electromagnetic flowmeter design for industrial process

34
KE LI System Applications Engineer Industrial Automation & Integrated Precision TG, AES Electromagnetic Flowmeter Design for Industrial Process Control 03/23/2016

Upload: others

Post on 18-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electromagnetic Flowmeter Design for Industrial Process

KE LI

System Applications Engineer

Industrial Automation & Integrated Precision TG,

AES

Electromagnetic

Flowmeter Design for

Industrial Process Control

03/23/2016

Page 2: Electromagnetic Flowmeter Design for Industrial Process

►Brief Introduction Theory of operation for electromagnetic flow meters

Sensor output signal

►Electromagnetic flow sensor signal conditioning Architecture comparison: Sync-demodulation vs. Digital Oversampling

AFE common-mode rejection and noise consideration

►Sync-demodulation AFE test circuit EMF-Demo

Evaluation results

►Oversampling AFE test circuit Architecture comparison

Evaluation results

EMF-AFE-BF504F implementation

►Senor Driver iCoupler and the constant current source with SMPS

►Conclusion

►Collaterals and Technical Support

Agenda

Page 3: Electromagnetic Flowmeter Design for Industrial Process

Electromagnetic Flow Transmitter

-- Signal Chain Block Diagram

MU

X

16-Bit SAR/

24-Bit S-DuC

EXCITATION

CALIBRATION

LINEARIZATION

COMPENZATION

OP-AMP ADC

DIAGNOSTICS

In-AMP

(PGA)

HART

MODEM

DAC 4-20mA

Driver

DAC

LINEAR

REGULATORS

POWER

MANAGEMENT

VREF

LCD &

KeyboardWATCHDOGS

LINEAR REGULATOR

and/or

SWITCH MODE REGULATOR

ISOLATION

ISO RS485/422

12-Bit SAR

Or On-chip ADC

OP-AMP ADC

Temperature Measurement Optional

Sensor Excitation

Current Source Gate Driver

VREF

WIRELESS

Page 4: Electromagnetic Flowmeter Design for Industrial Process

Electromagnetic Flow Transmitter

-- Sensor Theory of Operation

►Operation based on Faraday’s law of electromagnetic induction.

► E = K B V D

Sensor is excited at 1/25, 1/16, 1/10, 1/8, 1/4 of power line frequency

Output signal level ranges from μV to a few mV

Common mode voltage ~1V

Sensor Excitation

Sensor Output

T

Page 5: Electromagnetic Flowmeter Design for Industrial Process

Output CMV on the sensor electrodes due to electrochemical

reactions between the electrolyte fluid and the metal electrodes. • Below scope plots shows an example of 0.28VDC CMV and 0.1VP-P CMV noise on

the #316 stainless steel sensor electrodes installed on a 50mm diameter water pipe.

Sensor Output Signal

-- Output Common Mode Voltage (CMV)

Sensor Differential Output ”V+”

CMV+ = 287mV

99.8mVP-P

Sensor Differential Output ”V-”

CMV+ = 286mV

99.8mVP-P

Math = ”V+” – “V-”

Page 6: Electromagnetic Flowmeter Design for Industrial Process

The DC component in the sensor output CMV becomes DC offset after

rejected by the analog front-end CMRR. • 120dB CMRR rejects the CMV to 0.28µV DC offset

• 100dB CMRR rejects the CMV to 2.8µV DC offset

• Ignorable (can be removed) when use AC coupling in downstream stage

The AC noise component in the sensor output CMV will appear as noise at

the AFE output to degrade the resolution.• 120dB CMRR rejects the CMV to 0.1 µVP-P noise

