electrochemical power generation from geothermal brines · seawater –fresh water (blue energy)...

1

Upload: others

Post on 18-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Electrochemical power generation from geothermal brines

Joost Helsen 1

Christof Porto-Carrero 1

http://www.powermag.com

1VITO, F lemish Inst i tutefor technolog ica lresearch (B e lg ium)

Page 2: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Energy Recovery from Geothermal Fluids by RED

2

Page 3: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Early days of salinity gradient energy

Until the mid ‘70s where a practical method of exploiting it using selectively permeable membranes by Loeb was outlined, scientific developments remained virtually non-existent…

R. E. PATTLE

Page 4: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Scientific milestones over the years

Theoretical approaches and first proof-of-concepts

0

5

10

15

20

25

30

35

1955 1971 1976 1978 1980 1982 1983 1984 1986 1988 1989 1990 1994 1998 2001 2007 2008 2009 2010 2011 2012 2013 2014 2015

Salinity Gradient power via RED - SCI papers

Page 5: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

➢ Ions are transported through

membrane due to

concentration gradient

➢ Cell potential is generated by

selective diffusion of ions

➢Electrode reactions induce electric current

➢Applicable at different salinity gradients

◦Seawater – Fresh water (Blue energy)

◦Brine – seawater ( )

◦Brine – brackish water ( )

RED directly converts thedifference in chemicalpotential to electrical energy

5

Energy Recovery from Geothermal Fluids by RED

Page 6: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

1m³ seawater + 1m³ brine = max 17 MJ

Brine source Brine concentration Flow rate Theoretical potential

Great Salt Lake (Ohio, US) 100-300g/l 125m³/s 15,8 TWh/yr

Dead Sea and Red Sea 340g/l 25m³/s2,6 TWh/yr

Garabogazköl Aylagy 350g/l 25m³/s2,7 TWh/yr

RO SWDU 40-100g/l

Chlor-alkali 210-250g/l

Salt ponds 250-300g/l

Geothermal brine 1-300g/l

EIA, International energy outlook 2011. U.S. Department of Energy: Washington D.C., 2011; 301 p.Wick, G. L., Power from salinity gradients. Energy 1978, 3, (1), 95-100.

Potential = very diffuse and site-specific

6

Energy Recovery from Geothermal Fluids by RED

Page 7: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Reverse electrodialysis – stack performance

7

Gross power density

Net power density

Corrected power density

Efficiency

Page 8: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5

Esta

ck

[V]

I [A]

3.5 cm/s

2 cm/s

1 cm/s

0.5 cm/s

0.2 cm/s

Reverse electrodialysis – stack performance

8

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80

P_

de

ns

ity [

W/m

^2]

i [A/m^2]

3.5 cm/s

2 cm/s

1 cm/s

0.5 cm/s

0.2 cm/s

OCV (V)

Ishortcut(A)

Max Pd (W/m²)

P = Estack.I

Page 9: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Equivalent electrical circuit – importance of internal resistance

9

• Membrane• Spacer channel• Boundary layers• Electrical contacts• …

Page 10: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Effic

iency (%

)

P_R

L (

W)

RL (Ohm)

P_RL Efficiency

Equivalent electrical circuit – importance of internal resistance

10

Page 11: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Single cell pair experiments

CM

AM

IN

HIGH

HIGH HIGHLOW

IN

LOWIN

HIGH

Comp 1

OUT

HIGH

OUT

LOW

OUT

HIGH

Ref

elec

trode

1

Ref

elec

trode

2

Ref

elec

trode

3Comp 2 Comp 3

• Three separate compartments

• Outside: HIGH• Inside: LOW• Membrane potentials

measured as bulk potential

• [HIGH]: constant• [LOW]: measured

continuously• Temperature

controlled

Membranes tested:• FUJI RP1 (160µm)• Fumasep FAS/FKS (20µm)• Fumasep FAS/FKE (20µm)

Page 12: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Single cell pair experiments – high T°

0,00

5,00

10,00

15,00

20,00

25,00

0,00

100,00

200,00

300,00

400,00

500,00

600,00

20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 60,00 65,00 70,00

pow

er d

ensi

ty [W

/m²]

half

cell

pote

ntia

l/cu

rren

t den

sity

[mV

]/[A

/m²]

temperature [°C]

