electrodeposition of refractory metals from molten …electrodeposition of refractory metals from...

29
Electrodeposition of Refractory Metals from Molten Salts at 150-250ºC T. Nohira , H. Nakajima, K. Kitagawa, R. Hagiwara, K. Nitta*, M. Majima* and S. Inazawa* Kyoto University, Japan *Sumitomo Electric Industries, Ltd., Japan The 4th Workshop on Reactive Metal Processing March 14-15, 2008, MIT, Cambridge, U.S.A.

Upload: others

Post on 13-Jul-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

  • Electrodeposition of Refractory Metalsfrom Molten Salts at 150-250ºC

    T. Nohira, H. Nakajima, K. Kitagawa, R. Hagiwara,K. Nitta*, M. Majima* and S. Inazawa*

    Kyoto University, Japan*Sumitomo Electric Industries, Ltd., Japan

    The 4th Workshop on Reactive Metal ProcessingMarch 14-15, 2008, MIT, Cambridge, U.S.A.

  • Contents1. Introduction1-1. Refractory metals and LIGA process

    1-2. Aims of this study

    2. Results and Discussion2-1. W and Mo from NaCl-KCl-ZnCl2 melt at 250ºC

    2-2. W and Mo from EMPyrCl-ZnCl2 melt at 150ºC

    3. Conclusion

  • Refractory metals

    Table. Refractory metals.

    WTaHf

    MoNbZr

    CrVTi

    IV V VI

    4

    5

    6

    •High hardness•High mechanical strength•High corrosion resistanceFrom RT to HT

    •Surface coating•LIGA process

  • Refractory metals

  • 3. Electrodeposition

    Fig. A flow diagram of LIGA process.

    Metal Substrate Resist film

    1. Exposure

    Deposition

    X-ray or UV rayMask

    4. Micro-parts 4’. Micro-mold

    2. Etching

    LIGA process(Lithographie Galvanoformung Abformung)

  • Current status of LIGA process

    • Available metalsCu, Au, Ni, Ni-Fe alloys (Metals electrodeposited from aqueous solutions)

    • Highly expected for MEMS(Micro Electro Mechanical Systems) applicationsEx.) Contact probe pin for semiconductor testing, Printer head,

    Sensors for automobiles, etc.

    If refractory metals can be applied to the LIGA process

    Improvement of performance & Expansion of application fields

    Ex.) Contact probe pin, micro-mold, micro-parts (gears, turbine, etc.), micro-reactor, etc.

    Contact probe pin for semiconductor testing Length: 1.6 mmThickness: 60 μm

  • Necessity to develop new molten salts

    ~300 ºCPolyimide~250 ºCEpoxy~150 ºCMethacrylate (ex. PMMA)

    Durable temperatureResist material

    Durable temperatures of resist materials are not high enough.

    Electrodeposition of refractory metals• Impossible to conduct in aqueous solutions (except Cr)• Many studies using high temperature molten salts

    • In general, alkali fluoride or alkali chloride-fluoride melts at high temperature (600 – 800 ºC) give better deposits.• Katagiri et. al (1988-)

    W from molten NaCl-ZnCl2 and NaBr-ZnBr2, 350 – 450 ºCApplication to LIGA process

    Necessary to develop low temperature molten salts.250 ºC → useful 150 ºC → most desirable

  • Electrodeposition of refractory metals from molten saltsElement Molten salt Temp. / K Ion sources

    Ti LiF-NaF-KFLiCl-KClNaCl-KCl

    823-1023773-823973-1213

    K2TiF6TiCl2, TiCl3, TiCl4, K2TiCl6

    TiCl4, K2TiCl6, K2TiF6Zr LiF-NaF-KF

    LiCl-KCl1023

    723-823ZrF4

    Anodic dissolution of Zr

    Hf LiF-NaF-KFNaCl-KCl

    10231023-1173

    HfF4HfCl4

    V LiF-NaF-KFLiCl-KClNaCl-KCl

    1023893998

    VF4Anodic dissolution of V

    NaF(7 mol%)+K2NaVF6(5 mol%)Nb LiF-NaF-KF

    LiF-NaFNaCl-KCl

    973-1098823-1323

    1023

    K2NbF7K2NbF7K2NbF7

    Ta LiF-NaF-KFLiF-NaF

    NaCl-KCl

    1063823-1323

    1023

    K2TaF7K2TaF7K2TaF7

    Cr LiF-NaF-KFLiCl-KCl

    823-1173723

    CrF2, CrF3, CrF4CrCl2, CrCl3

    Mo LiF-NaF-KFLiCl-KCl

    1073723-873

    MoF6+MoMoCl3, K3MoCl6

    W LiF-NaF-KFLiCl-KCl

    ZnCl2-NaCl

    873-1073673-773623-723

    WF6+W, WO3WCl6, KWCl6, K2WCl6

    WCl6

  • Aims of this study

    1. Electrodeposition of W and Mo at 250ºCMelt: NaCl-KCl-ZnCl2 (20:20:60 mol%, m.p. 180ºC)Refractory metal ion sources: WCl4, WO3, MoCl3Additive: F- ion for better deposit

