et Toronto,on entreprit au Canada les travaux de recher­ches de guerre qui ont ete la genese d'un pro­gramme de recherches en genie electrique quisurvivra dans les universites.

Ecoles postQbaccaiaureat: unmonde en expansionL'effort accru pour etablir un programme derecherches appliquees clans les ecoles de genien'entraina pas immediatement une augmenta­tion correspondante du nombre d'inscriptions~I des programmes post-baccalaureat au COIJrS

des annees qui suivirent tout de suite apres laguerre. Ce n'est qu'apres la grande vague deveterans que des ressources financieres suffi­santes devinrent disponibles pour un pro­gramme post-baccalaureat. Au milieu clesannees cinquante les COUl"S commencerent aaugmenter comme I'indique Ie tableau III. LaOil, en fait, durant la periode qui preceda laseconde guerre moncliale, on ne decernait clesgrades post-baccalaureat que sporadiquementet cela seulement dans certaines ecoles, en1958, on comptait onze ecoles qui offraientdes programmes post-baccalaureat. En 1983,ce nombre avait plus que double et etait devingt-quatre. Dans la meme periode, Ie nom­bre total d'etudiants se preparant a des gradessuperieurs etair passe de 107 a 1549. Ungrand nombre d'etudiants dans ces program­mes sont inscrits ;1 temp partieI ou dans desprogrammes cooperatifs, ce qui demontre queI'industrie reconnait de plus en plus ('impor­tance de I'education permanente et de forma­tion plus poussee.

Une plethore de nouveauxcours pour Pere des ordinateursL'invention de .J'ordinateur electronique avaiteu tres peu d'impact sur I'industrie durant le~

premieres annees qui suivirent la guerrc.Mais, aussitt>t gu'on eut pris conscience cle larentabilite de c.e nouvel outil, on a aussi rc­connu la necessite de former du personnelpour la conception, I'application et la mise enoeuvre de ces appareils. Des que Ie besoin s'estfait sentir dans I'industrie pour du personnelde plus en plus qualifie la demande pour desingenieurs en electricite s'accrut. Les univer­sites Western et de Sherbrooke ont ete respremieres a mettre sur pied, des 1954, descours de genie electrique specialises dans cenouveau domaine. Western decen1a ses pre­miers dipl6mes en 1958 tandis que Sher­brooke ne Ie fit que I'annee suivante. Uneserie de nouveaux programmes furent ins­tittles peu de temps apres a Carleton (1957), aOttawa (1957), a L'Ecole Polytechnique (1958)et au College Militaire Royal (1959). Un bonnombre de ces ecoles offraient deja depuislongtemps des cours de genie. Par exemple,C.M.R. avait d'abord ete fonde comme ecole

145

Page 164: Electricity - The Magic Medium

t'iMMEUBLE DE LA RUE ST- DENis

Ecole Polytechnique Building, Montreal, until 1958.

Irnmeuble de l'Ecole Polytechnique, a Montn'aI,jusqu'en1958. Photo: Ecole Polytechnique de Montreal.

TABLE II-TOTAL REGISTRATION IN ELECTRICAL ENGINEERING IN THE WAR YEARS

TABLEAU II-TOTAL DES INSCRIPTIONS EN GENIE ELECTRIQUE AUCOURS DE LAGUERRE.

1937-38 1940-41 1942-43 1943-44 1944-45 1945-46 1946-47 1947-48 1948-49 1949-50

321 380 470 555 579 671 926 1583 2032 1719

TABLE III-GRADUATE STUDENT REGISTRATION IN ELECTRICAL ENGINEERINGPROGRAMS

TABLEAU III-NOMBRE D'ETUDIANTS DIPLOMES INSCRITS A DES PROGRAMMES DE GENIEELECTRIQUE

1958-9 1962-3 1967-8 1972-3 1977-8 1982-3Nova Scotia I 8 41 27 17 34UNB 2 18 34 51 45 32Laval 7 19 38 42 30 45Ecole Polytechnique 1 4 19 52 115 106McGill 21 26 57 91 107 126Queen's 7 17 23 47 34 53Toronto 31 29 179 170 241 229Manitoba 12 36 63 55 61 125Saskatchewan 5 II 34 25 38 38Alberta 4 15 52 67 37 63UBC 16 28 59 58 44 51Ottawa 23 31 57 52 70Carleton 2 78 112 133 137McMaster 1 37 27 48 77Waterloo 13 70 60 108 82Western 1 4 8 11 15Windsor 2 15 22 29 33RMC 5 14 27 39Calga,-y 7 25 39 33Sherbrooke 9 21 40 22Regina 7 2Concordia 120 113Memorial 12Quebec ;, Trois-Rivic'-es ]4

TOTAL 107 253 853 1038 1378 1549

146

Page 165: Electricity - The Magic Medium

Immeuble de l'EcolePolytechnique de Montreal'depuis 1959. Photo: EcolePolytechnique de Montreal.

Ecole PolytechniqueBuilding, Montreal, since1959, Photos courtesy ofEcole Polytechnique,Montreal.

Jc. Bernier, fondateur' du departement de Genieelectrique de l'Ecole Polytechnique de Montreal,tr'availlant dans un des labOl'atoires de l'Ecole. C'est IiI, en1930, qu'il a experimente et produit les premieres imagestelevisees au Canada.

Je. Bernier, founder of Electr'ical Depar-tment at EcolePolytechnique in Montreal, al work in the laboratory.Hel"e, in 1930, Professor Bernier exper"irnented andproduced the first successful television pictures inCanada.

Appar"eils utilises pour Ia production des pr'emierTsimages tdevisees, ;1 l'Ecole Polytechnique. Photo: EcolePolytechnique. (Voir I'article deJA. Ouimet dans Iejournal de I'EIC de mars 1950).

Apparatus at Ecole Polytechnique used for the firstsuccessful experiments to produce television pictures.Photos courtesy of Ecole Polytechnique. (See "Report onTelevision" by .I .A. Ouimet in the The EngineeringJournal of EIC date of March 1950).

147

Page 166: Electricity - The Magic Medium

First Electrical Laborator'y in the old building at EcolePolytechnique on St. Denis Street, Montreal. Photo .courtesy of Ecole Polytechnique.

The Electrical Program at Concordia Uni­versity is the happy amalgamation of the tra­ditional Quebec program of Loyola Collegeand the progressive program at Sir GeorgeWilliams University. Although the Engineer­ing Faculty was founded at Loyola in 1954 itwas not for several years that the program wasexpanded to allow students to proceed to thedegree of Bachelor of Science. The schoolserved the west end population of Montrefll,while Sir George Williams, located in thedowntown sector of the city, a few blocks fromMcGill, served the rest of the city. The pro­gram at Sir George Williams was directed asmuch to part-time students in evening classesas to the regular full-time students. Thecampus consisted of the building itself, occu-

. pied for classes both day and evening.Loyola's first Electrical Graduates appeared in1965 while the first from Sir George appearedtwo years later. The combination of two pro­grams under the umbrella of Concordia Uni­versity in 1974 gave a strong flexibility of pur­pose, producing a bilingual program to servethe working students as well as the more tra­ditionally-oriented full-time students.

148

Premier laboratoire d'electricite, dans l'ancien immeublede I'Ecoie Polytechnique, rue St-Denis, a Montreal. Photo:Ecole Poly technique,

The University of Waterloo was establishedas a cooperative degree progratn, with stu­dents assigned to four-month 'work termsevery other term except the final set. Thereare now cooperative programs' at a number ofuniversities; including Memorial, Sherbrooke,Ottawa, and UBC.

From this point on there were a number ofsociological and technological changes whichcombined to influence the gr~wth of the engi­neering schools. The various provincial gov­ernments, led by Ontario, adopted the con­cept of "Universal Access" to highereducation. Consequently, through the sixtiesthere were enormous building programs,throughout the country, as the universitiesembarked on a course of unconstrained ex­pansion. The numbers of prospective studentswere swelled by the "post-war baby boom",those children born immediately after the warmaturing to university age in the mid to latesixties. In this period only two new programswere established: at Calgary, the satellitecampus of the University of Alberta becamethe University of Calgary, beginning an elec­trical program in 1965, and at the U niversite

Page 167: Electricity - The Magic Medium

- ----------------------------------------------------------

de genie militaire et avait ouvert ses portes asa premit-e classe de dix-huit etudiants en1876. En 1951, C.M.R. avait institue un coursde genie electrique qui s'etendait sur quatreans, mais les etudiants qui desiraient obtenirun diplame dans cette discipline devaient alleretudier a une autre institution, pour laderniere annee. De meme, l'Ecole Polytechni­que avait acquis une excellente reputation de­puis longtemps comme etant I'une despremieres a donner des cours de genie au Ca­nada, puisqu'elle avait ete fondee Ie 18 no­vembre, ] 873. Bien qu'elle ait eu un coursd'e!ectricite au programme general regulierpendant plusieurs annees, ce n'est que quatre­vingt-cinq ans apres sa fondation qu'elle of­frit, en 1958, Ie premier cours de genie e!ec­trique preparant a un grade. Dans lesquelques annees qui suivirent, alors que lesdip lames sortaient de plus en plus nombreuxde ces nouvelles ecoles et arrivaient sur Iemarche du travail, Ie nombre de dipl6mes engenie electrique avait plus que double.

Les cours d'electricite offerts a l'UniversiteConcordia est une heureuse combinaison ducours classique quebecois du College Loyola etIe cours moderne donne par l'Universite SirGeorge Williams. Bien que la Faculte de Genieait ete etablie a Loyola en 1954, ce ne fut queplusieurs annees plus tard que Ie cours a eteetendu pour permettre aux etudiants d'aspirera:u grade de bachelier en Sciences (B. Sc.).L't~cole desservait la population de I'ouest deMontreal tandis que Sir George Williams,situee dans un quartier du centreville, a quel­ques coins de rue de McGill, desservait Ie restede la ville. Le CaUl's a Sir George Williamss'adressait aussi bien a des etudiants a tempspartiel dans des COUl-S du soil' qu'aux etudiantsreguliers a temps complet. Le campus ne con­sistait qu'en un edifice Oll etaient donnes lescours et du jour et du soil'. Les premiersdiplames en genie electrique a Loyola ant etedecernes en 1965 tandis que Sir George Wil­liams ne decernait ses premiers grades quedeux ans plus tard. La combinaison en 1974des deux programmes sous la tutelle de l'Uni­versite Concordia permettait une grande flexi­bilite dans son fonctionnement, etablissant unprogramme d'etudes bilingue pour les etu­diants au travail aussi bien que pour les etu­diants a temps complet interesses a suivre descours d'une fac;:on plus reguliere.

L'Universite de Waterloo a ete institueepour offdr un cours cooperatif preparant aungrade dans lequel les etudiants passent unterme de quatre mois en milieu de travail alter­nant avec un terme de quatre mois en CaUl's,

sauf pour Ie tenne final. On offre maintenantdes COUl'S cooperatifs dans plusieurs univer­sites, entre autres Memorial, Sherbrooke, Ot­tawa, et UBC.

Depuis, Ie' developpement des ecoles degenie a ete soumis a l'influence d'un certainnombre de changements sociologiques et tech­nologiques. Les divers gouvernements provin­ciaux, a J'exemple de l'Ontario, ant adopte Ieconcept de 'I'accessibilite universelle' a l'ensei­gnement superieur. Partant, au caul's desannees soixante, il y eut de gigantesques pro­grammes de construction a travers Ie pays,alors que les universites se lanc;:aient dans desprojets d'expansion sans aucune contrainte. Lenombre d'etudiants eligibles fur gOnfle par Ie'baby boom' d'apres-guerre, ces enfants venusau monde tout de suite apres la guerre qui at­teignaient l'age d'entree a l'universite au milieudes annees soixante. Dans ceUe periode, seule­ment deux nouveaux cours avaient vu Ie jour:Ie premier a Calgary OU Ie campus satellite deI'Universite de I'Alberta etait devenu I'U niver­site de Calgary et commenc;:ait un cours d'elec­tricite en 1965; I'autre a I'U niversite duQuebec a Trois-Rivieres OU l'on introduisit uncours en 1969.

En meme temps, de grands ordinateursprincipaux commenc;:aient a faire leur appari­tion sur les campus non seulement comme ou­tils utilises en administration et en recherche,mais aussi pour l'enseignement des etudiants.La course effrenee vel's I'espace, qui deman­dait des developpements technologiques colos­saux, constituait un formidable stimulus quiservit a donner un essor renouvele a I'ensei­gnement technique. Etant donne I'attrait pourtout ce qui touchait J'e!ectricite qui en resultait,Ie nombre des inscriptions fit un autre grandbond. Le nombre des diplomes passa de 543 en1960 a 953 en 1970, doublant pr'esque en dixans. Toutefois, a compteI' de ccUe date, lesgouvernements commencerent a se raviser etreduisirent les fonds destines a la constructionou les eliminerent completement quand an-ivala depression des annees soixante-dix. Les sub­ventions se firent de plus en plus rares a me­sure que la decennie avanc;:ait. II restait quel­ques projets technologigues que I'on s'etaitengage de terminer et les plus petites provin­ces, dont, en particulier, l'Alberta, Ie Manitoba,Ie Nouveau-Brunswick et Terre-Neuve avaientapprouve en principe certaines ameliorationssur leur territoire respectif. En 1970, I'Univer­site Memorial e!argit son programme d'etudesa un cours de quatre ans preparant a un gradeen electricite, lequel fut decerne pour lapremiere fois quatre ans plus tard, la meme

149

Page 168: Electricity - The Magic Medium

de Quebec a Trois Rivieres a program wasbegun in 1969.

At the same time main-frame computersbegan to appear on campuses not only as ap­plications tools for both administration andresearch, but also as undergraduate teachingtools. The great space race, with its enormoustechnological effort,. provided a remarkablestimulus for increased technical education.With the resultant stimulus to things electri­cal, enrollments took another great leap. Thenumber of graduates increased from 543 in1960 to 953 in 1970, almost doubling in thedecade. However, from this point on govern­ments began to reverse themselves, cuttingdown on available funds for building, or eli­minating them altogether as the depression ofthe seventies set in. Funding became morescarce as the decade proceeded. There wasstill some commitment to technological enter­prise, with tacit approval for improvement inthe smaller provinces, including especially Al­berta, Manitoba, New Brunswick and New­foundland. Memorial University expanded itsprogram to include a four year electrical de.greein 1970, with the first graduating classappearing four years later, at the same time asthe first graduating class from Lakehead Uni·versity (founded as a degree program in 1972to complement the existing technology di­ploma programs). The most recent additionto the electrical engineering education groupis the University of Victoria. An electrical en­gineering program was formed there in 1983.The facuity plan was to admit 70 students tofirst year during 1984, with 40 to be admittedto second year. A program at Regina, begunas a partial program in 1972, has recentlybeen expanded as a degree program in the as­sociated area of Electronic Information Sys­tems, thus capitalizing on the microelectronicrevolution as well as the advent of microcom­puters as business and industrial assets. Ac­cording to a 1983 census there were 7601 stu­dents registered in electrical and computerengineering programs in Canada, an increaseof 11% over the previous year. Looking to thefuture it seems evident that enrollments maybe expected to increase on an expanded scale.

Women in EngineeringThere are recOl-ds of women attending exten­sion classes in electrical subjects as early as1892, when Dr. A. Wilmer Duff, of the Uni­versity of New Brunswick, gave extensioncourses in Saint John to a class of twenty-six,which included several female students. How-

150

ever, there are no records of registration in afull time program until Elsie Gregory MacGillentered Toronto, becoming, in 1927, the firstwoman graduate in electrical engineering inCanada. It is interesting to note that she wenton to study aeronautical engineering in theUnited States, returning to Canada to work inthe aeronautical industry. She supervised de­sign on both the Hawker Hurricane and theCurtis Wright Helldiver during the secondworld war.

There were no significant numbers ofwomen in electrical engineering, however,until the early seventies, when the percentageof female students registered rose graduallyto about seven percent.

Of Graduates and FacultyMention has already been made of some of thecontributions of faculty and graduates over theyears. In reality, the list would be very longwere all the accomplishers and contributors tobe named. Such a list would have to includethose who have made significant contributionsthrough research and invention; those whohave served as professors and lecturers inUniversities both inside and outside Canada;those who have risen to positions as Depart­ment Heads and Presidents of Universities;those who have reached the top in small andlarge Consulting Engineering firms and whohave helped to develop Canada's reputationfor engineering around the world; those whohave opened up businesses in their respectivefields of expertise and thus contributed to thedevelopment of the Canadian Electrical andElectronics Industry; those who have becomeexecutives and presidents of Canadian Cor­porations, large and small; those who haverisen to the upper levels of responsible positionin the Electrical Power Industry and the Com­munications Industry; and those who have en-'tered government service in research, adminis­trative, military or political activities.