FKE/FAS

current density[A/m²]

half cell potential (mV) power density[W/m²]

Expon. (current density[A/m²])

Linear (half cell potential (mV)) Expon. (power density[W/m²])

FKE/FAS @ increased temperature: power and current

density results

Page 13: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

0

5

10

15

20

25

0,00

50,00

100,00

150,00

200,00

250,00

reference Ca+Mg reference Ca+Mg reference Ca+Mg reference Ca+Mg reference Ca+Mg

25°C 25°C 30°C 30°C 40°C 40°C 50°C 50°C 60°C 60°C

po

wer

den

sity

[w/m

²]

hal

f cel

l po

ten

tial

/ c

urr

ent

den

sity

[mV

]/[A

/m²]

current density[A/m²]

half cell potential (mV) power density[W/m²]

Single cell pair experiments – Ca2+/Mg2+ (20-60°C)

Cell potential

Page 14: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: 50 CP

Page 15: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: 50 CP @25°C

membranes FAS/FKS

Active cell area 100cm²

Total cell pair area 0,5m²

Linear flow velocity 1 cm/s

Temperature 25°C

ERS0,3M Fe(CN)6

3+

0,3M Fe(CN)64+

HIGH 2M NaCl

LOW 0,01M NaCl

OCV [V]

R_stack [Ω]

I_shortcut [A]

i_PMax[A/m^2]

V_PMax [V] P_ density_max [W/m^2]

test 1 7,832 6,62 1,18 69,30 6,93 4,80

test 2 7,627 6,37 1,20 72,60 7,26 5,27

test 3 7,723 6,53 1,18 69,55 6,96 4,84

average 7,727 6,51 1,19 70,48 7,05 4,97

Page 16: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: 50 CP @25°C

membranes FAS/FKS

Active cell area 100cm²

Total cell pair area 0,5m²

Linear flow velocity 1 cm/s

Temperature 50°C

ERS0,3M Fe(CN)6

3+

0,3M Fe(CN)64+

HIGH 2M NaCl

LOW 0,01M NaCl

OCV [V]R_stack [Ω]

I_shortcut [A]

i_PMax[A/m^2] V_PMax [V]

P_ density_max [W/m^2]

test 1 11,34 1,27 8,94 92,33 8,31 7,67

test 2 11,41 1,31 8,69 101,25 8,10 8,20

test 3 10,82 1,45 7,49 99,50 7,96 7,92

average 11,19 1,34 8,37 97,69 8,12 7,93

+60%

Page 17: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: artificial brine

mg mM mEq mg mM mEq

HCO3 1000 16 16 Ca 10000 250 500

Cl 100000 2817 2817 Fe 500 9 18

SO4 2000 21 42 K 3000 77 77

Mg 1000 42 83

Na 55000 2391 2391

Sr 400 5 9

TOTAL - 2874,962 TOTAL + 3078,417

Composition of an artificial brine, based on data from

Belgium and France

mM

CaCl2 250

FeCl2 9

MgCl2 42

SrCl2 5

NaHCO3 16

Na2SO4 21

NaCl 2333

Page 18: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: artificial brine

membranes FAS/FKS

Active cell area 100cm²

Total cell pair area 0,5m²

Linear flow velocity 1 cm/s

Temperature 50°C

ERS0,3M Fe(CN)6

3+

0,3M Fe(CN)64+

HIGH Artificial brine

LOW 0,01M NaCl

OCV [V]R_stack [Ω]

I_shortcut [A]

i_PMax[A/m^2] V_PMax [V]

P_ density_max [W/m^2]

test 1 6.100 11.17 0.55 30.70 3.07 1.88

test 2 5.814 11.35 0.51 27.90 2.93 1.64

average 5.957 11.26 0.53 29.30 3.00 1.76

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6

U [

V]

I [A]

-2

0

2

4

6

8

0 10 20 30 40 50 60 70

P_

de

ns

ity [

W/m

^2]

i [A/m^2]