    2. Electrodeposition of W and Mo at 150 ºCMelt: EMPyrCl-ZnCl2 (50:50 mol%, m.p. 45ºC)Refractory metal ion sources: WCl6, MoCl5Additive: F- ion for better deposit

  • Properties of ZnCl2-NaCl-KCl

    ZnCl2:NaCl:KCl=60:20:20 mol%, m.p.: 203ºC(Ref.*)

    DSC Viscosity

    50 100 150 200 250 300 350Temperature / ℃

    melting point 180 ºC

    Endo

    ther

    mic

    0

    50

    100

    150

    200

    250

    300

    180 200 220 240 260 280 300

    Temprateure / ℃V

    isco

    sity

    / c

    P

    Experiment at 250 ºC

    *I. N. Nikonova, S. P. Pavlenko, and A. G. Bergman, Bull. acad. sci. U. R. S. S.,Classe sci. chim., 391 (1941).

    Melting point:180ºCConductivity:85 mS cm-1(250ºC)

  • Experimental Apparatus

    R.E.: Zn wire (Zn(II)/Zn)

    Pyrex beaker

    Separable flask

    W.E.: Ni plate

    Thermocouple

    Molten Salts

    Additives : WCl4, WO3, KF

    C.E.: Glassy carbon

    In an argon glove box

    T=250 ºC

    C.E.W.E. R.E.

    Heater

    Melt: ZnCl2-NaCl-KCl(60:20:20 mol%, m.p. 180 ºC)

  • Cyclic voltammetry (WCl4)

    Potential / V (vs. Zn(II)/Zn)

    Cur

    rent

    den

    sity

    / m

    A c

    m-2 WCl4 added

    Blank

    Scan rate : 50 mV s-1

    20 mVPotentiostatic electrolysis : 3 hours

    Ni-Zn alloy formation

    Zn deposition-0.08-0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

    Fig. Cyclic voltammograms for Ni electrodes in a molten ZnCl2-NaCl-KCl and a molten ZnCl2-NaCl-KCl-WCl4 (0.54 mol% added) system at 250 °C. Scan rate: 0.05 V s

    -1

    -0.005

    -0.003

    -0.001

    0.001

    0.003

    0.005

    0 0.1 0.2 0.3 0.4

  • XPS and SEM (WCl4)

    Fig. A cross-sectional SEM image.

    25303540

    W 4f

    Fig. A W4f XPS spectrum of the deposit.20 mV (Zn(II)/Zn) for 3 h.Ar etching : 4500 s

    Binding energy / eV

    W metal Dense, not smoothThickness 0.5 µm

    Metallic gray deposit

    (Cl < 2 at%)

    0.5 cm

    Inte

    nsity

    / A

    . U.

    W(0)4f5/2

    W(0)4f7/2

  • XPS and SEM (WCl4+KF)

    Fig. A W4f XPS spectrum of the deposit. 20 mV (Zn(II)/Zn) for 3 h.KF: 4 mol% added, WCl4: 0.54 mol% added.Ar etching: 4500 s.

    Binding energy / eV

    W metal Dense, smoothThickness 0.5 µm(Cl < 1 at%, F was not detected)

    Fig. A cross-sectional SEM image.

    Metallic gray deposit

    0.5 cm

    Inte

    nsity

    / A

    . U. W 4f

    W(0)4f5/2

    W(0)4f7/2

    25303540

  • XPS and SEM (WO3+KF)

    25303540

    W4fIn

    tens

    ity /

    A.U

    .

    Binding energy / eV

    Thickness 0.7 µm

    Fig. A cross-sectional SEM image.

    W metal Dense, smooth

    Fig. A W4f XPS spectrum of the deposit. 60 mV (Zn(II)/Zn) for 3 h.KF: 4 mol% added, WO3: 0.54 mol% added.Ar etching:13000 s

    (Cl < 1at%, F was not detected)

    W(0)4f5/2

    W(0)4f7/2

  • Cross-sectional TEM

    W layerZn-NiAlloy layer

    Nisubstrate

    A tungsten layer is dense.