There are many professors and lecturers inCanadian Universities and Technical Collegeswho have made significant contributionsthrough their technical paper presentations atInternational Conferences and through theTransactions publications of the Institute ofElectrical and Electronics Engineers, the Engi­neering Institute of Canada and its interna­tional affiliations and other technical societies.

Were we to mention the individual contribu­tors over these past 100 or more years to Cana­dian scholarship, to teaching, to research, tocommunity, to business, and to national and

Page 169: Electricity - The Magic Medium

annee que la premiere classe de diplames SOI'­

tait de l'Universite Lakehead (ou I'on avaitetabli, en 1972, un programme d'etudes prepa­rant a un grade comme complement auxcours techniques donnant droit a un certificatdeja en force). La derniere institution ase join­dre au groupe des universites offrant des coursde genie electrique est l'Universite de Victoria,au I'on a institue un programme de genie elec­trique en 1983. La Faculte comptait admettre70 etudiants en premiere annee, en 1984, et 40en deuxieme annee. Un cours a Regina, quidebuta en 1972 a temps partiel, a, depuis, eteelargi a un cours preparant a un grade dans Iedomaine connexe des Systemes electroniquesde gestion de l'information mettant ainsi apro­fit la revolution microelectronigue et l'arriveedes microordinateurs qui venaient s'ajouter aI'actif des entreprises. Le recensement de 1983indique que 7601 etudiants etaient inscrits ades programmes d'etudes en electricite et eninformatigue au Canada, une augmeination de11 % sur I'annee precedente. Le futur semblepresager un nombre d'inscriptions toujoursplus grand acescours.

La femme ingenieur11 est fait mention dans I'histoire que des fem­mes ont suivi des cours complementaires enelectricite des 1892, quand Ie docteur A. Wil­mar Duff de l'Universite du Nouveau Bruns­wick a donne des cours complementaires ~l

Saint-John a un groupe de 36 etudiants. Cegroupe comptait plusieurs femmes. Toutefois,on ne mentionne aucune inscription a descours a temps complet avant I'entree de MileElsie Gregory MacGill a Toronto, celie qui, en1927, a ete la premiere femme au Canada a re­cevoir un grade en genie eJectrique. On noteraavec interet qu'elle a poursuivi des etudes engenie aeronautique aux Etats-Unis, et revint auCanada pour oeuvrer dans I'industrie aero­nautique. Elle supervisa la conception de deuxavions, Ie Hawker Hurricane et Ie CurtisWright Helldriver, au cours de la secondegrande guerre. Mais on ne retrouve pas beau­coup de femmes dans les cours de genie elec­trique bien avant les anl1(~es soixante-dix, alorsque Ie pourcentage des etudiantes inscritesaugmenta graduellement pour atteindre presde sept pour cent.

Diplomes et professeursOn a deja fait mention de certaines contribu­tions de la part des professeurs et des diplamesau cours des ans. En fait, la liste serait trop lon-

gue si I'on voulait mentionner tous ceux quiont accompli des choses importantes ou qui ontcollabore a de telles realisations. On devrait yinclure ceux qui ont joue un role importantdans Ie domaine des recherches et des inven­tions; ceux qui ant enseigne a titre de profes­seurs et de charge d'enseignement dans lesuniversites tant au Canada qu'a I'etranger;ceux qui sont parvenus a des postes de Chef deDepartement et de President d'universite;ceux qui ont atteint les plushauts sommetsdans Ies cabinets d'ingenieUl's-conseils petits ougrands et qui ant aide a batir la renommee uni­verselledu Canada en genie; ceux qui se sontlances dans le~ affaires en rapport avec leursphere de competence et qui, de cette fa~on,

ant contribue au progres de I'industrie electri­que et electronique du Canada; ceux qui sontdevenus administrateurs et presidents d'entre­prises canadiennes, grandes et petites; ceuxqui se sont Cleves au plus haut niveau de res­ponsabilite dans l'industrie de l'energie Clew'i­que et de I'industrie des communications; etceux qui sont entres au service du gouverne­ment en recherches, en administration, en po­litique ou dans les forces armees.

On rencontre dans les universites du Canadaet dans les colleges techniques un grand nom­bl'e de professeurs et de charges d'enseigne­ment qui ont contribue d'une fac;on tangiblepar leUl's presentations de traites techniques ades Conferences internationales ou dans lescomptes-rendus de I'Institut des Ingenieurs enElectricite et en Electronique, de !'Institut deGenie du Canada et de ses affilies internatio­naux et autres Societes de sciences appliquees,~l la bonne renommee du Genie Electrique auCanada.

S'il falJait nommer tous les individus qui ontcontribue, au cours des cent dernieres anneesou plus, a I'erudition au Canada, a l'enseigne­ment, aux recherches, au bien de la collectivite,aux affaires et au service de la nation et de laprofession tant au pays qu'a l'exterieur, la listeserait interminable. Nous sommes certains quece phenomene va se perpetuer dans l'avenirpour que Ie Canada continue de tenir Ie rangd'un des chefs de file parmi les pays qui ontevolue au point du vue technologique.

Les premiers instituts detechnologie au CanadaLe concept du college communautaire telqu'on Ie connait aujourd'hui est issu descolleges qui ont ete etablis en bordure des uni­versites vers Ie debut du sieck. L'un de cescolleges etait Victoria College, une extension

151

Page 170: Electricity - The Magic Medium

--------------------------------------

professional service within and outside of ourcountry the list would be endless. We are verysure that this established pattern will continueinto the future to further establish Canada'sposition as one of the leading technologicallydeveloped nations.

Canada's First Institutes ofTechnologyThe present community college concept grewout of the junior colleges founded as satelliteinstitutions to the universities about the turn ofthe century. They included Victoria College,an extension of Macdonald College in BritishColumbia. Victoria College was founded in1903 and gave extension courses until aboutthe start of the First World War, when it closedits doors. It reopened in 1920 as an affiliate ofthe University of British Columbia, offeringjunior college work in several fields, includingpre-engineering. For the better part of thecentury it operated as a liberal arts and sciencecollege until it separated from the Universityof British Columbia to become Victoria" Uni­versity in 1963. As of September, 1984, itsdoors were opened to its first classes in a coop­erative program in Electrical Engineering.

The Provincial Institute of Technology andArt was founded in Calgary in 1916, and wasstill the only recognized school devoted en­tirely to the teaching of advanced technicalsubjects in Canada in 1940. By 1935 Dr. W.G.Carpenter, the Principal of the college, wasmoved to remark that electricity was the mostpopular course, superseding even motor me­chanics in the number of participants. In 1961the name of the school was changed to theSouthern Alberta Institute of Technology.There were other colleges of diverse natureswhich deserve some mention, including l'Insti­tut de Technologie de Quebec which wasfounded in 1907 in Quebec City. This schoollater formed the genesis for Limoilou, a tech­nical college in Quebec, during the educationalreformation in Quebec in 1967. An unusualaspect of technical instruction in Quebec wasthe assistance lent by private organizationssuch as the Shawinigan Water and Power Com­pany and the Bell Telephone Company ofCanada: for example, the former helped getthe Shawinigan Technical Institute underway,principally as a 'private venture. Some othercolleges continued to offer technology courses,usually at the vocational level at high schools,over the several years until the outbreak of theSecond World War. Then it became apparentthat there was altogether too little expertise in

152

practical technology to suit the country'sneeds, especially in electronic and electricalsubjects. Consequently a number of schoolswere established by the various branches of thearmed forces; some, as we have already noted,in conjunction with universities, and someoperated and staffed by the various servicesthemselves.

Egerton Ryerson's Legacy:A Technical CollegeThe Royal Canadian Air Force established anInitial Training Centre in Toronto in 1940.The buildings for the centre were donated bythe Province at the request of the DominionGovernment. The principal building in thecomplex was the old Toronto Normal andModel School built in 1851 under the aegis ofEgerton Ryerson. Subsequent occupants of thecomplex included the Royal Ontario Museumand the College of Art. Toward the War's endit became apparent that some effort would beneeded to retrain the returning veterans for ci-

_vilian service..The Training Centre -was-­deemed ideal for the purpose and was con­verted into the Training and Re-establishmentInstitute, offering intensive short courses forboth men and women in practical subjects.Under the auspices of the Ontario Departmentof Education it became the Ryerson Instituteof Technology, opening its doors to its firstclass of technology students in September of1948. A century after Ryerson had first sug­gested schools to teach the technological arts,such a school was founded in the very buildinghe had commissioned for teacher trainingl

At about the same time, and roughlythrough the same route, the Canadian Voca­tional Training Centre in Moncton, NewBrunswick, was founded in the old RoyalCanadian Air Force Manning Station. Theschool opened for its first classes in January,1946, basically as a retraining centre for re­turning veterans, to teach technical skills at thetrade level. Meanwhile, the universities hadadopted a lead role in driving towards a morecomprehensive system of alternative highereducation. As early as 1957 Dr. Claude Bissellhad noted in his "Canada's Crisis in HigherEducation", the resolution of the NationalCouncil of Colleges and Universities to "com­mend to the attention of the provincial govern­ments the desirability of establishing more in­stitutes of technology comparable to theRyerson Institute of Technology". The NewBrunswick government was one of the first torespond, perhaps because the establishment

Page 171: Electricity - The Magic Medium

---------------------------------------------------------

du Macdonald College en Colombie Britanni­que. Victoria College, fonde en 1903, a offertdes cours complementaires jusqu'au commen­cement de la premiere guerre mondiale, alorsqu'il a ete ferrne temporairement. II rouvrit sesportes en 1920 a titre de college affilie a l'Uni­versite de la Colombie Britannique, et ofTt;t descours pre-universitaires dans plusieurs discipli­nes, y compris Ie pre-genie. Pendant plus de cin­quante ans, on y donna des cours d'art,> Iiberauxet de sciences jusqu'a ce qu'il se dissocied deI'Universite de la Colombie Britanique et de­vienne I'Universite Victoria en 1963. Depuis sep­tembre 1984, il re<;:oit ses classes d'etudiants engenie electrique sur une base cooperative.

L'lnstitut provincial de Technologie et d' Arta ete fonde aCalgary en 1916, et etait toujours,en 1940, la seule ecole reconnue au Canadavouee entierement a I'enseignement dematieres techniques avancees. In 1935, Ie doc­teur W.G. Carpenter, principal du college estvenu a reconnaitre que I'electricite etait lamatiere la plus populaire, surpassant meme lamecanique des moteurs, si !'on en juge par Ienombre d'etudiants qui suivaient Ie cours. En1961, on changea Ie nom de I'ecole a celui deInstitut de Technologie 9u sud de !'Alberta.

11 y eut d'autres colleges de diverses naturesqui meritent une certaine mention, entre au­tres !'Institut de Technologie de Quebec qui vitIe jour a Quebec en 1907. Cette ecole devintplus tard Ie point de depart de Limoilou, uncollege technique du Quebec, au temps de lareforme de l'education au Quebec en 1967.Dans cette province, !'enseignement techniquea connu un phenomene inusite. Des entrepri­ses privees comme la Shawinigan Water andPower Company et la Bell Telephone Com­pany I'on encourage par leur appui financier;par exemple, la premiere a contribue a mettrel'Institut technique de Shawinigan sur pied,surtout a titre d'investissement.

D'autres colleges continuerent a donner descours en technologie, ordinairement au niveaude specialisation dans les ecoles superieures,durant les annees qui precederent la secondeguerre mondiale. Puis, il devint evident qu'iln'y avait absolument pas assez de personnesqualifiees en technologie pratique pour les be­soins du pays, particulierement dans les do­maines de !'electricite et de !'electronique. C'estpourquoi un certain nombre d'ecoles ant eteerablies par les differentes branches des forcesarmees; quelques unes comme on I'a men­tionne plus haut, conjointement avec les uni­versires et d'autres dirigees par les serviceseux-memes avec leur propre personnel commeprofesseurs.

I.e legs de Egerton Ryerson: uncollege techniqueL'Aviation canadienne royale (R.C.A.F.) etablitun Centre de formation de base a Toronto en1940. A la demande du Gouvernementfederal, la Province fit don des batimentsqu'utilisait Ie Centre. L'edifice principal ducomplexe erait !'ancienne Ecole normale er demodele de Toronto, erigee en 1851 sousl'egide de M. Egerton Ryerson. Plus tard, Iecomplexe a abrite Ie Musee royal de l'Ontarioet Ie College des Arts. Vel's fa fin de la guerre,on se rendit compte qu'il faudrait voir a recy­cler les veterans demobilises pour leur penl1et­tre de reintegrer la vie civile. Le Centre sem­blait I'endroit ideal pour ce projet et on Ieconvertit en un Institut de formation et de re­cyclage qui offrait de brefs cours intensifs auxhommes et aux femmes dans des domainespratiques. Sous les auspices du Ministere deI'Education de !'Ontario, il devint I'InstitutRyerson de Technologie, et ouvrit ses portes ases premiers etudiants en technologie en sep­tembre 1948. Un siecle s'etait ecoule depuisque Ryerson avait suggere I'etablissementd'ecoles pour l'enseignement des arts tech nolo­giques; une telle ecole venait d'etre etabliedans !'edifice meme qu'il avait auvert pour laformation de professeurs.

A peu pres ~t la meme epoque, et apeu presde la meme maniere, Ie Centre canadien deformation professionnelle aMoncton, au Nou­veau-Brunswick, voyait Ie jour sur l'anciennebase Manning de l'Aviation canadienne royale.L'ecole rec;ut ses premieres classes d'etudiantsen janvier 1946; ce scrait surtout un centre derecyclage pour les veterans qui revenaient de laguerre, pour leur enseigner les arts techniquesnecessaires pour pratiqueI' un metier. Dansl'intervalle, les universites avaient pris l'initia­tive d'un mouvement en faveur d'un systemeplus complet d'education superieure d'uneautre nature. Des 1957, Ie docteur Claude Bis­sell avait note dans son· traite 'Canada's Crisisin Higher Education' (La crise de I'educationsuperieure au Canada) la resolution du Conseilnational des Colleges et Universites de "portera !'attention des gouvernements provinciauxqu'il· etait souhaitable d'etablir plus d'institutsde technologie semblables a I'Institut Ryersonde Technologie." Le gouvernement du Nou­veau-Brunswick a ete I'un des premiers aagir,peut-eu'e patTe que I'etablissement et la struc­ture d'un tel pro.jet Clait deja en place. On en­treprit la construction de I'Institut de Techno­logic du Nouveau-Brunswick sur Ie site deMountain Road, a Moncton, en 1959. Les res­sources materielles et humaines du Centre de

153

Page 172: Electricity - The Magic Medium

The Ryerson Building in Toronto, built in1842-originally opened as the Toronto Normal School.Photo courtesy of Ryerson PolytechnicallnstiWteArchives.

Early work in television, 1951, al Ryerson. P.holocourtesyof Ryerson Polytechnical Institute Archive~..

Le Ryerson Building aToronto, construit en 1842, quifut d'abord l'Ecole normale de Toronto. Photo: Archivesdu Ryerson l'olyledll1icallnstitute.

Premiers travaux dans Ie domaine de fa television, en1951, au Ryerson. Photo: Archives du RyersonPolylechnical Institute.

IIL

154

Page 173: Electricity - The Magic Medium

Extrait dujournal etudiant du Ryerson de decembre1949: "La television a vu Ie jour au Canada Ie 14novembre 1949 alors que Ie Ryerson Institute ofTechnology a presente les premieres images televisees endirect it un auditoire de 300 concessionnaires de radio etde television de la region de Toronto. L'emission a eteproduite et dirigee par Ie Ryerson." Photo: Archives duRyerson Polytechnical Institute.

formation professionnelle constituerent Ienoyau du nouvel institut. La premiere c1asse asuivre Ie programme qui avait ete grandementelargi et ameJiore commenc,:a en 1961.