• 100dB CMRR rejects the CMV to 1 µVP-P noise

• Not ignorable… thus require the AFE of ≥ 100dB CMRR

Sensor Signal Conditioning

-- Analog Front-end CMRR

CMRR vs. CMV DC and Noise after Rejection

CMV 120dB 100dB 80dB 60dB

0.28VDC 0.28 µV 2.8 µV 28 µV 280 µV

0.1V CMV noise 0.1 µV 1 µV 10 µV 100 µV

CMV noise translated into the flow rate

of a 175µV per m/s response sensor0.0006m/s 0.006m/s 0.06m/s 0.6m/s

Page 7: Electromagnetic Flowmeter Design for Industrial Process

Digital

Oversampling

Approach

$$

Simplified

Design

Reduced

component/Area

Sensor Info

- Corrosion

- Liquid Quality

Electrode+

Electrode-

10Ω

10Ω

270pF

270pF

680pF

AIN0

AIN1

+5V

AVSS

AVDD1 AVDD2

0.1μF 0.1μF

RegCapA RegCapD

0.1μF 0.1μF

1μF 1μF

IOVDD

+3.3V

0.1μF

DOUT/RDY

DIN

SCLK

CS

Analog Devices

ADSP-BF504F

Rg

RgREF

+5V

-5V 0.1μF10μF

10μF 0.1μF

REFOUT

0.1μF

AD8220ARMZ

Gain =5

to 10 24-bit ΣΔ ADC

AD7172-2/AD7173-8/

AD7175-2

Sensor Output

+8V

-8V

Electrode+

Electrode-

Bipolar

Differential

Output Signal

AIN0

ACOM

+5V

GND

AVDD

0.1μF

0.1μF

0.1μF

IOVDD

+3.3V

0.1μF

DOUT/RDY

DIN

SCLK

SYNC

CSAD7192BRUZ

24-bit 4.8KSPS

ΣΔ ADCAnalog Devices

ARM Cortex-M3

Microcontroller

+8V

-8V 0.1μF10μF

10μF 0.1μFOP07DRZ

AD8228BRZRg

RgREF

BPF

AD8622ARMZ

AD8276ARMZ

ADG5412

ADR3425ARJZ

OP07DRZ

Gain = 10

Gain = 50

REF

Analog Sync-

Demodulation

Approach

$$$

Complex Design

Space Intensive

Only Flow

Measured

Electromagnetic Flowmeter

- Architecture Approaches

Sensor Output

Page 8: Electromagnetic Flowmeter Design for Industrial Process

A 175 µV/(m/s) sensor outputs ±1.75 µVP-P signal at 0.01m/s flow rate. The

amplitude becomes 3.5 µVP-P due to the alternating excitation. It requires

the AFE RTI noise to be less than 1.75 µVP-P to resolve the signal.• Low RTI noise In-Amp examples: AD8228 0.5µVP-P, AD8220 (10x) 0.94µVP-P

• Allocate 1/3 of total RTI noise budget to ADC.

• Analog sync-demodulation front-end has relaxed requirement for ADC due to the

~500x amplifier gain. 16-bit is Ok.

• Oversampling architecture has challenging requirement for the ADC as pre-amp

gain ≤10. ADC must have high output data rate 20k~40kSPS & low noise (20+bit).

Sensor Signal Conditioning

-- Noise Budget for the Analog Front-end

MDL Flow Rate

per 175µV/(m/s)

Signal at

MDL

AFE RTI Noise

Budget

ADC Noise budget at

10x Gain of OS AFE

ADC Noise Budget at 500x Gain of

Sync-Demodulate AFE

0.01 m/s 3.5 µVP-P 1.75 µVP-P 5.8 µVP-P / 19.7bit* 292 µVP-P / 14.1bit*

0.0054 m/s 1.89 µVP-P 0.95 µVP-P 3.2 µVP-P / 20.6bit 158 µVP-P / 15bit

0.005 m/s 1.75 µVP-P 0.88 µVP-P 2.9 µVP-P / 20.7bit 146 µVP-P / 15.1bit

0.003 m/s 1.05 µVP-P 0.53 µVP-P 1.8 µVP-P / 21.4bit 88 µVP-P / 15.8bit

0.002 m/s 0.7 µVP-P 0.35 µVP-P 1.2 µVP-P / 22bit 58 µVP-P / 16.4bit

0.001 m/s 0.35 µVP-P 0.15 µVP-P 0.6 µVP-P / 23bit 29 µVP-P / 17.4bit

* Note: pk-pk resolution referred to 5V FSR at flow reading update rate..

