electrochemistry

56
Dr. S. M. Condren Chapter 18 Electrochemistry

Upload: omaregypt

Post on 27-Jun-2015

321 views

Category:

Education


2 download

DESCRIPTION

Electrochemistry

TRANSCRIPT

Page 1: Electrochemistry

Dr. S. M. Condren

Chapter 18

Electrochemistry

Page 2: Electrochemistry

Dr. S. M. Condren

Redox ReactionsOxidation

• loss of electrons

Reduction

• gain of electrons

oxidizing agent

• substance that cause oxidation by being reduced

reducing agent

• substance that cause oxidation by being reduced

Page 3: Electrochemistry

Dr. S. M. Condren

Electrochemistry

In the broadest sense, electrochemistry is the study of chemical reactions that produce electrical effects and of the chemical phenomena that are caused by the action of currents or voltages.

Page 4: Electrochemistry

Dr. S. M. Condren

Page 5: Electrochemistry

Dr. S. M. Condren

Voltaic Cells

• harnessed chemical reaction which produces an electric current

Page 6: Electrochemistry

Dr. S. M. Condren

Voltaic Cells

Cells and Cell Reactions

Daniel's Cell

Zn(s) + Cu+2(aq) ---> Zn+2

(aq) + Cu(s)

oxidation half reaction

anode Zn(s) ---> Zn+2(aq) + 2 e-

reduction half reaction

cathode Cu+2(aq) + 2 e- ---> Cu(s)

Page 7: Electrochemistry

Dr. S. M. Condren

Voltaic Cells

• copper electrode dipped into a solution of copper(II) sulfate

• zinc electrode dipped into a solution of zinc sulfate

Page 8: Electrochemistry

Dr. S. M. Condren

Voltaic Cells

Page 9: Electrochemistry

Dr. S. M. Condren

Hydrogen Electrode• consists of a platinum

electrode covered with a fine powder of platinum around which H2(g) is bubbled. Its potential is defined as zero volts.

Hydrogen Half-Cell

H2(g) = 2 H+(aq) + 2 e-

reversible reaction

Page 10: Electrochemistry

Dr. S. M. Condren

Page 11: Electrochemistry

Dr. S. M. Condren

Page 12: Electrochemistry

Dr. S. M. Condren

Standard Reduction Potentials

• the potential under standard conditions (25oC with all ions at 1 M concentrations and all gases at 1 atm pressure) of a half-reaction in which reduction is occurring

Page 13: Electrochemistry

Dr. S. M. Condren

Some Standard Reduction Potentials Table 18-1, pg 837

Li+ + e- ---> Li -3.045 v

Zn+2 + 2 e- ---> Zn -0.763v

Fe+2 + 2 e- ---> Fe -0.44v

2 H+(aq) + 2 e- ---> H2(g) 0.00v

Cu+2 + 2 e- ---> Cu +0.337v

O2(g) + 4 H+(aq) + 4 e- ---> 2 H2O(l) +1.229v

F2 + 2e- ---> 2 F- +2.87v

Page 14: Electrochemistry

Dr. S. M. Condren

If the reduction of mercury (I) in a voltaic cell is desired, the half reaction is:

Which of the following reactions could be used as the anode (oxidation)?

A, B

Page 15: Electrochemistry

Dr. S. M. Condren

Cell Potential

• the potential difference, in volts, between the electrodes of an electrochemical cell

• Direction of Oxidation-Reduction Reactions

• positive value indicates a spontaneous reaction

Page 16: Electrochemistry

Dr. S. M. Condren

Standard Cell Potential

• the potential difference, in volts, between the electrodes of an electrochemical cell when the all concentrations of all solutes is 1 molar, all the partial pressures of any gases are 1 atm, and the temperature at 25oC

Page 17: Electrochemistry

Dr. S. M. Condren

Cell Diagram

• the shorthand representation of an electrochemical cell showing the two half-cells connected by a salt bridge or porous barrier, such as:

Zn(s)/ZnSO4(aq)//CuSO4(aq)/Cu(s)

anode cathode

Page 18: Electrochemistry

Dr. S. M. Condren

Metal Displacement Reactions

• solid of more reactive metals will displace ions of a less reactive metal from solution