Un institut "Superieur"L'Jnstitut Lakehead de Technologie a etefonde par Ie gouvernement ontarien en 1946a, ce qui etait alars, Port Arthur, a la tete du lacSuperieur. Comme c'etait la pratique dans lesautres colleges, Ie principal objectif etait Ie re­cyclage des veterans demobilises. En reponseaux pressions pour un systeme d'cducationplus ordonne pour les technologistes, Ie gou­vernement de I'Ontario reforma l'Institut et Ienomma College Lakehead des Arts, des Scien-

Extract from the Ryersonian, December 1949-a studentnewspapec "Television came to Canada on November14, 1949 as Ryerson Institute of Technology presentedthe Dominion's first live television to an audience of over300 radio and television dealers from the TorontoDistrict. The program was produced and directed hyRyerson." Photo courtesy of Ryerson PolytechnicalInstitute Archives.

ces et de Technologie quand, en 1951, la villede Port Arthur lui fit cadeau des terrains queIe college occupe aujourd'hui. En 1965, l'ecoledevint I'Universite Lakehead, tout en conser­vant son mandat d'enseigner un programmeintegre de technologic et de genie. Quatre ansplus tard, Fort William et Port Arthur se fu­sionnerent pour devenir la ville de ThunderBay. Les premiers etudiants du cours completpreparant au grade de genie rec,:urent leurdiplome en 1972. Ce cours, unique au Canada,pennet aux etudiants de passer de la treiziemeannee a un CaUl's de deux ans qui leur donnedroit a un cerrificat en technologie eIectrique,et de la, s'il ant les prerequis, de poursuivre desetudes post-certificat qui mcnent au grade deBachelier en Genie Electrique.

155

Page 174: Electricity - The Magic Medium

~----_~_--- ---~_----- -

and structure of such an undertaking were al­ready in place. Construction began at theMountain Road site in Moncton for the NewBrunswick Institute of Technology in 1959.The resources and staff of the VocationalTraining Centre became the nucleus of thenew Institute. The first class in the greatly ex­panded and upgraded program began in1961.

A "Superior" InstituteThe Lakehead Institute of Technology was es­tablished by the Ontario Provincial Govern­ment in 1946 in what was then called Port Ar­thur, at the head end of Lake Superior. Aswith the other colleges of the time, the mainimpetus was the retraining of returning veter­ans. In response to the call for a more orderlysystem of education for technologists, the On­tario Government re-established the college asthe Lakehead College of Arts, Science andTechnology in 1957, when the city of Port Ar­thur donated the site the college now occupies.In 1965 the school became Lakehead Univer­sity, retaining its mandate for teaching an inte­grated technology and engineering program.Four years later, Fort William and Port Arthurcombined to become the City of Thunder Bay.The complete engineering degree programproduced its first graduates in 1972. This pro­gram, unique in Canada, allows students toproceed through a two year program fromgrade thirteen to obtain a diploma in electricalengineering technology, with the opportunityto continue on if they meet the appropriatestandards, to a post-diploma program whichleads to the Bachelor's degree in Electrical En­gineering.

The Ontario Government's program oftechnology education was expanded in 1957 toinclude the Eastern Ontario Institute of Tech­nology at Ottawa, now Algonquin College ofApplied Arts and Technology. The WesternOntario Institute of Technology, later to be­come the Saint Clair College of Applied Artsand Technology, was created in 1958. The Ha­milton Institute of Technology (1956) was anoutgrowth of the Provincial Institute of Tex­tiles, founded in Hamilton in 1946. Eventually,the Ontario Government's concept of universalaccess to higher education led to the greatly ex­panded programs offered in Mohawk College,the successor to the Hamilton Institute ofTechnology, and in Ryerson Polytechnical In­stitute, the successor to Ryerson Institute ofTechnology. Saskatchewan also began a move­ment towards technical education, establishingthe Saskatchewan Technical Institute in 1960

156

at Moose Jaw. However, the universities con­tinued to press for a more organized approachto alternative higher education. Again quotingDr. Claude Bissell, by 1965, president of theUniversity of Toronto:

We recommend a greatly increased ex­pansion of institutes of technology and thedevelopment of colleges of advanced tech­nology; we suggest the widespread devel­opment of colleges of technology and ap­plied arts that would be geared to theneeds of local communities.

The presidents (of Ontario universities)strongly believe that (these colleges)should be alternatives to uniyersities, notparallel to them; they should have a strongvocational and technical bias, so that theyare not in danger of being looked at as er­satz universities. Fortunately we have inthe Ryerson Polytechnical Institute a su­perb model of the kind of status that an in­stitution can quickly obtain if it formulatesits goals clearly and does not succumb bydegrees to a passion for superior status.

The university presidents were ably assistedby the federal government, which passed anact in 1960 to provide for the reimbursementto provincial governments for up to seventy­five percent of the costs for construction, pur­chase, renovation or equipping of technicaltraining facilities.

Within a short while Ryerson Institutesought and obtained the rights of a degree­granting institution in the technology area. In1973 the degree program in the Bachelor ofElectrical Technology was added to the pro­gram structure. In the meantime, both Ryer­son Polytechnical and the New Brunswick In­stitute of Technology became models for otherschools, other provinces, to emulate. WithinNew Brunswick it became a model for theSaint John Institute of Technology, whichopened its doors in 1963 for its first classes inMarine Electronics and in Electronic Servicing.The latter became the genesis for the tradeprogram in electrical and electlOnics. The for­mer evolved into the two year diploma pro­gram, including electronics, controls and datasystems specialties. Clinton Dow, as the firstprincipal of the New Bnmswick Institute,spearheaded the efforts to organize its little sis­ter in Saint John. In fact, he lent both his or­ganizational skills, and on occasion, his staff, toother fledgling technical institutes across thecountry. Among the first such staff was Clay­ton Cochrane, who started with the institutionas its first supervisor of the electrical program,

Page 175: Electricity - The Magic Medium

Eric L. Palin, premierinstructeur et directeur destechniques electriques etelectroniques ainsi que desarts radiophoniques ettelevisuels au RyersonInstitute of Technology.

Eric L. Palin, pioneerinstructor and Director ofElectric and ElectronicTechnology and Radio andTelevision Arts at RyersonInstitute of Technology.

Le programme d'education technologiquedu Gouvernement ontarien a ete elargi en1957 pour admettre l'Institut de Technologiede l'est de l'Ontario, a Ottawa, devenu depuisIe College Algonquin des Arts Appliques et deTechnologie. L'Institut de Technologie del'ouest de l'Ontario, qui devenait plus tard IeCollege Saint Clair des Arts Appliques et deTechnologie, a ete cree en 1958. L'InstitutHamilton de Technologie (1956) etait un des­cendant de !'Institot provincial des Textiles quiavait vu Ie jour a Hamilton en 1946. Avec Ietemps, Ie concept d'accessibilite universelle aune education superieure qu'avait adoptee Iegouvernement de l'Ontario fut Ie prelude desprogrammes bien eIargis offerts par Ie CollegeMohawk, Ie successeur de l'Institut Hamiltonde Technologie et par l'institut PolytechniqueRyerson, Ie successeur de !'Institut Ryerson deTechnologie. La Saskatchewan commew;:aitaussi a s'interesser a l'education technologiqueet, en 1960, elle etablissait !'Institut Techniquede Saskatchewan a Moose Jaw. Cependant, lesuniversites continuhent a lutter pour une ap­proche plus rationnelle pour une autre formed'education superieure. Encore une fois, dansles mots de M. Claude Bissell, qui en 1965 etaitpresident de l'Universite de Toronto:

"Nous recommandons une expansionbeaucoup plus rapide des instituts de tech­nologie et la mise en place de colleges detechnologie avancee; nous proposons uneproliferation des colleges de technologieet des arts appliques qui seraient adaptesaux besoins particuliers de chaque loca­lite.

Les presidents (des universites ontarien­nes) croient fermement que (ces colleges)devraient servir d'alternative pour les uni­versites, non pas etre des institutions pa­ralleles a celles-ci; ils devraient avoir uneforte vocation professionnelle et techni­que de sorte qu'ils ne seraient pas sujets aetre pris pour des ersatz des universites.Heureusement, l'Institut PolytechniqueRyerson est la et constitue un merveilleuxexemple de fa sorte de ceIebrite qu'uneinstitution peut rapidement atteindre sises objectifs sont clairement definis etqu'elle ne succombe pas graduellement ala passion des hauteurs"

Les presidents des universites etaient se­condes admirablement par Ie gouvernementfederal qui passa une loi en 1960 pour permet­tre Ie remboursement aux provinces jusqu'asoixante-quinze pour cent des frais pour laconstruction, l'achat, la renovation et l'amena­gement de locaux destines a la formation tech­mque.

Peu de temps apres, l'Institut Ryerson de­manda et obtint l'autorisation de decerner ungrade en technologie. En 1973, Ie programmed'etudes preparant au grade de Bachelier enTechnologie Electrique vint s'ajouter auxcours reguliers. Entre temps, I'lnstitut Poly­technique Ryerson et l'lnstitut de Technologicdu Nouveau-Brunswick devenaient desmodeIes a suivre pour les autre ecoles et pourles autres provinces. Dans la province du Nou­veau-Brunswick, l'Institut a servi de modele al'lnstitut de Technologie de Saint-John qui, en1963, admertait ses premieres classes d'etu­diants a des cours d'electronique maritime etde maintenance eIectronique. De ce dernier estne Ie cours d'e!ectricite et d'electronique pourles gens de metier. Le premier devint Ie coursde deux ans donnant droit a un certificat etcomprenant comme specialites, l'electronique,les systemes de controle et I'informatique. Clin­ton Dow, Ie premier principal de l'Institut duNouveau-Brunswick, a ete l'instigateur des tra­vaux en vue d'etablir I'institotion-soeur a Saint­John. De fait, il mit a la disposition des autresinstituts techniques qui comment;:aient et gontalent d'organisateur et parfois son personnel.Parmi les premiers membres de son personnela etre pretes, on remarque Clayton Cochrane,qui commen<,;a a l'lnstitut comme premier su­perviseur du cours d'eIectricite et qui prit sa re­traite en 1977, en meme temps que ClintonDow.

Quand on parle de ceux qui ont oeuvre dansIe domaine de la technologie au Canada, il nefaut pas oublier ce pionnier de I'education

157

Page 176: Electricity - The Magic Medium

retiring, at the same time as Clinton Dow, in1977. .

Any discussion of personnel in the Canadianworld of technology must include that pioneerinstructor, Eric L. Palin, for whom the IEEEPalin Award is named. Mr. Palin began his ca­reer in Hamilton at the Westdale SecondaryHigh School, but joined the R.C.A.F. InitialTraining Centre in 1944. He came with thepremises when the Centre became Ryerson In"stitute of Technology, becoming the Directorof Electrical and Electronic Technology andRadio and Television Arts, a post he held until1958, when he was appointed executive assis­tant to Ryerson's first principal Howard H.Kerr. According to an article in the Ryersoniansome six years after his death in 1971, he was,"an understanding, sympathetic, productive,intelligent man. He was a good leader, a manyou could go to with your problems." He is alsoremembered by hundreds of electrical tech­nologists across Canada as the epitome of whatan instructor should be.

Les Colleges d'EnseignementGeneral et Professionel, lesCEGEP.In June, 1967, the Government of Quebec un­dertook a complete re-organization of the edu­cational system of the province, concentratingon the third tier, of a four tier system, the pre­university and college resources of Quebec.The initial aim of the General and VocationalColleges Act was to make provision for the ap­proximately quarter million students in Que­bec who had the ability to complete a post sec­ondary education outside the universitysystem. In September of· that year the firsttwelve colleges in the system came into being.The most unusual aspect of the system was thatthe initiative to establish a CEGEP came, inmost cases, from the community itself. At thetime of reorganization there were forty-seveninstitutions offering technical courses in fivecategories, mainly at the high-school or voca­tional leveL The technical colleges in the initialgroup included College d'Ahuntsic which in­corporated I'Institut de Technologie Laval,College de Chicoutimi, incorporating l'insti­tute de Technologie, College Edouard-Mont­petit, which first began operations in 1950,College de Hull, again incorporating the localCollege de Technologie, and the College deJonquiere which incorporated the Institute ofTechnology founded there in ] 946. It must benoted that Jonquiere had served as a retrain­ing centre for veterans in the same manner as

158

Ryerson and the New Brunswick Institute ofTechnology. We have already remarked thatLimoilou CEGEP's incorporated the Institutde Technologie founded by the Quebec Gov­ernment in 1907.

Rimouski and Rouyn-Noranda were alsofounded in 1967. The following year sevenmore CEGEP's were established in communi­ties across the province; from the east coast(Galespie CEGEP) to the western boundary(Vieux-Monrreal CEGEP). Each school has aboard of directors consisting of nineteenmembers. Four are named by the faculty, twoby the students, and four by the parents of thestudents. Of the remainder, five are named inconsultation with other community groups inorder to allow the maximum community in­volvement. The principal and academic dean,together with two more members appointed bythe board itself comprise the remainder.

There has been one further developmentsince 1967 which bears mention, the establish­ment of an alternative technology program in1976. L'Ecole de Technologie Superieure wasestablished as a technology degree-grantingin­stitution attached to the Universite du Quebec.The first two years of the program are consti­tuted as a CEGEP program, while the thirdyear is the specialist bachelor's degree senioryear. In 1981 there were thirty-nine graduatesof the institution in electrical technology.

Colleges of Applied Arts andTechnology in OntarioIn October of 1965 the Ontario Legislaturepassed an act to establish colleges of appliedarts and technology throughout the provinceto serve local needs for alternative forms ofhigher education. The act embraced most ofthe community college system excepting Ryer­son, which had become Ryerson PolytechnicalInstitute in recognition of its unique status asthe "-mother and father of all the provincialinstitutes of technology except Lakehead."(Quoted in Gordon Campbell's treatise on theCommunity Colleges in Canada.) Conse­quently, in 1965 the great push to establish amore comprehensive system of technical edu­cation in Ontario came to fruition with the im­mediate formation of ten colleges, four ofwhich taught electrical or electronic technol­ogy. As in the Quebec schools these commu­nity colleges would incorporate existingschools wherever it should prove feasible. Al­gonquin, in Ottawa, Centennial in Scar­borough, Confederation in Thunder Bay, and

Page 177: Electricity - The Magic Medium

technique, M. Eric L. Palin, en honneur de quion a nomme la 'IEEE Palin Award' (boursePalin decernee par IEEE). M. Palin commen<;:a

. sa carriere d'enseignant au Westdale Secon­dary High School a Hamilton, mais, en 1944,on Ie trouve au Centre d'Apprentissage debase de I' Aviation canadienne royale(R.C.A.F.). 11 etait toujours la quand Ie Centreest devenu 1'1nstitut Ryerson de Technologic,dont il fut nomme Ie Directeur de la technolo­gie electrique et electronique et des arts de laradio et de la television, poste qu'il occupajusqu'en 1958 alors qu'il etait promu au posted'adjoint-executif du premier principal deRyerson, M. Howard H. Kerr. D'apres un arti­cle paru dans Ie Ryersonian quelques six ansapres sa mort en 1971, il etait: "un homme in­telligent, bienveillant, sympathique, diligent. 11possedait les qualites d'un chef, un hommeavec qui vous pouviez discuter de vosproblemes." Des centaines de technologistes enelectricite ~l travers Ie pays s'en souviennentcomme representant ce que doit etre un educa­teur.

Les coHeges d'eIDlseignementgeneral et jpJrofessionnel=ResCEGEPEnjuin 1967, Ie Couvernement du Quebec en­treprit la reorganisation complete du systemecl'education dans la province, concentrant soneffort sur la troisieme phase d'un systeme aquatre phases, les ressources pre-universitaireset collegiales du Quebec. Le but premier de laLoi sur les Colleges d'enseignement etait depermettre a pres d'un quart de million d'eru­diants du Quebec, qui en auraient Ie talent, desuivre un cours post-secondaire dans une insti­tution autre que I'universite. Les douze pre­miers colleges de ce programme ouvrirentleurs portes en septembre de la meme annee.La chose la plus surprenante a propos de cesysteme est que, dans bien des cas, les citoyenseux-memes demandaient I'etablissement d'unCEGEP dans leur localite. Au moment de lareforme, quarante-sept institutions offraientdes cours techniques repartis entre cinqcategories, principalement au niveau de I'ecolesuperieure ou au niveau professionnel. Dans Iegroupe original de colleges techniques oncomptait Ie College d' Ahuntsic auquel apparte­nait l'Institut de Technologie Laval; Ie Collegede Chicoutimi qui englobait I'lnstitut de Tech­nologic; Ie College Edouard-Montpetit quiavait commence ses cours en 1950, le Collegede Hull qui lui aussi comprenait Ie College deTechnologie de I'endroit et Ie College de Jon­quiere dont faisait partie l'Institut de Techno-

logie fonde en cette ville en 1946. II est bon denoter que Jonquiere avait ete un centre de re­cyclage pour les veterans demobilises toutcomme Ryerson et I'lnstitut de Technologie duNouveau-Brunswick. NollS avons deja men­tionne que Ie CEGEP de Limoilou comprenaitl'Institut de Technologie fonde par Ie Gouver­nement en 1907.