-60%

--75%

Page 19: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: real brine

TYPE Deep geothermal BrineEC (ms/cm) 149,6pH 3,44TAM (M getal) (titrimetrisch) meq/l < 0.50 TAP (P getal) (titrimetrisch) meq/l < 0.50 buffercapaciteit 4.5 (titrimetrisch) meq/l < 0.50 carbonaat (titrimetrisch) meq/l < 0.50 hydroxide (titrimetrisch) meq/l < 0.50 bicarbonaat (titrimetrisch) meq/l < 0.50 bromide mg/l 188chloride mg/l 75000sulfaat mg/l 130calcium opgelost mg/l 8230kalium opgelost mg/l 4340magnesium opgelost mg/l 112natrium opgelost mg/l 34200ijzer opgelost µg/l 4250strontium opgelost µg/l 459000Lithium opgelost µg/l 197000

Page 20: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

SGP-RE pilot experiments: real brine

membranes FAS/FKS

Active cell area 100cm²

Total cell pair area 0,5m²

Linear flow velocity 1 cm/s

Temperature 50°C

ERS0,3M Fe(CN)6

3+

0,3M Fe(CN)64+

HIGH Real brine

LOW River water

OCV [V]R_stack [Ω]

I_shortcut [A]

i_PMax[A/m^2] V_PMax [V]

P_ density_max [W/m^2]

test 1 7.302 6.630 1.101 63.5 3.50 4.44

7.367 6.430 1.146 60.1 3.61 4.34

test 2 7.183 6.288 1.142 63.6 3.50 4.45

average 7.284 6.449 1.130 62.4 3.53 4.41

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2

Stac

k p

ote

nti

al [

V]stack current [A]

run1 run2 run3

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Pow

er d

ensi

ty [

W/m

²]

current density [A/m²]

run1 run2 run3

--45%

Page 21: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Steady state SGP-RE model

22

Black box

Steady state

Assuming pure NaCl solutions

Activities, temperature, viscosity

Post-correction for multivalent ions

Input variables

QH, in CH,in

QL, in CL,in

TH, in TL,in

Output variables

P [Watt] / Pd [Watt/m²]

Ustack= f(Istack)

Pd = f(istack)

n

SGP-Re modelparameters

n

δHIGH/δLOW

b

LHIGH / LLOW

RAEM / RCEM

αAEM / αCEM

Page 22: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Steady state SGP-RE model

23

Mass balance equations

Cell potential (Nernst)

Page 23: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Steady state SGP-RE model

24

l= 0.5 # length of stack [m]b= 1 # width of stack [m]Raem = 0.00005 # AEM membrane resistance [ohm.m2]Rcem = 0.00017 # CEM memrbane resistance [ohm.m2]tk = 0.995 # transport number CEM [-]ta = 0.95 # transport number AEM [-]v_b = 0.01 # brine flow velocity [m s-1] f = 1/0.8 # obstruction factor (1/spacer shadow) [-]eta_P = 0.85 # pump power efficiency

2000mM Brine concentration200mM river water concentration323K (Brine and River)30% desalination

Page 24: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Steady state SGP-RE model

25

Brine

stack_nr 1P_W_m2 5.3W/m²P_net 36508WOCV_mean 1051VS 6944m²Cb_in 2000mMCr_in 200mMSE 9%

RIver

stack_nr 2P_W_m2 2.9W/m²P_net 19492WOCV_mean 748VS 6944m²Cb_in 1819mMCr_in 381mMSE 16%

stack_nr 3P_W_m2 1.7W/m²P_net 11270WOCV_mean 566VS 6944m²Cb_in 1675mMCr_in 525mMSE 22%

36kW 19kW 11kW

Page 25: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

Conclusions

Temperature is on our side

Strong influence of multivalent ions on power density

No pretreatment necessary

Technically feasible with more development needed on stack

design and upscaling

Economic feasibility 2030-2050 will depend on specific

situation and future market price stack components

26

Page 26: Electrochemical power generation from geothermal brines · Seawater –Fresh water (Blue energy) Brine –seawater ( ) Brine –brackish water ( ) RED directly converts the difference

27

Thank you for your attention!

[email protected]