• relative reactivity based on potentials of half reactions

• metals with very different potentials react most vigorously

Page 19: Electrochemistry

Dr. S. M. Condren

Ag+ + e- --->Ag E°= 0.80 V

Cu2+ + 2e- ---> Cu E°= 0.34 V

Will Ag react with Cu2+?

yes, no

Will Cu react with Ag+?

yes, no

Page 20: Electrochemistry

Dr. S. M. Condren

Internet Report

• Due end of day, 5:00 pm, Dec. 1, 2001

Page 21: Electrochemistry

Dr. S. M. Condren

Gibbs Free Energyand Cell Potential

G = - nFE

where n => number of electrons changed

F => Faraday’s constant

E => cell potential

Page 22: Electrochemistry

Dr. S. M. Condren

Applications of Electrochemical Cells

Batteries– device that converts chemical energy into

electricity

Primary Cells– non-reversible electrochemical cell– non-rechargeable cell

Secondary Cells– reversible electrochemical cell– rechargeable cell

Page 23: Electrochemistry

Dr. S. M. Condren

Applications of Electrochemical Cells

Batteries

Primary Cells

"dry" cell & alkaline cell 1.5 v/cell

mercury cell 1.34 v/cell

fuel cell 1.23v/cell

Secondary Cells

lead-acid (automobile battery) 2 v/cell

NiCad 1.25 v/cell

Page 24: Electrochemistry

Dr. S. M. Condren

“Dry” Cell

Page 25: Electrochemistry

Dr. S. M. Condren

“Dry” Cell

Page 26: Electrochemistry

Dr. S. M. Condren

“Flash Light” Batteries

"Dry" CellZn(s) + 2 MnO2(s) + 2 NH4

+ ----->

Zn+2(aq) + 2 MnO(OH)(s) + 2 NH3

Alkaline CellZn(s) + 2 MnO2(s) ---> ZnO(s) + Mn2O3(s)

Page 27: Electrochemistry

Dr. S. M. Condren

“New” Super Iron Battery

Mfe(VI)O4 + 3/2 Zn 1/2 Fe(III)2O3 + 1/2 ZnO + MZnO2

(M = K2 or Ba)Environmentally friendlier than MnO2 containing batteries.

Page 28: Electrochemistry

Dr. S. M. Condren

Page 29: Electrochemistry

Dr. S. M. Condren

Lead-Acid(Automobile Battery)

Page 30: Electrochemistry

Dr. S. M. Condren

Lead-Acid(Automobile Battery)

Pb(s) + PbO2(s) + 2 H2SO4 = 2 PbSO4(s) + 2 H2O

2 v/cell

Page 31: Electrochemistry

Dr. S. M. Condren

Nickel-Cadmium (Ni-Cad)

Cd(s) + 2 Ni(OH)3(s) = Cd(OH)2(s) + 2 Ni(OH)2(s)

NiCad 1.25 v/cell

Page 32: Electrochemistry

Dr. S. M. Condren

Page 33: Electrochemistry

Dr. S. M. Condren

Automobile Oxygen Sensor

Air, constant [O ]2

porous Pt electrodes

migrating O ions2-

measured potential difference

exhaust gas, unknown [O ]2

ZrO / CaO2

Page 34: Electrochemistry

Dr. S. M. Condren

Automobile Oxygen Sensor

• see Oxygen Sensor Movie from Solid-State Resources CD-ROM

Page 35: Electrochemistry

Dr. S. M. Condren

pH = (Eglass electrode - constant)/0.0592

pH Meter

Page 36: Electrochemistry

Dr. S. M. Condren

Effect of Concentration on Cell Voltage: The Nernst Equation

Ecell = Eocell - (RT/nF)ln Q

Ecell = Eocell - (0.0592/n)log Q

where Q => reaction quotient

Q = [products]/[reactants]

Page 37: Electrochemistry

Dr. S. M. Condren

EXAMPLE: What is the cell potential for the Daniel's cell when the [Zn+2] = 10 [Cu+2] ?