Les CEGEP de Rimouski et de Rouyn­Noranda ont aussi ete etablis en 1967. L'anneesuivante, on creait sept nouveaux CEGEP dansautant de localites a travers la province, de lacote est (CEGEP G~lespie) a la frontihe ouest(CEGEP Vieux-Montreal). Chaque ecole estdotee d'un Conseil d'administration composede dix-neuf membres. Quatre membres sontnommes par Ie corps professoral, deux par lesetudiants et quatre autres par les parents deseleves. Des neuf aUO-es membres, cing sontnommes apres consultation avec des groupesoeuvrant dans la communaute arin de pennet­tre la plus grande participation possible du pu­blic; Ie principal et Ie doyen academigue ainsique deux membres choisis par les directeurs ci­haut completent Ie conseil.

Un autr-e fait notable est survenu depuis lareorganisation: on a institue en 1976 un autretype de programme d'etudes techniques. Enellet, cette annee-Ia, on a mit sur pied I'Ecolede Technologie Superieure, une institutionpouvant decerner un grade en technologic quiest rattachee a l'Universite du Quebec. Lesdeux premieres annees du cours comprennentles memes matieres que Ie CEGEP mais latroisieme annee est une annee de specialisationpour I'obtention du grade de bachelier. En1981, trente-huit des etudiants auxqucls I'insti­tution a decerne un grade etaient en technolo­gie electrique.

Les colleges des arts appliqueset de technologie en OntarioEn octobre 1965, la legislature ontarienne pas­sait une loi qui permettait la creation decolleges des arts appliques et de technologiepartout dans la province oli il existerait un be­soin local pour une education superieure autreque celie offerte dans les universites. La lois'appliquait a la majorite des colleges commu­nautaires, saul' Ryerson qui etait devenu I'Insti­tut Polytechnique Ryerson en raison de sontitre unique de: "-mere et pere de tous les ins­tituts provinciaux de technologie a l'exceptionde Lakehead." (Cite dans Ie traite de GordonCampbell sur les colleges communautair-es auCanada). C'est pourquoi la poussee vigoureusepour un systeme plus comprehensif cl'educa­tion technique en Ontario porta ses fruits

159

Page 178: Electricity - The Magic Medium

TABLE IV-ADVANCED TECHNICALINSTITUTES OFFERINGELECTRICAL ORELECTRONIC PROGRAMS

What's Coming?Some predict that the enrollment explosionwill escalate, especially in the community col­leges, pointing out that there is an increasingneed for more technical expertise in the micro-

Technologists and Technicians:Part of the Engineering TeamIn the final analysis, technicians, technologistsand engineers work hand in hand. As a Julyheadline for the Engineering Manpower Newsfairly screamed: "Technologists and Techni­cians-Part of the Engineering Team." We areall part of the same tree, as evidenced by ourcommon roots. Hence there was little surpriseto find Fred Heath, Manager for IEEE Region7, together with Heinz Peper, who conceivedthe idea, assisting at the ceremollial start ofconstruction for the Electrical Skills Develop­ment Centre at Conestoga College of AppliedArts and Technology in April, 1984. This willbe our newest addition to the technical C()llegegroup.

1980

73

1970

56

1960

II

1948

5

1940

2

1916

2

lishments: Royal Military College at Kingston,Ontario; College Militaire de Saint-Jean, Que­bec; and Royal Roads Military College in Victo­ria, British Columbia. This last is perhaps themost interesting since it is the only college inCanada to occupy a castle. The main buildingwas completed in 1908 as a castle by the Hon­ourable James Dunsmuir, who was at one timethe premier of British Columbia, but laterserved a three year term as its Lieutenant-Gov­ernor. Hatley Castle was constructed fromlocal stone in the form of a castle as impressiveon the outside as in the interior appointments.Rosewood and oak panelling, massive fire­places, teakwood flooring and huge Victorianlighting fixtures combine to give it a sophisti­cated old world elegance. In 1940 the estatewas sold to the Dominion Government as aNaval Training Academy, and shortly thereaf­ter, in early 1941, it was commissioned as RoyalRoads. Since then it has become a two year posthigh school college which also acts as a pre-en­gineering school, as well as a school of technol­ogy serving the armed forces.

The Expanding Call forTechnical Education

Niagara in Weiland constituted the first groupin 1966. The following year saw the formationof Cambrian, Conestoga, Durham, Fanshawe,George Brown, Humber, Loyalist (whichstarted as a satellite campus of Sir SandfordFleming), Northern St. Clair, St. Lawrence,Seneca, Sheridan and, of course, Sir SandfordFleming.

Other provinces were also responding to thecall for more cohesive and comprehensivetechnical education beyond the high schoollevel. Nova Scotia Technical Institute began in1961, as did the Northern Alberta Institute ofTechnology. Newfoundland's College ofTrades and Technology started in 1963, alongwith the Saint John Institute of Technology,and the Manitoba Institute of Technology,later to become Red River Community Col­lege. Schools of technology sprang up acrossthe country: and as they increased in number,the numbers of their graduates increased like atidal wave, to fulfill and more than surpass theexpectations of even the most optimistic sup­porters.

While the engineering schools have beenstuggling to accommodate their ever increas­ing numbers, so too have the schools for engi­neering technologists. Table IV shows that,from a handful of schools across the country afew decades ago, the number of these schoolshad increased to seventy-three by 1980. Sorapid has been the expansion that standardshave been ignored by all but the schools them­selves until only recently. Now there is concernto establish uniform standards across thecountry, much in the same manner as thatprocess adopted by the Canadian Council ofProfessional Engineers, which, through itsagency, the Canadian Accreditation Board, en­sures that all engineering programs meet orexceed the standards established by the Coun­cil. In Ontario alone the number of studentsregistered in three-year CAA1"s electrical orelectronic programs in 1975-6 was 1534, with afurther 732 in the four year program at Ryer­son. At the same time the number of regis­trants in the three-year CEGEP's program inQuebec was 3593. By 1980-1 these numbershad grown to 2082, for Ontario, with an addi­tional 860 in Ryerson, and 7189 in Quebec.The total electrical/electronic enrollment inCanada had reached 13177.

The final note in the saga of technologyschools concerns three notable military estab-

Page 179: Electricity - The Magic Medium

Les technologistes et lestecnniciens: membres deR'equipe <dies ingenietuilrsEn derniere analyse, les techniciens, les tech­nologistes et les ingenieurs travaillent de pair.Comme l'en-tete dans un numero de 'Enginee-

1940

2

1916

2

La derniere episode dans I'histoire des ecolesde technologie se rapporte ~l trois etablisse­ments militaires dignes de mention: Ie CollegeMilitaire Royal, a Kingston, en Ontario; IeCollege Militaire de Saint-Jean, au Quebec; etIe ColIege Militaire de Royal Roads, a Victoria,en Colombie Britannique. Ce dernier est peut­etre Ie plus interessant etant donne qu'il est Ieseul college au Canada a occuper un vraichateau. Le batiment principal a ete acheve en1908 sous la forme d'un chateau seion lesdesirs exprimes par I'Honorabie James Duns­muir, Ie proprietaire, qui avait ete, a unmoment donne, Ie Premier Ministre de la Co­lombie Britannique et plus tard Ie Lieutenant­Gouverneur de la meme province pendanttrois ans. Hatley Castle a ete construit avec dela pierre de la region dans Ie style d'un chateauqui est aussi impressionnant en dehors queI'amenagement l'est en dedans. Des lambris enbois de Chypre et en bois de chene, des che­minees geantes, des parquets de teck et d'im­menses lustres victoriens, Ie tout lui donnantun air d'elegance artificielle des vieux pays. En1940, la propriete fut vendue au Gouverne­mellt du Canada pour en faire une Academiede formation pour la Marine. Peu de tempsapres, au debut de 1941, clle devint Ie CollegeMilitaire de Royal Roads. Depuis, on en a faitun college qui offre un programme d'etudesde deux ans post-secondaire et preparatoire aucours de genie. Le college est aussi une ecolede technologie pour les forces armees.

cours de quatre ans a Ryerson. Pour la memeannee, 3593 etudiants etaient inscrits au coursde troisans dans les CEGEP du Quebec. En1980-1 ces chiffres etaient passe a 2082 en On­tario en plus des 860 a Ryerson et a 7189 auQuebec. Le nombre total d'inscriptions en elec­tricite/electronique au Canada avait atteint13177.

TABLlEAU IV-INSTITUTS DlETECHNIQUE AVANCJEEOFFRANT DES COURSD'ELECTRICITE ETD'ELECTRONIQUE

1948 1960 1970 1980

5 11 56 73

quand, en 1965, on institua, pour Ie moment,dix colleges dont quatre donnaient des coursen technologie eIectrique ou electronique.Comme dans les ecoles du Quebec, ces collegescommunautaires absorberaient les ecoles exis­tantes partout OU ce serait faisable. Algonquin,a Onawa, Centennial a Scarborough, Confede­ration ~I Thunder Bay, et Niagara a WeIlandformaient Ie premier groupe en 1966. L'anneesuivante, on proceda a l'etablissement de Cam­brian, Conestoga, Durham, Fanshawe, GeorgeBrown, Humber, Loyalist (qui etait au debutun campus satellite de Sir Sandford Fleming),Northern St.Clair, St. Lawrence, Seneca, She­ridan et, bien entendu, Sir Sandford Fleming.

I./enseignement technique sen:~pand ailleullrsD'autres provinces aussi repondaient a la de­mande pour une education technique pluscoherente et plus complete au-dela du niveausecondaire. l'Institut Technique de Nouvelle­Ecosse ouvrit ses portes en 1961 ainsi que 1'I ns­titut de Technologie du nord de I'Alberta. LeCollege des Metiers et de Technologie a Terre­Neuve commenl;a ses cours en 1963, de memeque l'Institut de Technologie de Saint-John etl'Institut de Technologie du Manitoba qui de­viendra plus tard Ie College communautaire deRed River. Les ecoles de technologie apparu­rent partout au pays, et, a mesure que leurnoml)l'e augmentait, Ie nombre de dipl6mesmonta comme un raz de maree remplissant oumeme depassant de beaucoup les esperancesdes partisans les plus optimistes.

De meme que les ecoles de genie eurent aluner pour combler les besoins du nombre tou­jours croissant d'etudiants, les ecoles de tech­nologie ont aussi eu a lutter pour les memesraisons. On voit au tableau IV que, de lapoignee d'ecoles que I'on trouvait disperseesde par Ie pays, a peine quelques decennies plust6t, Ie nombre de ces ecoles etait passe a soixa­nte-treize en 1980. La proliferation a ete si ra­pide que tout Ie monde avait oublie les normesa suivre saul' les ecoles elles-memes jusqu'a toutrecemment. Le temps etait donc venu d'etablirdes normes uniformes a travers Ie pays, un peude la meme fal;on que Ie procede adopte par IeConseil canadien des Ingenieurs profession­nels, qui, par l'entremise de son agence, Ie 'Ca­nadian Accreditation Board', s'assure que tousles cours de genie rencontrent ou excedent lesnorOles decretees par Ie ConseiI. Dans la seuleprovince d'Ontario, il y avait en 1975-6, 1534etudiants inscrits aux cours de trois ans d'elec­tricite et d'electronique donnes dans lesCAAT, en plus des 732 etudiants inscrits au

161

Page 180: Electricity - The Magic Medium

computer era to help adapt the machines andinterface them with their polytechnic applica­tions. Some people point to the increasing edu­cational burden on the taxpayer, crying halt touniversal access to higher education: preventenrollments from increasing. There are somewho believe the "Goals Report" of the Ameri­can Society for Engineering Education, a re­port of the sixties era in which it was predictedthat the first recognized professional degreemay soon be the master's degree. There issome evidence in both industry and universitythat this premise is becoming fact. There is cer­tainlya much higher proportion of our Ph. D'sentering industry now than ever before. Thoseof us who have observed the scene for a whilenote some small changes in attitude amongstour incoming freshmen: no longer do theycome with the same strength of purpose thatthey once did. They are frightened of the fu­ture and where technology is taking us. Once

The photos on this and the next page show part of thehands-on learning facilities at the Daniel B. DetweilerElectrical Skills Centre in Conestoga College, Kitchener,Ontario. These machines were originally manufacturedearly in the history of the electrical industry. After manyyears service in Canadian industrial plants they wereobtained by Heinz Peper who had them restored in hisshops under a federal government grant in anticipationof their use for educational purposes in the plannedDetweiler Centre (which has now become a reality). Oneof the photos shows a 40 hp motor manufactured early inthe century, alongside a present day motor of the same"capacity. Photos courtesy of Heinz Peper, ConestogaCollege, and Ontario Hydro.

162

there was an esprit de corps unshakeable as thebelief in their own destiny. Now our seniorsleave with no clear destiny in mind.

As I -work a problem on my pocket pro­grammable calculator, a problem which a fewyears ago took an entire roomful of computerto solve, I find it quite impossible to predictwhat the next great technological marvel willbe. It is tempting to make mundane predic­tions about the relative sizes of computers ortheir possible applications. But in the finalanalysis, I cannot believe that the marvel, what­ever it will be, is nearly so important as givingour students and graduates back that fresh en­thusiasm and optimism that they once had.And being an optimist I make that predictionfor the future, that the ideals of Head andDawson, those great visionaries of the past,who made it possible for engineering toflourish, will again surface, to help guide usthrough the future.

Les photos de cette page et de la page suivante montrentune partie des installations d'apprentissage du Daniel B.Detweiler Electrical Skills Centre du College Conestoga,il Kitchcner, Ontario. II s'agit des premieres machines deI'histoire de l'industrie de I'electricite. Apres plusieursannees de service dans des installations industrielles duCanada, clles ant ete acquises par Heinz Peper qui les afait restaurer dans ses ateliers grace il une subvention dugouvernement federal en vue de leur utilisation a des finseducatives au Centre Detweiler. Sur l'une de ces photos,on aprel;oit un moteur de 40 H.P., datant du debut dusiecle, pres d'un moteur moderne de meme puissance.

Page 181: Electricity - The Magic Medium

I

j

--------~------------------

ring Manpower News' Ie proclamait sanshonte: "Les technologistes et les techniciens­membres de l'equipe des ingenieurs". Noussommes taus les branches du meme arbre,comme on peut Ie voir par nos racines commu­nes. C'est pourquoi, personne n'a ete surprisde voir M. Fred Heath, directeur de la Region7 de nEEE, au cote de M. Heinz Peper, quiI'avait invite, a la ceremonie de debut de cons­truction du Centre d'Apprentissage des con­naissances requises en e1ectricite (ElectricalSkills Development Centre) au College Cones­toga des Arts Appliques et de Technologie, enavril 1984. Ce sera la plus nouvelle addition augroupe de colleges techniques.

Que reserve n'avenir?D'aucuns predisent que I'explosion des inscrip­tions va s'intensifier, particulihement dans lescolleges communautaires, faisant remarquerqu'il existe un besoin croissant pour plus d'ex­pertise technique a l'epoque des micro-ordina­teurs ahn de faciliter l'adaptation des machineset leur interconnexion avec leurs applicationspolytechniques. Certains pointent du doigtI'augmentation du fardeau educationnel surles epaules du contribuable, et reclament unefin a I'accessibilite universelle pour une educa­tion superieure: arreter l'explosion des insCl"ip­tions. D'autres encore acceptent les conclusionsdu 'Rapport sur les objectifs' (Goals Report)publie par la Societe americaine pour l'ensei­gnement du genie, un rapport sur les anneessoixante dans lequel on predisait que Ie pre­mier grade a etre reconnu comme profession­nel pourra bien etre la maitrise. On commence

acroire dans I'industrie comme dans Ie mondeuniversitaire Ie bien-fonde de cette affirma­tion. II y a certes une bien plus grande propor­tion de nos docteurs (Ph.D.) travaillant dansI'industrie de nos jours qu'il y en avait autre­fois. Ceux parmi nous qui ont observe Ie milieupendant quelque temps remarquent <Iue cer­tains. menus changements se sont produitsdans la manihe d'agir des nouveaux etudiantsde premiere annee: ils n'arrivent plus avec lameme intensite d'objectifs qU'autrefois. liscraignent pour I'avenir et Ie destin que nousreserve la technologie. Tandis que jadis, il exis­tait un esprit de corps aussi inebranlable que lacroyance dans leur propre destinee, nos finis­sants d'aujourd'hui sortent de I'universite sansbut precis en tete.