    0.2 µm

    Cross-sectional TEM image

  • Identification of crystal structure by electron diffraction

    The deposit is α-W.

    Electron diffraction

    Index Index

    JCPDS Card Data

    Intensityd/d(110)d (Å) d (Å) d/d(200) d/d(210) Radius(a, b, c)Diff. ADiff. BDiff. C

    Measured value at the film

    Intensity

  • Hardness of the deposited W

    Measurement by Nano-indentor® (MTS systems corp.)

    482Sintered W675Deposited W

    207Substrate NiHvObject

    Load resolution: 0.1μgfDepth resolution: 0.01nm

    Hardness is calculated from the load/displacement curve.

    Diamond tip

    0.65μm

    0.05μm

    W layer

    Substrate Ni

  • 5μm

    Surface SEM

    The deposited W film was smooth.Elements deriving from the melt such as Na, K, Cl were not detected.

    10 mm

    (substrate Ni)

    To obtain a thicker film (ZnCl2-NaCl-KCl-KF-WO3)

    Electrolysis potential: 80 mV vs. Zn(II)/ZnTime: 6 hr

    Appearance

    W

    Ni(substrate)

    O

    Ni(substrate)

    W W

    EDX

    C

  • To obtain a thicker film (ZnCl2-NaCl-KCl-KF-WO3)

    1μm

    W layer

    Ni substrate

    Cross-sectional SIM image(prepared by FIB)

    XRD

    Thickness: 2.5 μ mCrystallite diameter: 17 Å

    D (Crystallite diameter) =K (Scherrer const.) × λ(wave length of X-ray)

    β(FWHM) × cosθ

    Scherrer Equation

    W Ni

    Ni

    W W

    θ-2θ,θ=1 °

    Cou

    nts

    / S2θ/ deg. (Cu/Kα)

    20 30 40 50 60 70

    *Ni: substrate Ni

    A high quality tungsten film was obtained.

  • Coating tungsten on a micro-part WO3: 0.54 mol%, KF: 4 mol%0.06 V vs. Zn(II)/Zn for 2 h

    ・Adhesiveness and coverage are very good.→Remarkable improvement in performance and durability.

  • Mo from NaCl-KCl-ZnCl2 at 250 ºC

    Fig. An XRD pattern of the deposit obtained.150 mV (vs. Zn(II)/Zn) for 3 h.KF: 4 mol% added, MoCl3: 0.54 mol% added.

    20 40 60 80 100 120

    2 θ / deg. (CuKα)

    MoNi (Substrat e)

    Mo metal

    Fig. A cross-sectional SEM image

    Dense, adhesiveThickness 3 µm(Cl < 2 at%, F was not detected)

  • 実験の目的

    ZnCl2-EMPyrCl systems (EMPyrCl: N-ethyl-N-methylpyrrolidinium chloride)

    m.p. 45 ºC at XZnCl2=50 mol%MoCl5, WCl6 → Mo, W deposition (150-200 ºC )

    Development of lower temperature melts(100-200℃)

    ZnCl2-TAACl systems(TAACl: tetraalkylammonium chloride)

    ZnCl2-TMPeACl: m.p. 80 ºC at XZnCl2=60 mol%TaCl5 → Ta deposition (150-200 ºC )

    NR

    RR

    R+

    (R=CnH2n+1)

    -Cl

    MeEtN+ -Cl

    ZnCl2-EMImCl systems (EMImCl: 1-ethyl-3methylimidazolium chloride)m.p. < 40 ºC at XZnCl2=50 mol%Zn, Zn-Fe, Zn-Pt alloy, etc. (50-130 ºC )1) Y.-F. Lin, I.-W. Sun, Electrochim. Acta, 44, 2771 (1999).2) J.-F. Huang, I.-W. Sun, J. Electrochem. Soc., 151, C8 (2004).3) J.-F. Huang, I.-W. Sun, Chem. Mater., 16, 1829 (2004).

    MeEtN -ClN+

    Nonaromatic cations have higher thermal stabilities.

    Pyrrolidinium cations have higher conductivities.

  • Phase diagram and conductivity of EMPyrCl-ZnCl2

    Fig. Phase diagram for the EMPyrCl-ZnCl2 system.

    0

    50

    100

    150

    200

    250

    300

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Tem

    pera

    ture

    / ºC

    X(ZnCl2)Fig. Conductivity of EMPyrCl-ZnCl2 systems.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    40 60 80 100 120 140 160 180 200

    Con

    duct

    ivity

    / m

    S cm

    -1

    Temperature / oC

    • X(ZnCl2) = 0.45

    • X(ZnCl2) = 0.5

    • X(ZnCl2) = 0.6

    X(ZnCl2) = 0.5、m.p.: 45ºC X(ZnCl2) = 0.5、σ = 22.5 mS cm-1 (150℃)

    X(ZnCl2) = 0.5 was selected and used at 150ºC.