Q = ([Zn+2]/[Cu+2] = (10 [Cu+2])/[Cu+2] = 10

Eo = (0.34 V)Cu couple + (-(-0.76 V)Zn couple

n = 2, 2 electron change Ecell = Eocell - (0.0257/n)ln Q

thus Ecell = (1.10 - (0.0257/2)ln 10) V

Ecell = (1.10 - (0.0257/2)2.303) V

Ecell = (1.10 - 0.0296) V = 1.07 V

Page 38: Electrochemistry

Dr. S. M. Condren

Nernst Equation

+0.83 V

salt bridge

H in2

1 atm

voltmeter

Pt electrode

Pt electrodeNaOH

1 M

H in2

1 atm

e– e–

anode (–)

HCl 1 M

cathode (+)

pn+

+

+

+

[H+]acid side [H+]base side

E = Eo – RTnF ln Q =

– 2.3 RTF log

[H+]base side[H+]acid side

[h+]p-type side [h+]n-type side

E (in volts) = – 2.3 RT

F log [h+]n-type side [h+]p-type side

Page 39: Electrochemistry

Dr. S. M. Condren

Electrolysis

• non-spontaneous reaction is caused by the passage of an electric current through a solution

Page 40: Electrochemistry

Dr. S. M. Condren

Page 41: Electrochemistry

Dr. S. M. Condren

Electrolysis

Electrolysis of Sodium chloride

(chlor-alkali process)

molten reactants => liquid sodium and chlorine gas

aqueous reactants => caustic soda (sodium hydroxide) and chlorine gas

Page 42: Electrochemistry

Dr. S. M. Condren

Electrolysis

Preparation of Aluminum (Hall process)

Page 43: Electrochemistry

Dr. S. M. Condren

Electrolytic Refining of Copper

Cu(s) + Cu+2(aq) --> Cu+2

(aq) + Cu(s)

impure pure anode cathode

impurities: anode mud; Ag, Au, Pb

Page 44: Electrochemistry

Dr. S. M. Condren

Page 45: Electrochemistry

Dr. S. M. Condren

Quantitative Aspects of Electrolysis

• 1 coulomb = 1 amp sec

• 1 mole e- = 96,500 coulombs

Page 46: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

Page 47: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

(45 min)#g Cr = ------------

Page 48: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

definition of minute

(45 min)(60 sec)#g Cr = ---------------------

(1 min)

Page 49: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

(45) (60 sec) (25 amp)#g Cr = ---------------------------

(1)

Page 50: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

definition of a coulomb

(45)(60 sec)(25 amp)(1 C)#g Cr = -----------------------------

(1) (1 amp sec)

Page 51: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

Faraday’s constant

(45)(25)(60)(1 C)(1 mol e-)#g Cr = ----------------------------------

(1)(1)(96,500 C)

Page 52: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

atomic weight

(45)(60)(25)(1)(1 mol e-)(52 g Cr)#g Cr = -------------------------------------------

(1)(1)(96,500) (6 mol e-)

Page 53: Electrochemistry

Dr. S. M. Condren

Electroplating

EXAMPLE: How many grams of chromium can be plated from a Cr+6 solution in 45 minutes at a 25 amp current?

(45)(60)(25)(1)(1 mol e-)(52 g Cr)#g Cr = -------------------------------------------

(1)(1)(96,500)(6 mol e-)

= 58 g Cr

Page 54: Electrochemistry

Dr. S. M. Condren

Page 55: Electrochemistry

Dr. S. M. Condren

Corrosion

O2(g) + 4 H+(aq) + 4 e- -----> 2 H2O(l)

Eo = 1.23 V

RustingFe(s) -----> Fe+2

(aq) + 2 e- Eo = 0.44 V

O2(g) + 4 H+(aq) + 4 e- -----> 2 H2O(l) Eo = 1.23 V

------------------------------------------- --------------2 Fe(s) + O2(g) + 4 H+

(aq) ----->

2 H2O(l) + Fe+2(aq) Eo = 1.67 V

Page 56: Electrochemistry

Dr. S. M. Condren

Preventing Corrosion

painting

galvanizing

sacrificial anode