Tout en travaillant a un probleme avec rnacalculatrice de poche, un probleme qui, il y aquelques annees a peine, aurait demande unepiece entiere d'ordinateurs pour Ie resoudre,je sens qu'il est tout afait impossible de predirequelle merveille technologique nous reserveI'avenir. On est tente de faire des predictionsterre a terre sur la taille relative des Ol"dina­teurs au de leurs applications. Mais en fin decompte,je ne peux pas croire que la merveille,quelle qu'elle soit, est plus importante adefinirque de redonner a nos etudiants et a nosdiplomes l'enthousiasme et I'optimisme qu'ilsdemontraient autrefois. Et comme je suis unoptimiste, je veux predire Ie retour aux idealsde Head et de Dawson, ces grands visionnairesdu passe, qui ont tant fait pour que Ie genies'epanouisse. Que ces ideals nollS guident dansles annees a venir!

163

Page 182: Electricity - The Magic Medium

Part ThreePast, Present and Future

By Dean Gordon R. Slemon

Parts One and Two of this book have tracedthe developments in communications, powerapplications and electrical engineering educa­tion in Canada during the past 100 or soyears.

In the earliest days consumption of electricalenergy was mainly for telegraph and tele­phone communications. Later electricity wasdeveloped for lighting, heating and motivepower. At first our power systems were smalland isolated. Heavy d.c. cables emanated fromwidely scattered generating stations and sup­plied only enough energy to light up a fewstreet corners, put light into a few homes anddrive a few motors in nearby shops. Then a.c.transmission was developed and electricity wasquickly recognized for its capacity to relievethe drudgery of all Canadians and lead themto a better quality of life. By 1900 Canada'stotal generating capacity was 130,000 kilo­watts. The country's population was 5% millionand over 40% of the labor force was employedin agricultural pursuits. .

Today electrical energy uses have expandedto include radio, television, electronic controls,medical applications, computer operations,satellite communications, scientific space ven­tures and dozens of new and different pur­poses too numerous and far reaching to evensummarize. In the 1920s Canada's annual con­sumption of electrical energy per capita wasabout 550 kilowatt hours. Today it is about16,000 kilowatt hours. In the meantime our

164

population has grown to 25 million. Less than5% of our labor force is engaged in agricul­ture. More than three quarters of our peoplelive in urban centers-mostly in our 17 or 18metropolitan areas.

This phenomenal growth in consumptionhas been met by a corresponding increase inour total generating capacity of more than 670times, in this century, to approximately90,000,000 kilowatts.

During the 1990s our population is expectedto exceed 30 million with 85 to 90% living inurban centers. To provide for this furthergrowth at satisfactory standards of living,health, safety and "the good-life" we must con­tinue with the development of our capabilitiesin all fields of electrical applications. Whatlevel will our consumption of electrical energybe and where will it take us in the yearsahead?

Predicting the future is a precarious occupa­tion. While predictions are possibly interestingand intriguing to today's audience, they will al­most certainly be proven wrong. Future histo­rians will undoubtedly unearth these predic­tions for the amusement of students andreaders. On the other hand, we often tend tocreate the future that we predict. In that sense,prediction becomes part of planning and wemight well plan for the future that we wish tohappen.

Canada's wealth has been derived largelyfrom the export of raw materials from our

Gordon R.Siemon-Chairman ofAdvisory Committee (thispublication), is Dean ofApplied Science andEngineering, University ofToronto. Dean Siemon hasreceived his degrees fromUniversity of Toronto,Imperial College of Scienceand Technology-London,and University of London.He is a Fellow of theI nstitution of ElectricalEngineers, of theEngineering Institute ofCanada and of the Instituteof Electrical and ElectronicsEngineers.

Page 183: Electricity - The Magic Medium

~. -hElgA--M .................. - if q 4Ii

Troisieme partiePasse, present et avenir

Par le Doyen Gordon R. Slemon

Gordon R. Siemon, Direeteurdu Comite consultalif dupresem ouvrage, est le Doyende la faculte des Sciencesappliquees et de genie deI'Universite de Toronto. II estdiplome de I'Universite deToronto, du Imperial Collegeof Science and Technologyde Londres et de I'Universitede Londres. II eSI membreassocie de I'Institution ofElectrical Engineers, de!'Institut canadien desingenieurs et de !'IEEE.

Les deux premieres parties de ce livre ant re­lI-ace les progres accomplis dans les domainesdes communications, des applications de l'Clec­tricite et de I'enseignement du genie electriqueau Canada au cours des cent dernieresannees.

L'energie Clectrique a d'abord servi a assurerles communications telegraphiques et telepho­niques. Elle a ensuite ete utilisee pour I'eclai­rage et Ie chauffage et comme force motrice. Al'origine, les reseaux electriques etaient petitset isoles. De lourds cables a courant continutransportaient, a partir.de centrales de produc­tion tres dispersees, juste assez de courantpour eclairer quelques coins de rue et quelquesmaisons et alimenter les rares moteurs qu'onpouvait utiliser dans les ateliers du voisinage.Lorsqu'on a developpe Ie courant alternatif, ona vite realise que l'electricite pouvait soulagerles Canadiens d'un grand nombre de tachesfastidieuses et leur procurer une meilleurequalite de vie. Des 1900, la capacite de produc­tion totale du Canada etait de 130000 kilo­watts. La population du pays etait .de 5,5 mil­lions et plus de 40 pour cent de lamain-d'oeuvre travaillait dans Ie domaine del'agriculture.

Aujourd'hui, les domaines d'utilisation del'electricite se sont multiplies et comprennentla radio, la television, les auwmatismes, lamedecine, l'informatique, les telecommunica­tions par satellite, les missions scientifiquesspatiales et des douzaines d'autres domaines

qu'il est meme impossible de resumer dans ceslignes. Durant les annees 1920, la consomma­tion annuelle d'energie eIectrique par habitantau Canada s'elevait a environ 550 kilowatrheu­res. Elle atteint de nos jours quelque 16 000 ki­lowattheures, alors que notre population est de25 millions et que moins de 5 pour cent denotre main-d'oeuvre est agricole. Plus des troisquarts des Canadiens vivent dans des ag­glomerations urbaines, dotH la plupart dans les170u 18 zones metropolitaines du pays.

Pour repondre a cette croissancephenomenale de la consommation, on a aug­mente de plus de 670 fois notre capacite deproduction totale, qui est d'environ 90 millionsde kilowatts.

On prevoit qu'au cours des annees 1990,notre population depassera les 30 millions,dont 85 a 90 pour cent vivront dans des ag­glomerations urbaines. Pour maintenir uneqU\llite de vie satisfaisante pour tous les ci­wyens, nous devrons continuer de developpertoutes les sources possibles d'energie.

Quel sera alors notre niveau de consomma­tion d'energie et au en serons-nous?

II n'est pas facile de predire l'avenir. Nospredictions peuvent aujourd'hui nous paraitreinteressantes et seduisantes, mais elles ont debonnes chances de ne jamais se realiseI'. Leshistoriens des generations qui noos suivrontprendront surement un malin plaisir alesdHerrer et a en amuser leurs etudiants et leurslecteurs. Cependant, il arrive souvent que

165

Page 184: Electricity - The Magic Medium

IIII'IL..-_ __

mines, forests and farms. In the future, wemay expect increasing competition in worldmarkets for the sale of these raw materialsleading to a need for the application of themost advanced techniques of exploration,management and processing. All these dependincreasingly on electy:ical engineering methodsof instrumentation, control and computation.To maintain our position in the world econ­omy, more electrical engineering research willbe needed, both in the resource industries andin universities.

In the past, much of our electrical manufac­turing has been carried out by branch plants offoreign companies. In this process design andmanufacturing information was imported.With lowered tariff barriers, this situation israpidly changing. Electrical manubcturingcompanies in Canada must now compete in theworld market. This requires the developmentof distinctive Canadian products throughhigher levels of research, design, manufactur­ing and marketing than in the past. The plantsof multinational companies already in Canadawill increasingly have world mandate for cer­tain product lines. More Canadian companiescan be expected to enter the world marketarena, particularly in specialties which fit in theinterstices of mass markets filled by the majorworld corporations.

To some, the field of electric power may ap­pear to be fully developed and thus to have arather unexciting future. It must, however, benoted that the health and welfare of our highlyurbanized society will continue to dependheavily on the availability of plentiful, econom­ical electric power. In this sense, Canada hasbeen extremely fortunate in the past in the de­velopment of electrical energy from hydro­electric and fossil fuel sources. In addition,Canada has developed a distinctive and worldclass nuclear energy source. While the currentworld market situation remains depressed,CANDU and its successors should continue tobe strong contendel"s in the world market forfuture electric power supply. In addition, itmight be expected that small nuclear powersources would be developed for application inremote locations in the Canadian North.

Renewed attention is being given to develop­ment of large remote water power sites and re­development of smaller water power siteswhich are not yet fully utilized. Increased useof electrical instrumentation, control and com­munication techniques allow these to be fullyautomated and unattended.

It is difficult to predict if other alternatesources of electric energy, currently under in-

166

---------------------

.vestigation, will become important. Canada iscontributing substantially to world research insolar cells, but thus far they are applicable onlyin specialized circumstances. Wind power doesnot appear to be a major factor in the future,although, again, some specialized applicationsmay be appropriate. Electric power from nu­clear fusion has long been predicted but for­midable difficulties will continue for severaldecades. It is still doubtful if fusion power willcompete with electric power from nuclear fis­sIOn.

Communications has been a priority in Can­ada from the days of earliest settlement. Can­ada has established a position of world leader­ship in some markets and has the potential tostay with the world leaders producing thehardware and software for future communica­tion needs. Because of its size, relatively lowpopulation, and the remoteness of many of itscommunities, Canada is especially dependenton satellite communications. It may thereforebe expected that Canada will place continuedemphasis on the commercial development ofspace technology for communications applic<l~

tions. One of the m<00r motivations for expan­sion in communications in the future arisesfrom the desire to provide high quality educa­tion services throughout the country. To theextent that communication services are devel­oped to meet Canadian neec\s, they will un­doubtedly be applicable in external markets.

Acquisition, storage, access and processingof information of all types (beyond what hasbeen called communication in the past) has un­dergone and will continue to undergo a revo­lution undreamed of 30 years ago. The tech­nology behind this "high tech" development ispredominantly electrical and electrical peoplewill continue to be highly involved in its evolu­tion and application in offices, factories, com­merce, transportation, institution,s and homes.Canada's relatively high standard of living canbe expected to remain in the forefrontthrough developing and implementing its ownvariety of advanced technology.

Canada has one of the best health systems inthe world. Our health industry features a goodmix of public and private involvement. Muchof current health delivery involves highly so­phisticated application of instrumentation,control and computing, all of which have areasinvolved in electrical engineering. From thisbase, it should be possible to develop a worldranking medical engineering industry with sig­nificant export sales.

Canada has also developed one of the bestsystems of engineering education in the world.

Page 185: Electricity - The Magic Medium

I'homme cree Ie futur qu'il predit. Ses predic­tions font alms partie de la planification de sonavenlr.

Le Canada a en grande partie tire sa richessede I'exportation des matieres premieres tireesde ses mines, de ses forets et de son sol. Toute­fois, on peut desormais s'attendre a une con­currence accrue sur les marches mondiauxpour la vente de ces matieres premieres, desorte qu'il nous faudra mettre a profit les tech­niques d'exploration, de gestion et de traite­ment les plus perfectionnees. Or, ces techni­ques reposent de plus en' plus sur les modesd'instrumentation, de commande et de caleuldu genie electrique. Nous devrons donc, pourmaintenir notl-e position favorable dans l'eco­nomie mondiale, augmenter les activites de re­cherche dans Ie domaine du genie electrique,et ce, autant dans l'industrie que dans les uni­versites.

Dans Ie passe, une proportion importante dela fabrication d'equipements electriques au Ca­nada a ete assuree par des succursales d'entre­prises etrangeres. Les produits etaient donccon<;us a I'etranger et j'information relative aleur fabrication devait etre importee. Grace ala reduction des barrieres tarifaires, cette situa­tion se modifie rapidement. Les fabricants ca­nadiens d'equipements electriques doiventdesormais se meSUl"er a leurs concurrentsetrangers, ce qui necessite Ie developpementde produits canadiens distincts et, parconsequent, l'amelioration de nos methodes derecherche, de conception, de fabrication et demarketing. Les usines des societes multinatio­nales dej~l installees au Canada devront de plusen plus fabriquer certains produits qu'ils desti­neront au marche mondial. On peut aussi s'at­tendre a ce que davantage d'entreprises cana­diennes se retrouvent sur ce marche,notamment dans des domaines specialises dontles cn':neaux se situent entre les grandsmarches de masse domines par les grandessocietes internationales.

Aux yeux de certains, l'electricite est un do­maine deja plcinement developpe et dontl'avenir offre peu d'interet. Nous ne devonstoutcfois pas oublier que la sante et Ie bien-etl-ede nos societes fortement urbanisees conti­nuera de reposer grandement sur la necessited'une energie electrique economique et abon­dante. Le Canada a ete acet egaI'd tres favorisejusqu'a maintenant, ayant pu compteI' sur dessources d'hydro-electricite et de combustiblesfossiles amplement suffisantes. En outre, nousavons developpe une source d'energienucleaire distincte et concunentielle. En effet,malgre la faiblesse actuelle de ce marche sur Ie

plan mondial, Ie CANDU et les generations dereacteurs qui lui succedent devraient mainte­nil' leur position de force. On peut egalementprevoir que des petites centrales nucleaires se­ront developpees pour etre exploitees dans desendroits isoles du Nord canadien.

L'exploitation de grands barrageshydroelectriques dans des regions eloigneesrecommence a susciter de l'interet, de memeque Ie redeveloppement de centrales plus peti­tes dont Ie potentiel n'a jamais ete pleinementutilise. Grace ~l I'utilisation accrue des techni­ques d'instrumentation, de commande et decommunication electriques, ces centrales peu­vent etre entierement automatisees et nenecessitent aucune surveillance sur place.

II est difficile de prevoir si les energies derem placement qui font actuellement l'objet derecherches prendront de I'importance. I.e Ca­nad<l contribue largement a ]a recherche mon­diale dans Ie domaine des cellules solaires, quine peuvent cependant etre exploitees que dansdes cas bien particuliers. II en est de meme del'energie eolienne, qui, prevoit-on, n'occuperapas une place importante dans notre bilanenergetique. Meme si on lui pn':dit depuislongtemps un avenir tres i"nteressant, I'energieprovenant de la fusion nucleaire ne pounaetre exploitee avant quelques decennies et leschercheurs se heurtent encore ades difficultesenonnes. II est d'ailleurs peu probable quecette forme d'energie puisse concurrenceI'celie produite par la fission nucleaire.

Depuis ]'implantation des premieres colo­nies, les communications ont toujours cons­titue une prim"ite au Canada. Notre pays est acet egaI'd I'un des plus avances au monde etdispose de tout Ie potentiel pour devenir l'undes grands producteurs d'equipements et delogiciels de telecommunications. En raison deson etendue, de sa population relativementreduite et de l'isolement d'un grand nombrede ses communautes, Ie Canada doit en parti­culier compteI' sur les telecommunications parsatellite. On peut donc s'attendre ~l ce qu'il con­tinue de privilegier Ie developpement com­mercial de la technologic spatiaIe a des fins detelecommunications. L'une des raisons qui mo­tivelH l'expansion future de ce domaine est Ieclesir d'assurel- des services cl'education degrande qualite dans tout Ie pays. Si notre tech­nologie peut satisfaire les besoins des Cana­diens, elk pourra sans aucun doute avoir saplace sur les marches exterieurs.