    Measurements by DSC and direct observation

  • Electrochemical window of EMPyrCl-ZnCl2(50:50)

    -15

    -10

    -5

    0

    5

    10

    -0.2 0 0.2 0.4 0.6 0.8 1

    Cur

    rent

    den

    sity

    /mA

    cm

    -2

    Potential /V (vs. Zn(II)/Zn)

    -10

    0

    10

    20

    30

    40

    50

    0.5 1 1.5 2 2.5 3

    Potential / V vs. Zn(II)/Zn

    Cur

    rent

    den

    sity

    / m

    A c

    m-2

    Fig. Cyclic voltammogram for a Mo electrode in EMPyrCl-ZnCl2 (50:50) melt at 150 ゚C. Scan rate: 10 mV s-1 .

    Fig. Cyclic voltammogram for a GC electrode in EMPyrCl-ZnCl2 (50:50) melt at 150 ºC. Scan rate: 10 mV s-1 .

    Electrochemical window is ca. 2 V.Cathodic limit is Zn deposition.Anodic limit is decomposition of EMPyr+ ion.

  • -4

    -3

    -2

    -1

    0

    1

    2

    3

    -0.2 0 0.2 0.4 0.6 0.8 1

    Potential / V(vs. Zn(II)/Zn)

    Cur

    rent

    den

    sity

    / m

    A c

    m-2

    CV in ZnCl2-EMPyrCl at 150 ºC

    Fig. Cyclic voltammograms of Mo electrode in EMPyrCl-ZnCl2 and EMPyrCl-ZnCl2-KF(3 mol% added)-MoCl5(0.9 mol% added) melts at 150 ºC. Scan rate: 0.01 V s-1.

    BlankMoCl5 added

    Potentiostatic electrolysis

    New cathodic currents at more negative than 0.6 V (vs. Zn(II)/Zn)Electrodeposition at 0.01 V for 3 h

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0.5 1 1.5 2 2.5

    Cur

    rent

    den

    sity

    / m

    A c

    m-2

    Potential / V(vs. Zn(II)/Zn)

    Fig. Cyclic voltammogram of Mo electrode in EMPyrCl-ZnCl2 melt at 150ºC. Scan rate: 0.05 V s-1.

    Anodic dissolution of Mo

  • Surface SEM and cross-sectional SIM (MoCl5: 0.9 mol%, KF: 3 mol%)

    10μm

    Fig. Surface SEM image of the deposit obtained at 0.01 V vs. Zn(II)/Zn for 3h in a EMPyrCl-ZnCl2-KF-MoCl5(0.9 mol% added) melt at 150 ºC.

    Fig. Cross-section SIM image of the deposit obtained at 0.01 V vs. Zn(II)/Zn for 3h in a EMPyrCl-ZnCl2-KF-MoCl5(0.9 mol% added) melt at 150 ºC.

    A smooth and dense film.Thickness: 0.2 μm

  • XPS (MoCl5: 0.9 mol%, KF: 3 mol%)

    Fig. Mo 3d XPS spectrum of the deposit obtained at 0.01 V for 3 h in a EMPyrCl-ZnCl2-KF-MoCl5 melt at 150 ºC.

    ・Binding energies indicate a metallic Mo.

    ・Zn and Cl were not detected.

    ・The deposit was Mo metal.

    ・No inclusion of the melt.

    ・No codepositon of Zn.

    Inte

    nsity

    / a.

    u.

    216220224228232236Binding energy / eV

    Mo0 3d3/2 Mo0 3d5/2

    After 10s etching

    ・Stirring the melt and/or pulse electrolysis → Thickness: 1μm・WCl4, WCl6 → Depositions of W at 150ºC were confirmed by SEM and XPS.

  • Conclusion1. NaCl-KCl-ZnCl2 melt at 250ºC

    • Melting point: 180ºC at 20:20:60 mol%• WCl4 → Metallic W, not smooth• WCl4 + KF → Better deposit• WO3 + KF → Best deposit (dense and smooth)

    → High hardness and small crystallite diameter→ Coating a contact probe pin

    • MoCl3 + KF → Metallic Mo, dense and smooth

    2. EMPyrCl-ZnCl2 melt at 150ºC• Melting point: 45ºC at 50:50 mol%• MoCl5 + KF → Metallic Mo• WCl6 + KF → Metallic W