La cueillette, la mise en reserve, la transmis­sion et Ie traitement des donnees sont l'objetcl'une revolution dont on n'aurait pu prevail' laportee il y a ~l peine trente ans. Or, la technolo-

167

Page 186: Electricity - The Magic Medium

It features high quality, well established gradu­ate schools and excellent engineering research,funded from both government and industrialsources. Among the engineering disciplines,electrical engineering has, in recent decades,become the largest, with increased dependenceof all engineering activities on energy, instru­mentation, control and computing. This pre­dominance of electrical engineering is ex­pected to continue. In addition, we wouldexpect a continued growth in electrical engi­neering education at the Masters and Doctor­ate levels as the research and developmentneeds of Canadian industry expand.

A major feature of electrical engineering ed­ucation in the past, was that it was the first todevelop a system approach. This kept the viewof electrical engineers broad and general. Asnew technical areas came along, electrical engi­neers readily adopted them. Examples includenuclear, computer and space technology. The

168

same pattern can be expected in the future.Electrical engineering has already infused it­self into all other engineering areas and intomost non-engineering areas. As new develop­ments, inventions and needs come along, elec­trical engineers will be there to amalgamatethem into their systems to provide better goodsand services for the public.

Canada's development during the past cen­tury has paralleled the development of electri­cal systems of all types and applications. Westand among the top few of the nations of theworld in the use of this magical medium of en­ergy. That is a predominant reason why weenjoy our high standard· of living in spite ofour relatively small size and short history. Wemay well look to an ongoing favorable and for­tunate position in the future through sustain­ing our advanced knowledge and applicationof electrical energy for the benefit of our econ­omy and our society.

Page 187: Electricity - The Magic Medium

gie qui sous-tend ce domaine de pointe estl'electricite, qui continuera a jouer un r6le depl'emier plan dans I'evolution de !'informati­que et de ses applications dans les bureaux, lesusines, les commerces, les entreprises de tI'ans­port, les institutions et les residences. Si Ie Ca­nada developpe et met en oeuvre ses proprestechnologies, il saura conserver Ie niveau de vieeIeve dont il jouit acruellemenl.

Le systeme de sante du Canada est un desmeilleurs au monde et compte un ensembleequilibre d'institutions publiques et privees.Une grande partie des activites medicales ac­tuelles necessitent I'utilisation d'instrumentshautement perfectionnes qui relevent en par­tie du domaine du genie eIectrique. II est donepossible de developper une technologic medi­cale de calibre international pouvant pennet­tre d'importantes exportations.

Notre pays possede egalement I'un des meil­leurs systemes d'enseignement du genie eIec­trique au monde. Les institutions offrant descours de troisieme cycle sont bien etablies et laqualite de la recherche, qui est financee par lesgouvernements et I'industrie, y est excellente.Parmi les disciplines du genie, Ie genie electri­que est devenue la plus importante au coursdes dernieres decennies, reposant de plus surI'enngie, I'instrumentation et I'informatique.Par ailleurs, a mesure que les besoins de I'in­dustrie canadienne en matiere de recherche etde developpement s'accroitront, on prevoit

d'augmenter de fa.;:on continue I'enseignementdu genie eIectrique aux niveaux de la maitriseet du doctoral.

L'un des traits distinctifs de I'enseignementdu genie eIectrique est d'avoir ete la premierediscipline a developper une approche systema­tique, ce qui permettait aux ingenieurs d'enavoir une vue d'ensemble. Ainsi, a mesure quede nouvelles techniques faisaient leur appari­tion, ceux-ci pouvaient rapidement les assimi­leT. C'est Ie cas par exemple du nucleaire, deI'informatique et de la technologic spatiale. Legenie electrique fait deja partie de toutes lesautres disciplines du genie ainsi que de ia plu­part des autres activites humaines. Lesingenieurs en electricite sauront done integrera leurs systemes les nouveaux progres techni­ques afin d'ameIiorer les biens et les servicesofferts au public.

Au COUl'S des cent dernieres annees, Ie Ca­nada a connu un developpement parallele acelui de l'eIectricite. II est d'ailleurs I'un desprincipaux pays du monde en ce qui concernel'utilisation de cette energie prodigieuse. C'estce qui explique principaIement notre niveaude vie eleve malgre notre population rcIative­ment reduite et notre courte histoire. Si nouspouvons continuer de compteI' sur des con­naissances et des techniques perfectionnees enmatiere d'energie electrique, I'avenir de notreeconomic et de notre societe est des plus pro­metteurs.

169

Page 188: Electricity - The Magic Medium

Part FourThe IEEE-Canadian Region

By Fred j. Heath and George G. Armitage

Division II: Industrial Applications ('17,000 members)Societies: Electrical Insulation

Industry ApplicationsInstrumentation and MeasurementPower Electronics Council

Division I: Circuits and Devices (24,000 members)Societies: Circuits and Systems

Components, Hybrids, and Manufacturing TechnologyElectron DevicesLasers and Electro-OpticsSolid-State Circuits Council

IntroductionThe Institute of Electrical and Electronics En­gineers is a world wide organization withheadquarters in New York City. Its member­ship exceeds 260,000. Although the bulk ofthese are located in the USA the Institute alsohas a large international membership.

The purpose of this society of engineers istwocfold. On the one hand it is committed topromote the advancement of the theory andpractice of electrical engineering, electronics,radio and allied practice of engineering andthe related arts and sciences. This commit­ment is achieved through meetings for the

reading and discussion of professional papersand publication of technical literature. On theother hand this sOtiety is committed to pro-

- rriote tIle advancement of the standing of themembers of the professions it serves throughsurveys and reports, collaboration with publicbodies and other societies and to the establish­ment of standards of qualification and ethicalconduct.

To fulfill its purpose throughout its verywide scope of technical interest the Institutehas established thirty-six distinct TechnicalSocieties grouped, for administration, into tenDivisions:

Fred J-Heath-Director ofCanadian Region of IEEE(I982-83) and CanadianRegion Office Manager (since1984)_ Fred Heath graduatedin Electrical Engineeringfrom University of Alberta in1938 and won a scholarshipto take post graduate studiesat the Massachusetts Instituteof Technology. Hesubsequently worked atNational Research Council inOttawa, Canadian General

-Electric and Ontario Hydroin Toronto before becomingDirector of IEEE Region 7.

Division III: Communications Technology (28,000 members)Societies: Broadcast Technology

CommunicationsConsumer ElectronicsVehicular Technology

170

Page 189: Electricity - The Magic Medium

E--·P· .. WW¥

Quatrieme partieLa region tin Canada del'IEEE

Par Fred j. Heath et George G. Armitage

Fred J. Heath, Directeur deIa Region du Canada de!'IEEE (1982-1983) et Chefdu Bureau de Ia Region duCanada (depuis 1984). M.Heath cst dipI6me en genieelectrique de rVniversite der Alberta depuis 1938 et are<;eu une bourse pourpoursuivre des etudes detroisieme cycle auMassachusetts Institute ofTechnology. II a par la suitetravaille au Conseil nationalde recherches, aOttawa, a laCompagnie GeneraleElectrique du Canada et aOntario Hydro, aToronto,avant de dcvenir Directeurde la Region 7 de I']EEE.

IntroductionL'IEEE est une organisation internationaleayant son siege social a New York. Ses effectifss'elevent a 260 000 membres, repartis 'lUX

Etats-Unis et dans plusieurs autres pays dumonde.

Cette association d'ingenieurs vise deux ob­jectifs principaux. Elle desire c1'abord promou­voir I'avancement theorique et pratique dugenie electrique, de I'electronique, de la radio­phonie ainsi que des arts et des sciences con­nexes au genie. Elle organise pour ce faire desreunions au cours desquelles sont presentes, ades fins de discussion, des documents profes­sionnels de nature technique. L'IEEE vise ega­lement I'avancement de la profession qu'ellerepresente en effectuant des enquetes et enpubliant des rapports, en collaborant avec lesorganismes publics et les autres associationsainsi qu'en fixant pour ses membres des nor­mes de competence et des regles de deontolo­gte.

En raison du large eventail de domaines quitOllchent Ie genie electrique, on a etabli trente­six societes techniques distinctes regroupees endix divisions (voir la liste ci-apres).

Chacune de ces societes prepare son propreprogramme de discussions techniques et orga­nise des reunions locales ainsi que desconferences internationales. ElIe publie egale­ment ses propres documents techniques etforme des comites provisoires en vue de reali­ser les objectifs de /'IEEE qui concernent sondomaine d'activites. Pour s'assurer que sesmembres sont au fait des nouvelIes connaissan­ces dans Ie domaine du genie eIectrique,

!'IEEE publie une grande quantite de docu­ments techniques portant sur des sujets precis.Cette information est completee par Ie maga­zine mensuel "SPECTRUM", qui est envoye atous les membres, dans plus de 130 pays, ainsiqu'a 3700 autres abonnes, principalement desbibliotheques de consultation technique.

Origines et formation de I'IEEEL'IEEE a ete fonde en 1963 et resulte de la fu­sion de deux autres organisations, I'AI EE, quiregroupait des ingenieurs americains en elec­tricite, et I'IRE, qui etait composeed'ingenieurs radio. Une breve description deces deux associations nous permettra de mieuxcomprendre les origines et Ie fonctionnementde !'IEEE.

L'American Institute of ElectricalEngineers (AlEE)En 1884, du 2 septembre au 11 octobre,une exposition internationale en eleco'i­cite avait lieu aPhiladclphie. En previsionde cet evenement, un groupe de 25 ci­toyens importants des Etats-Unis oeuvrantdans Ie domaine de I'electricite (dont Tho­mas Edison, Elihu Thompson, EdwardHouston et Edward Weston) reconnurent1a necessite d'une association nationa1e quis'occuperait d'accueillir les "savants, 1esingenieurs et les fabricants etrangers" quidevaient visiter l'exposition. C'est ainsi quefut fondee, en mai 1884, I'American Insti­tute of Electrical Engineers. La premierereunion de I'AlEE eut lieu en octobre de

171

Page 190: Electricity - The Magic Medium

Division IV: Electromagnetics and Radiation (18,000 members)Societies: Antennas and Propagation

Electromagnetic CompatibilityMagneticsMicrowave Theory and TechniquesNucIear and Plasma Sciences

Divisions V & VIII: Computers (70,000 members)Societies: Computers

Division VI: Engineering and Human Environment (17,000 members)Societies: Education

Engineering ManagementProfessional CommunicationReliabilitySocial Implications of Technology

Division VII: Energy and Power Engineering (21,000 members)Societies: Power Engineering

Division IX: Signals and Applications (21,000 members)Societies: Acoustics, Speech, and Signal Processing

Aerospace and Electronic SystemsGeoscience and Remote SensingOceanic EngineeringSonics and Ultrasonics

Division X: Systems and Control (25,000 members)Societies: Control Systems

Engineering in Medicine and BiologyIndustrial ElectronicsInformation TheoryRobotics and Automation CouncilSystems, Man, and Cybernetics

George G. Armitage-IEEECanadian Region OfficeManager from 1972 until hisretirement in 1983. GeorgeArmitage directed theorganization of the CanadianIEEE Conference in Torontoin 1971 and has promotedand coordinated specialprograms throughout theCanadian Region, He wasborn in Montreal, moved toToronto in 1936 withGeneral Dry Batter'ies,became Assistant to theManaging Director in 1940,He then successively heldmanagerial positions inseveral electrical companiesuntil he' undertook the IEEERegion 7 assignment in 1972.

Each of the thirty-six Technical Societies con­ducts its own technical discussion programwith local meetings as well as conferences onthe international scale, publishes its own tech­nical literature and establishes its own stand­ing committees appropriate to carry out thepurpose of the Institute within its assignedscope of technical interest. A great volume ofliterature focussing on specific technical fieldsis produced annually to ensure that all IEEEmembers are kept up-to-date within their in­dividual scope of specialized interests. This issupplemented by the Institute's broad cover­age monthly magazine "SPECTRUM" whichis distributed to the full membership, in morethan 130 countries around the world, and to3700 others, 85% of which are technical refer­ence libraries.

The Origins and Formation ofthe IEEEThe Institute of Electrical and Electronics En­gineers was formally established in 1963through an amalgamation of two previous or­ganizations. One of these was the American

172

Institute of, Electric Engineers (AlEE). Theother was the Institute of Radio Engineers(IRE). A brief review of these parent institu­tions sheds considerable light on the scopeand depth of the technical foundations onwhich IEEE, the amalgamated society, has de­veloped.

The American Institute of ElectricalEngineers-the AlEEIn 1884 an International Electrical Exhib­ition was held in Philadelphia from Sep­tember 2 to October 11. In anticipation ofthis event a group of 25 prominentAmericans involved in electrical technol­ogy (including Thomas Edison, ElihuThompson, Edward Houston and Ed­ward Weston) recognized the need for anAmerican national society to properly re­ceive the "foreign electrical savants, engi­neers and manufacturers" from manycountries who were expected to' attend.Their efforts resulted in the formation,during May 1884, of the American Insti­tute of Electrical Engineers. The AlEEheld its first technical session in October

Page 191: Electricity - The Magic Medium

George G. Armitage, Chef duBureau de la Region duCanada de l'IEEE de 1972jusqu'a sa retraite, en 1983.M. Armitage a dirigel'organisation de laConference canadienne del'I£EE, qui a eu lieu itToronto en 1971 et a assurela promotion et lacoordination desprogrammes speciaux de laRegion du Canada. II est ne aMonu·eal. II s'est etabli ilToronto en 1936, alors qu'ilest entre au service de laGeneral Dry Batteries, OU ilest devenu Directeur gen'eralen 1940. II a par la suiteoccupe divers postes dedirection au sein de pillsieursentreprises d'Clectricitejusqu'it ce qu'il accepte Ieposte que lui a offert nEEEen 1972.

la meme annee au Franklin Institute dePhiladelphie, durant I'exposition. On re­connut rapidement cette association aI'echelle internationale pour sa contribu­tion importante a I'elaboration de normespour la profession et l'industrie.

L'Institute of Radio Engineers (IRE)Cette association a etc fondee en 1912, a lasuite de la fusion de deux autres associa­tions, la Society of Wireless Telegraph En­gineers (mise sur pied par John Stone aBoston en 1907) et Ie Wireless Institute(fonde par Robert Marriott a New York en1909). L'IRE visait a devenir une associa­tion internationale et comptait dans sesrangs, des 1915, 83 ingenieurs habitantd'autres pays que les Etats- Unis. En 1944,un Canadien a occupe Ie poste de Vice­president de cette organisation, soitM. Ralph A. Hackbusch, du CanadianRadio Technical Board, et, en 1957, unautre Canadien a etc elu President, soit M.John T. Henderson, du Conseil nationalde recherches.

Durant plusieurs annees, I'AlEE et !'IRE sesont qeveloppes de fa~ons bien distinctes,meme si les deux associations se sont parfoischevauchees. L'AlEE etait principalementcompose de producteurs d'electricite et d'usa­gel's industriels de cette forme d'energie etI'IRE regroupait surtout des e1ectroniciens.

La seconde guerre mondiale a provoque deschangements radicaux. La technologie deI'electricite a connu des progres innombrables,qu'il s'agisse des radars, de la television, dessemi-conducteurs, de I'informatique ou deI'exploration spatiale. L'electronique a soudai­nemel1t exerce un pouvoir d'attraction impor­tant sur les etudiants en genie e1ectrique et surles personnes qui se cherchaient un emploi.

Dejil, en 1922, on avait discute de fusion et,durant les annees 1950, il devenait de plus enplus evident qu'aucune des deux associationsne representait tout Ie champ du genie electri­que et qu'il y avait souvent double emploi en cequi concerne Ie personnel, les publications etles activites techniques. Les premiers pas vel'Sla fusion ont ete franchis lorsque des etudiantsde certaines institutions qui faisaient partie desdeux associations commencerent a se regrou­per, ce qui amena les Conseils d'administrationde I'AIEE et de I'IRE a autoriser I'etablisse­ment d'associations locales conjointes d'etu­diants.

Enfin, au debut des annees 1960, 87 pourcent des membres des deux organisations se

prononcerent par referendum en faveur de lafusion. C'est ainsi que Ie 1er janvier 1963,I'IEEE etait officiellement fondee. Son Presi­dent etait M. Mernst Weber et Ie Directeur dela Region du Canada, M. John T. Henderson.

L'IEEE au CanadaL'IEEE se divise en 10 grandes Regions, dontla Region du Canada, qui est la Region 7.Comme aux Etats-Unis, la fondation de 1'IEEEau Canada a resulte de la fusion de I'AIEE etde !'IRE, qui etaient deja bien implantes aupays.

L'AlEE au CanadaL'AlEE a recrute des membres au Canadades ses premieres annees d'activites. En1903, un groupe de membres canadienss'est reuni au Engineers Club de Torontopour fonder la "Section de Toronto". En1911, une deuxieme section a vu Ie jour, itVancouver. D'autres ont ensuite etcfondees it Montreal (1943), a Niagara(1944), a Ottawa (1949) et a Hamilton(1953).

L'IRE au CanadaEn octobre 1925, une reunion a eu lieu al'auditorium des Ward Street Works de laCompagnie Generale electrique du Ca­nada, a Toronto, en vue de mettre surpied une Section du Canada de 1'IRE.Ainsi, une premiere section a vu Ie jour enjuillet 1926. D'autres sections ont ensuiteetc etablies a Montreal, en 1938, puis aLondon, Ottawa, Hamilton et Winnipegentre 1945 et 1947.

Aujourd'hui, la Region 7 de I'IEEE compte13500 membres, dont 3300 etudiants. Ellecomprend 20 sections dans les diverses zonesgeographiques du pays ainsi que 42 associa­tions locales d'etudiants dans des universites etdes colleges techniques. Les membres partici­pent aux activites des 36 societes selon leursdomaines d'interet personnels. Tous les mem­bres de la Region du Canada ont done entiere­ment acces a la bibliotheque de publicationstechniques de I'IEEE ainsi qu'aux voies decommunication mises a la> disposition desmembres de !'IEEE au Canada, aux Etats-Uniset dans d'autres pays du monde. Par ailleurs,les activites particulieres aux membres de laRegion 7 sont organisees par les 20 sections ca­nadiennes et les 42 associations locales d'etu­diants. Celles-ci encouragent les etudiants engenie apresenter des documents techniques enprevision de leur future carriere.

173

Page 192: Electricity - The Magic Medium

at the Franklin Institute in Philadelphiaduring the Exhibition and went on to be­come recognized internationally as amajor contributor in the development ofstandards for the engineering professionand the electrical industry.

The Institute of Radio Engineers­the IREThe Institute of Radio Engineers cameinto existence in 1912 as a result of amerger of two earlier societies: "The Soci­ety of Wireless Telegraph Engineers" (in­itiated by John Stone Stone in Boston in19(7) and "The Wireless Institute" (ini­tiated by Robert Marriott in New York in19(9). The new IRE expressly excludedthe wOI~d "American" to encourage devel­opment of an international ·society. By1915 the membership included 83 engi­neers from eleven countries outside ofthe United States. By 1944 there was aCanadian Vice-President of this interna­tional organization, in the person ofRalph A. Hackbusch, of the CanadianRadio Technical Planning Board, and in1957 another Canadian was elected Presi­dent: John T. Henderson, of the NationalResearch Council.

For many years the AlEE and IRE grewand prospered side by side with some overlap­ping but with clearly separate identities andcenters of interest. The AlEE came to beoriented towards the electric utilities and in­dustrial users of "electrical power" while theIRE became chiefly an "electronics" society.

With World War II drastic changes oc­curred. Electrical technology began to moverapidly in many directions. Radar, television,solid state electronics, computers and spaceexploration burgeoned. Electronics suddenlybecame the more glamourous attraction forelectrical engineering students and jobseekers.

To merge was an old idea, having been dis­cussed as early as 1922. During the 1950s itbecame more and more evident that neitherof these two major societies represented thefull breadth of electrical engineering andthere was considerable duplication of head­quarters staff, publications and technical activ­ities. The first steps towards amalgamation oc­curred on some of the college campuseswhere Student Branches of AlEE and IREbegan to join together. So the two institutesauthorized Joint Student Branches.

174

Then, during the early 1960s, a referen­dum was conducted and 87% of the votingmembers of each organization was in favor ofa merger. On January I, 1963, the Institute ofElectrical and Electronics Engineers was offi­cially formed. The President was Dr. ErnstWeber and the Director of the Canadian Re­gion (Region 7) was Dr. John T. Henderson.

The IEEE in Canada-Region 7The world wide organization of I EEE is geo­graphically divided into 10 Regions. One ofthese is the Canadian Region designated asRegion 7. As in the U.S., the founding ofIEEE in Canada stemmed from the formerAlEE and IRE Institutes-both of which haddeep roots across this country for many yearsbefore the amalgamation.

AlEE in CanadaThe American Institute of Electrical En­gineers included Canadian membersfrom its very early years. Following anumber of precedents in the U.S. a groupof Canadian members of AlEE met in1903 at the Engineers Club in Torontoand established the "Toronto Section". In1911 the second AlEE Section in Canadawas established by a-grou p in Vancouver.This was followed by Sections in Montreal(1943), Niagara (1944), Ottawa (f949)and Hamilton (1953).

IRE in CanadaAn organizational meeting for establish­ing a Canadian Section of the IRE washeld in October 1925, in the auditoriumof the Ward Street Works (Toronto) ofCanadian General Electric Company.This resulted in the first Canadian Sec­tion of IRE in July ]926, followed by asecond in Montreal in 1938 and thenother Sections in London, Ottawa, Hamil­ton and Winnipeg during 1945 and 1947.

Today IEEE Region 7 membership standsat 13,500 including 3300 students. There are20 Sections by geographic location across Can­ada and 42 Student Branches among the. vari­ous universities and technological schools.These members participate in the technicalactivities of the 36 Societies according to theirpersonal technical interests. Thus each Cana­dian Region member has full access to the tre­mendous IEEE technical library of publica­tions and open channels of communication toIEEE members across Canada, the UnitedStates and countries around the world. At thesame time, the particular Canadian interests

Page 193: Electricity - The Magic Medium

/.

/ "-- -------------------------------

La Region 7 est administree entierement partrois conseils, I'executif regional et Ie bureauregional, situe a Toronto. Tous travaillent en­semble et restent en contact avec !'IEEE sur Ieplan international par l'intermediaire du bu­reau du Directeur de la Region 7, qui est elupour un mandat de deux ans.

Les fonctions du bureau central de 1'1 Region7 sont les suivantes: aider les sections canadien­nes et les associations locales d'etudiants dans)'accomplissement de leurs activites techniques,assurer la liaison entre les membres canadienset Ie siege social de I' IEEE et servir de centre dedistribution au Canada pour les catalogues denormes de l'IEE£.

A I'interieur des diverses societes techniques,des rapports etroits se sont developpes aucours des annees entre les membres de taRegion 7 et leurs homologues des Etats-Unis etd'autres pays qui ont des interets semblables.C'est ainsi que les sections canadiennes ont puetre les hbtes de plusieurs conferences qui sesont tenues dans des villes du pays. Dix de cesconferences ont eu lieu au Canada en 1984,soit ;1 Montreal, ;1 Winnipeg, ;1 Toronto et aHalifax. Dix autres ont ete prevues pour 1985,it Vancouver, Kingston, Banff, Montreal, ValDavid et Toronto.

Certaines de ces conferences comprennentplusieUl"s seances OU sont presentes une cen­taine de documents et qui attirent parfois plusde 1000 participants. D'autres sont moins im­portantes et prennent plutbtla forme d'ateliersou de symposiums. II en resulte un echangeinestimable d'information entre les membres,qui proviennent de regions diverses et qui ontdes interets communs.

La· Region 7 administre deux programmesexclusivement canadiens, qui ont un vif succesaupres des membres, soit une serie deconferences et d'expositions ainsi que l'etablis­sement de centres d'etudes McNaughton pourl'IEEE. Ce compte rendu sur les activites de!'iEEE au Canada ne serait pas complet sansune description de ces programmes.

Conferences canadiennesCe programme comprend deux series deconferences. L'une est organisee ;1 To­ronto, sous Ie titre "ELECTRONICOM",et I'autre it Montreal sous Ie titre"CONFERENCE SUR LES COMMUNI­CATIONS ET L'ENERGIE". Elles antlieu en alternance tous les deux ans dansles deux villes.

Ces conferences ont a I'origine ete te­nues par I'IRE. Entre 1956 et 1959, ellesont eu lieu annuellement sous Ie titr-e"IRE Canadian Convention" et ont ete

presidees par MM. C.A. Norris, GeorgeSinclair et Eric Palin. Elles sont ensuitedevenues plus importantes et compre­naient aussi une exposition. (:'est a partirde ce moment qu'elles ont ete tenues ittous Ies deux ans. A partir de 1961, ellesont porte Ie titre "Canadian ElectronicsConference" jusqu'en 1967, alors qu'ellesfurent rebaptisees "The InternationalElectrical, Electronics Conference andExposition". Les conferences ont eu lieudans I' Automotive Building, sur les ter­rains de l'Exposition Nationale Canadienne,jusqu'en 1983. Par aileurs, celie de 1985portera Ie titre "Electronicom 85" et auralieu au Metropolitan Toronto ConventionCentre. Le programme prevoit la presenta­tion de 168 documents a I'interieur de 19seances techniques de merne que quatreseminaires et trois ateliers. Plus de 240 ex­posants y participeront et on attend entre15 000 et 20 000 personnes.

La Conference de Montreal sur lescommunications et I'energie a lieu tous lesdeux ans depuis 1960. Jusqu'en 1982, elks'est tenue a I'hotel Reine Elizabeth. En1984, elle a eu lieu au nouveau Palais descongrcs, ce qui a pe,'mis d'y integrer unedeuxieme conference, sur les controleurslogiques programmables. Elle a alorsattire plus de 3 000 personncs et amene laparticipation de 121 exposants. Le pro­gramme tcchnique a donne lieu ~l lapresentation de 42 documents de discus­Sion.

Le succcs des conferences de Torontoet de Montreal a incite les membres cana­diens de I'IEEE a tenir des conferencessemblables dans cf'autres viBes du pays.Un comite consultatif regional a eteforme ;i ccUe fin et des conferences sontdej;l pt-evues a Hamilton, Vancouver etEdmonton.

Les cen1l:res d'etudes McNaughtonde I'IJElEEAu cours de l'annee scolaire 1977-1978,un fait important pour l'IEEE s'estderoule a l'Universite du Manitoba. L'uni­versite a en dIet mis ~1 la disposition desetudiants membres de I'IEEE un labora­toire vacant. Avec Ie soutien du Directeurregional, M. Edward F. Glass, de la societeWestinghouse Canada Inc., on a persuadela section de Winnipeg de I'IEEE de four­nir des fonds. On a alors cree de nouvellesinstallations pour la pOLll'suite des satelli­tes, I'etude dcs rnicroprocesseurs et lacommunication par radio.

175

Page 194: Electricity - The Magic Medium

and actIvItIes of Region 7 members are con­ducted through the 20 Canadian Sections and42 Student Branches. These StudentBranches encourag'e engineering students togain' expel-ience in the presentation of techni­cal papers in preparation for their future ca­reers.

Region 7 in total is administered throughthree geographic Councils, the Regional Exec­utive, and the Regional Headquarters Officelocated in Toronto-all working together andin liaison with IEEE internationally throughthe office of the Region 7 Director who iselected for a two year term.

The functions of Region 7 HeadquartersOffice are to: assist the Canadian Sections andStudent Branches in their technical activities,provide coordinated liaison between theCanadian Membership and IEEE Head­quarters, and act as the Canadian DistributionCenter for IEEE Standards publications.

Within the various Technical Societies aclose liaison has developed over the years be­tween members in all parts of Region 7 andtheir counterparts in the U.S. and other coun­tries who have parallel technical interests. As aresult of these doseworkingrdilJionshipsourCanadian Sections have successfully attractedconference sessions of many of the technicalsocieties to Canada's fine convention cities.During 1984 there were 10 such internationalconferences held in Canada: Montreal, Winni­peg, Toronto and Halifax. For 1985 another10 international conferences are planned, tobe held in: Vancouver, Kingston, Banff, Mon­treal, Val David and Toronto.

Some of these conferences are the large,formal type with many sessions to include ahundred or so papers and with expected at­tendances sometimes exceeding 1000. Othersare smaller gatherings of the workshop orsymposium types. In all cases the result ishighly valuable exchange of technical studyresults between members from widely sepa­rated locations with closely linked technicalexperience and interest.

Two very special and highly.successful Re­gion 7 programs, uniquely Canadian, are (a) aseries of conference-exhibitions and (b) devel­opment of the IEEE McNaughton .LearningResource Centers. Our account of IEEE inCanada would not be complete without somedescription of these two outstanding pro­grams.

The Canadian ConferencesThere are two series involved in this pro­gram. One is the Toronto series, cur­rently called "ELECTRONICOM 85"

176

The other is the Montreal series calledthe "CONFERENCE ON COMMUNI­CATIONS AND ENERGY". They run al­ternate years in the two cities.

The Toronto Conference originatedback in the days of IRE. It was held an­nually fronl 1956 to 1959 under thename "IRE Canadian Convention",chaired successively by C.A. Norris,George Sinclair and Eric Palin. It thengrew into a large conference and productexhibition staged every second yea r.From 1961 it was named "Canadian Elec­tronics Conference" until 1967 when itwas renamed "The International Electri­cal, Electronics Conference and Exposi­tion". The Conference was held in theAutomotive Building at the Canadian Na­tional Exhibition grounds until 1983. The1985 Conference is to be under the newname of: "ELECTRONICOM '85" and isto be held in the new MetropolitanToronto Convention Centre. Theplanned program includes 168 papers tobe presented in 29 technical sessions andalso four seminars and three workshopsessions. Over 600 exhibit spaces will beoccupied l5y240 exhibitors: Attendance-is.expected to be between 15,000 and20,000.

The Montreal Conference on Com­munications and Energy has been held onalternate years since 1960. Until 1982 itwas held in the Queen Elizabeth Hotel. In1984 it was moved to the new MontrealPalais des Congres which provided theopportunity to expand and include, inconjunction with the Communicationsand Energy discussion, a second Confer­ence on Programmable Logic Controllers.The combined conference drew an atten­dance in excess of three thousand to thedisplays of 121 product and system exhib­itors as well as the technical programwhich included 42 papers and discus­sIons.

The success of the Toronto and Mon­treal Confel'ences has opened the way forother conferences in other Canadiancities with a Regional Advisory Commit­tee established to provide co-ordination.Such conferences are already planned forHamilton, Vancouver and Edmonton.

The IEEE McNaughton LearningResource CentersA significant deVelopment OCCUlTed dur­ing the 1977-78 academic year at the U ni­versity of Manitoba in Winnipeg. The

Page 195: Electricity - The Magic Medium

M. Glass venait alors toutjuste de ter­miner la lecture de la biographie de M.Andrew G.L. McNaughton, un general deI'armee canadienne durant la sccondeguerre mondialc et I'invcnteur du radio­goniomctre cathodique. A la suggestionde M. Glass, Ie nouveau centre a ete Oftl­ciellement nomme, en 1979, Ie "Univer­sity of Manitoba IEEE McNaughton Lear­ning Center".

On a vite reconnu tout Ie merite deI'expcrience de Winnipeg. Le Conseild'administration c1e \'International Elec­trical, Electronics Conference and Exposi­tion (I EEC & E) a ainsi decide d'y appor­ter son soutien et a offen des fonds ad'autres etucliants de la Region 7' afinqu'ils puissent creer de nouveaux centresd'etudes du meme type. II existe mainte­nant 10 centres McNaughton et d'autressont en voie de planification.

La region du Canada de I'lEEE ainsique Ie Conseil d'administl-ation de I'IEE,C& E croient que ces centres comportentdes avantages inestimablcs pour 1'IEEE etla profession du genie au Canada.

lPll''llX JIIEIEIE~lRegii({»lIll ohm Cffill1l:ill(dlffiLa Region c1u Canada administre un pro­gramme d'attribution de recompenses des­tinees a des etudiants et a des membres del'IEEE.

Quatre bourses, accompagnees d'un certifi­cat soulignant I'excellence des documents tech­niques presentes en competition, sontdecernees a des etudiants: les bourses Ralph A.Hackbusch (premier et c1euxieme prix) et lesbourses EI'ic Palin (premier et deuxieme prix).Dans les deux cas, les gagnants sont egalementadmissibles a une autre bourse de \'IEEE, fi­nancee par les contributions des membres aVIC.

Trois prix sont par ailleurs attribues 'lUXmembres. II s'agit de medailles d'argent souli­gnant la contribution cxceptionnellc d'unmembre de chacun des trois conseils represen­tant les n~gions de l'Est, du Centre et de )'Ouestdu Canada.

La recom pense la plus prestigieuse offertepar la Region du Canada est une medaille d'or,la Medaille McNaughton, qui est accordee an­nuellemcnt a un Canadien ayant contribue defac;:on exceptionnelle ;1 I'avancement de la pro­fession du genie au Canada. Les realisations c1uGeneral Andrew G.L. McNaughton de memeque celles des 16 recipiendaires de cette recom­pense depuis 1969 demontrent l'importance

de ce pnx. Nous vous presentons une brevedescription de ces realisations.

IlRe§lUlme de Rffi lbiiogJraljplJilliie dlUlGelIlleJralR Md\JallUlgJill\tOlIllDans !'esprit de la plupart des gens, Ie GeneralAndrew G.L. McNaughton fut un militaire quidevint ensuite ministre de la Defcnse au seindu Cabinct fecleral. Mais peu connaissent sesnombreuses autres realisations.

M. McNaughton a fait ses etudes ~I I'Univer­site McGill, Oll il a obtenu une maitrise ensciences et une licencc cn genie electrique.C'est a lui qu'on doir l'invention du radiogo­niomctre cathodique, qui est I'ancetre directdu radar.

Durant Ies annees 1930, avec !'enthousiasmequi caracterisait toutes ses actions, Ie General aassure la place du Canada dans Ie monde del'aviation civile, represente Ie pays a d'impor­tantes conferences du Commonwealth etetabli, a l'intention des chomeurs, des campscle travail administres par la Defense nationale.Les travaux accomplis a ces camps permirentI'etablissement d'un rescau d'aerodromes et lacreation subsequente des Trans Canada Air­lines.

En 1935, M. McNaughton devint Presidentdu Conseil national de rechcI;chcs, poste qu'iloccupa jusqu'au dehut de la seconde guerremondiale, ~l laquelle il a participe.

En 'lotH 1945, il fut nomme President de lasection canadienne du Conseil canado-ameri­cain permanent de la defense.

En 1946, il fut non seulement designe pourrepresenter Ie Canada ~l la Commission deI'energic atomique des Nations Unies, mais ilfut egalement nomme President de la Commis­sion de contnJle de l'energie atomique du Ca­nada.

En janvier 1948, on lui confia Ie poste dedelegue permanent du Canada aux NationsUnies et de representant du Canada au Conseilde securite.

En 1950, M. McNaughton devint Commis­saire de la Commission mixte internationale,dont il rut nomme, peu apres, Ie President ca­nadien. Durant les douze annees de presidencedu General, la Commission elabora des projetsimportants d'ingenierie, notamment Ie deve­loppement clu fleuve St-Laurent a des fins deproduction d'energie et de navigation, I'exploi­tation du fleuve Columbia a des fins energeti­ques et I'etablissement d'une centrale maremo­trice internationale dans la baie dePassamaquody.

Durant toute sa vie, M. McNaughton ademontre ses grandes qualites de diplomate,

177

Page 196: Electricity - The Magic Medium

r----------~--- --- -- -- -- --- -----------------------------------------

University made available a vacant labora­tory for the ,use of the IEEE StudentBranch. With' encouragement from Re­gion Director Edward F. Class of Wes­tinghouse Canada Inc., the WinnipegSection of IEEE advanced funds. A newfacility for satellite tracking, microproces­sor study and personal ham radios wascreated.

Regional Director Ted Class had justread a biography of Andrew C.L.McNaughton, World War II Canadianarmy general and inventor of the cath­ode-ray direction finder. At Class's sug­gestion the new student facility was offi­cially designated, in 1979, as "TheUniversity of Manitoba IEEE

McNaughton Learning Center".The experiment in Winnipeg was

quickly recognized for its merit. TheBoard of Directors of the InternationalElectrical, Electronics Conference andExposition (IEEC & E) decided to add itssupport and offered funds to other Re­gion 7 Student Branches for establishingmore IEEE McNaughton Learning Re­source Centers. Now there are 14 suchcenters and more are being planned. TheCanadian Region of IEEE and the Boardof Directors of IEEC & E hold the firmbelief that these centers provide valuablebenefits for the Institute and the engi­neering profession in Canada.

Organizers of Canadian lEEE Conferences-TorontoSeries: 1985 I EEE Canadian Region Director, formerConference Manager, and the various Chairmen 1956 to1985.

Les organisateurs des conferences canadiennes de !'IEEE,11 Toronto: Ie Directeur de la Region du Canada de 1985,l'ancien Directeur des Conferences et les differentspresidents qui se son! succedes de 1956 il 1985.

Left to Right, standing: Wm. M. Lower, Barry B. Hercus, George G. Armitage, Hugh]. Swain, Dr. Rudi deBuda, Miro G. Forest, Dr. Wm. (Bill) V.Tilston, Clive Eastwood, Herb W. Jackson, Doug M. HilltonLeft to Right, sitting: Wally S. Read, Fred J. Heath, L. Claude Simmonds, Clare A. Norris, Dr. Geo Sinclair, Grant Smedmor.Inset: Eric L. Palin

178

Page 197: Electricity - The Magic Medium

de scientifique et d'homme politique. En outre,il a, durant plusieurs annees, participe active­ment ~I I'Claboration de la plupart des grandsprojets nationaux en matiere de genie.

En raison de sa contribution si importante a

I'avancement de la profession du genie au Ca­nada, nous sommes fiers de remettre en sonhonneur la Medaille McNaughton a desingenieurs canadiens qui se sont distinguesdans I'exercice de leur profession au pays.

General A.C.L. McNaughton

© Karsh, Ottawa/Miller Services

179

Page 198: Electricity - The Magic Medium

IEEE Awards-CanadianRegionFinally we call attention to the program ofIEEE Awards within the Canadian Region.

At the student level there are four mone­tary awards with supporting certificates fortechnical papers submitted for competition:the Ralph A. Hackbusch (first and secondprize) awards and the Eric Palin (first and sec­ond prize) awards. In each case the winningpapers are also eligible for further submissionfor an IEEE award which is funded by contri­butions from life members of the Institute.

At the membership level there are threeawards. These are the merit awards for out­standing contI'ibutions within each of thethree Council areas: Eastern Canada, CentralCanada and Western Canada Councils. Theseare silver medal awards available an~ually.

The most prestigious award within theCanadian Region is a gold medal and certifi­cate, the McNaughton "Medal, which is avail­able each year for presentation to a Canadianin recognition of important contribllt~ons tothe engineering profession in Cinada. Theimpol'tance of this award is reflected both bythe achievements of General Andrew G.L.McNaughton and the achievements of the 16recipients si"n<;e 1969. Both are described in apamphlet issued by Region 7 and repeatedhere.

Biographical Sketch of GeneralMcNaughtonGeneral Andrew G. L. McNaughton is re­membered by most people as a military manwho later became a member of the Canadiancabinet, assuming the post of Minister of De­fence. His many other contributions to Can­ada are not realized.

McNaughton was a graduate of McGill Uni­versity, holding the degree of Mast~r ofScience, with Honours in Electrical Engll1eer­ing. His interest in science resulted in the in­vention of the cathode-ray direction finder­the direct forerunner of radar.

In the 1930's, with the characteristic enthu­siasm he devoted to all his undertakings,he secured Canada's place in civil aviation,represented Canada at several importantCommonwealth conferences, and establishedarmy-administered work camps for the unem­ployed. Work done at these work campscreated a network of air fields which enabledthe creation of Trans Canada Airlines.

In 1935, he became president of the Na­tional Research Council, where he remained

180

until the second World War drew him into ac­tive duty again.

In August of 1945, McNaughton wasnamed Chairman of the Canadian Section ofthe Canada-United States Permanent JointBoard on Defence.

In 1946, he was appointed not only theCanadian representative to the United Na­tions Atomic Energy Commission, but also,President of the Atomic Energy ControlBoard of Canada.

In January of 1948, McNaughton was ap­pointed permanent delegate of Canada to theUnited Nations and a representative of Can­ada on the Security Council.

In 1950, McNaughton became a Commis­sioner of the International Joint Commissionand shortly after, became its Canadian Chair­man. During his twelve year tenure of this po­sition, the IJC considered, among othel- majorengineering projects, the development of theSt. Lawrence River for power and navigation,the best use of the Columbia River for powerin the west and the international tidal~power- ­potentialinPassamaguody Bay.

Over his lifetime, McNaughton demon­strated beyond refute his abilities, as a diplo­mat, a scientist and a politician. Over a periodof many years, he was deeply involved with amajority of all national engineering decisions.

His contributions have been of such impor­tance to the engineering profession -in Can­ada, that we are proud to present theMcNaughton Medal, in his honour, to out­standing Canadian engineers in recognition ofimportant contributions to the engineeringprofession in Canada.

MeNaughton Medal Recipients1969 John T. Henderson

"Fo"r leadership as head of the Elec­trical Engineering Laboratory at theNational Research Council of Can­ada."

1971 Thomas Ingledow"For imaginative leadership in thefield of electrical engineering, partic­ularly in the development of auto­matically controlled thermal andhydro-electric genuating plants andextra high voltage transmission sys­tems."

1972 Alphonse Ouimet"For his exceptional contribution,technical and social, in the establish­ment of Canadian broadcasting andtelevision services."

Page 199: Electricity - The Magic Medium

ReciijpliieillldZlRJre§ de llZl MedZlRHeMeNZllUlgllil1t<o>illl1969 John 1'. Henderson

"Pour ses qualites en tarH que Chef eluLaboratoire de genie electrique auConseil national de recherches du Ca­nada."

197\ Thomas Ingledow"Pour son r61e exceptionnel de chefde file dans Ie domaine du genie elec­trique, notamment en ce qui concerneIe developpement de centrales ther­miques et hydrauliques autornatiqueset de systemes de transport a treshaute tension."

1972 Alphonse Ouimet"Pour sa contribution exceptionneIle,sur lcs plans technique et social, aI'etablissement de services de radio etde television au Canada."

\9,73 Hector.J. McLeod"Pour son r6Je de pionnier dans Ie do­maine de l'enseignement du genieeIectrique dans I'Ouest clu Canacla."

1974 Robert H. Tanner"Pour sa contribution remarquabJe etsoutenue a I'avancement profession­nel, technique et industriel du genieelectrique et electronique a l'echellenationale et internationale."

1975 George Sinclair"Pour avoir favorise J'avancement desconnaissances en ce qui concerne latheorie electromagnetique et la pro­pagation des ondes ainsi que leur ap­plication industrieIle."

1976 J.C.R. Puncharcl"Pour sa contribution a la conceptionet au cleveJoppement cl'equipementsde telecommunications et de radar,notamment pour- les Forcesarmees canadiennes."

1977 James M. Ham"En reconnaissance de sa contributiona Ja recherche et a l'enseignementsuperieur clans Ie clomaine elu genieet de ses qualites d'intermediaireentre la profession et Ie gouverne­nlent."

1978 Harold A. Smith"Pour son r61e exceptionnel cle pion­nier clans Ie developpement des reac­teurs nucleaires ainsi que dans Iedeve!oppement et l'exploitation clegrands reseaux pour Ies entreprisescl'electricite."

1979 John H. Chapman"Pour avoir reconnu de fac;on eclaireeIe potentiel des satellites en ce quiconcerne I'utilisation future de I'es­pace par Ie Canada."

1980 Wallace S. Read"Pour sa competence et son clevoue­ment dans Ie domaine du genie elec­trique, et pour avoir favorise, enparticulier, Ie developpementhydroelectrique ct l'exploitation d'en­treprises cl'electricite a Terrc-Neuveet au Labraclor."

1981 W. Bennett Lewis"Pour- avoir- inspire, durant un quartde siecle, Ie developpement dusysteme d'energie nucleaircCAI\<DU."

1982 G.F. MacFarlane"Pour son r61e d'innovatcur et de chefcle file dans les domaines du develop­pement, cle la planification et de lamise en place de reseaux de telecom­munications au Canada, en particu­lier en C()lombie-Britannique."

1983 J. Lionel Boulet"Pour sa contribution it la recherchedans Ie domaine de l'energie elcctri­que et pour son role rernarquabledans les progrcs I-ealises par Ie mondedu genie au Canada."

1984 H. Halton"Pour avoir favorise de fac,:on extraor­clinaire Ie developpcrnent cle I'indus­

,trie spatiale au Canada."

1985 John A. Hopps"Pour sa contribution a l'etablisse­ment cle societes nationales et interna­tionales dans Ie domaine du geniebiomedical."

181

Page 200: Electricity - The Magic Medium

1973 Hector J. McLeod"For pioneering achievements 1I1

electrical engineering education mWestern Canada."

1974 Robert H. Tanner"For outstanding and sustained con­tributions to the professional, techni­cal and industrial aspects of electricaland electronics engineering, both na­ti'onally and transnationally."

1975 George Sinclair"For leadership in the advancementof knowledge of electro-magnetictheory and wave propagation and itspractical and industrial application."

1976 J. C. R. Punchard"For his contributions to the design 1981and development of communicationsand radar equipment, particularlyfor the Canadian Armed Services."

1977 James M. Ham"In recognition of his contributions 1982to engineering __resean~hand ad-' - ­vanc(;d engineering education andhis ability as liaison between the engi-neering profession and government."

1978 Harold A. Smith"For oustanding leadership in the de- 1983veJopment of nuclear power reactorsand in the engineering and operationof large utility systenls."

1979 John H. Chapman"For his vision and leadership in re-cognizing the potential of satellites in 1984Canada's future utilization of space."

1980 Wallace S. Read"For competent and dedicated lead­ership in the field of electrical engi-neering, particularly in the promo- 1985tion of hydro-electric developmentsand in the operation of electricpower utilities in the Province ofNewfoundland and Labrador."

182

W. Bennett Lewis"In recognition of his inspired lead­ership spanning a quarter of a cen­tury in the development of theCANDU Nuclear Power System."

G. F. Ma_cfarlane-"For sustained innovation and lead­ership in the research, planning andimplementation of communicationsystems in Canada and BritishColumbia."

J. Lionel Boulet"For his contributions to electricalenergy research and his outstandingrole in adoption of technical ad­vances by the engineering commu­nity in Canada."

H. Halton"For extraordinary engll1eenngachievements in the provision ,oftechnical and managerial leadershipin the Canadian aerospace industry."

john A. Hopps"For his scientific contribution andfor his leade'rship in establishing na­tional and international societies inthe field of biomedical engineering."

Page 201: Electricity - The Magic Medium

- .'t±¥,.,

Acknowledgement of FinancialContributions

ReIllerciernents pour lescontributions financieresThis publication has become a possibilitythrough generous financial support both fromwithin the I EEE Canadian Region and fromother organizations. The Centennial ProjectCommittee expresses its thanks to these finan­cial contributors, listed here in alphabeticalorder.

Cette publication a ere I'endue possible graceaux genereuses contributions financihes deI'IEEE, region du Canada et de d'autres orga­nisations. Le Comite du projet du centairetient a remercier les contributeurs dont lesnoms apparaissent ici en ordre alphabetique.

From IEEE Segments/de I'IEEE:IEEE Canadian RegionInternational Electrical, Electronics

Conferences Incorporated-IEEC Inc.(Electronicom, Toronto)

IEEE Conferences Montreal Inc.Bay of Quinte SectionCanadian Atlantic SectionNorthern Canada SectionHamilton SectionMontreal SectionNew Brunswick SectionNewfoundland and Labrador SectionOttawa SectionQuebec SectionSaskatchewan SectionSouthern Alberta SectionToronto SectionVancouver SectionVictoria SectionWinnipeg Section

From Other Organizations/ded'autres organisations:

ASEA Inc.British Columbia Hydro and Power

AuthorityBritish Columbia Telephone CompanyBell CanadaCanada Wire and Cable LimitedCanadian General Electric Co. Ltd.Certelecom Labs. Inc.Ecole PolytechniqueEdmonton PowerElectrical & Electronic Manufacturers

Association of Canada (EEMAC)Electrovert Ltd.Federal Pioneer Ltd.H ydro~Quebec

Manitoba HydroMarkham Electric Ltd.Montreal Engineering Co. Ltd.National Research CouncilNewfoundland & Labrador HydroNewfoundland Light & Power Co.Northern Telecom Ltd.Ontario HydroPhillips Cables Ltd.Polygon Industries Ltd.Prevey Consulting Services Ltd.Thomas & Betts Ltd.TransAlta Utilities CorporationU niversite ConcordiaUniversity of TorontoWestinghouse Canada Inc.Winnipeg Hydro

183