Page 9: Electromagnetic Flowmeter Design for Industrial Process

EMF-Demo Test Circuit Block Diagram

BAND PASS

FILTER

MCU

AD8228

ARM Cortex-M3

ANALOG μP

E.M. FLOW

SENSOR

LCD

KEY BOARD

GROUND

SENSE

GROUND

SENSE

VEXC

VOLTAGE

REFERENCE

4 ~ 20 mA

CURRENT

OUTPUT

ADR3412

128*64 DOT

ARRAY

24-Bit ΣΔ

ADC

4.8K SPS

ADM2483

ISOLOATED

RS-485

TRANSCEIVER

VOLTAGE

REFERENCE

ADR3425

AD7192

AD8622

ISM BAND

WIRELESS

TRANSCEIVER

ADF7023

OP07D

OP07D

DIFFERENCE

AMPLIFIER

AD8276

CON2CON1

ADA4096-2

AD8622

ADC2

PWM

AD7400A

ΣΔ Modulator

ADC0/1

ADC3

Power Line

Freq Sync

ADC4

0~5KHz PULSE

OUTPUT

ADC5

Logic Input

AD8219

iCoupler

Digital Isolator

ADuM7441

AD5410

iCoupler

Digital Isolator

½ ADuM7442

iCoupler

Digital Isolator

½ ADuM7442

iCoupler

Digital Isolator

ADuM7442 AD5700/-1

Low Power

HART ModemOpto

Opto

DVDD

Page 10: Electromagnetic Flowmeter Design for Industrial Process

Evaluation Results of EMF-Demo Test Circuit

►AD7192 + AD8276 Difference Amplifier + AD8622 BPF + AD8228 +

Electromagnetic Flow Signal Simulator

0

2

4

6

8

10

12

14

16

83

82

246

83

82

303

83

82

360

83

82

417

83

82

474

83

82

531

83

82

588

83

82

645

83

82

702

83

82

759

83

82

816

83

82

873

83

82

930

83

82

987

83

83

044

83

83

101

83

83

158

83

83

215

83

83

272

83

83

329

83

83

386

83

83

443

83

83

500

83

83

557

83

83

614

83

83

671

83

83

728

83

83

785

83

83

842

83

83

899

83

83

956

83

84

013

83

84

070

Occu

rre

nce

Code

Histogram of 4096 A/D Samples when AD8228 Connected to Signal

Simulator and Synchronous Demodulation working,ODR = 60SPS

Output Data Rate 4.7Hz 7.5Hz 10Hz 50Hz 60Hz 120Hz 150Hz 300Hz 960Hz 2400Hz 4800Hz

DS Spec (SINC4 Chop Dis) 22 22 21.5 19.5 19.5 19.5 19 19 18 17.5 16.5

Peak-to-Peak Resolution U3414.58 14.39 14.24 13.28 13.2 12.1 11.62 10.89 10.65 10.62 10.68

Page 11: Electromagnetic Flowmeter Design for Industrial Process

System Calibration Test Results of EMF-Demo Test Circuit

Flow Rate Bd Rev2#03 Bd Rev2#01

1 m/s 0.08% 0.10%

2 m/s 0.15% -0.03%

5 m/s 0.14% 0.03%

Repeatability 0.04% 0.07%

≤±0.2% of reading error at 1~5m/s flow rate for 50mm diameter pipe

Repeatability 0.04%

Linearity 0.08%

Page 12: Electromagnetic Flowmeter Design for Industrial Process

Oversampling AFE Test Circuits:

Proposed Approach_2A

Pro:

•38% lower cost, 23% lower noise.

•Cost efficient

Con:

•Need ±8V or ±15V power rail to take

wider CMV range.

•Potential CMRR degrade due to

discrete resistors.

Sensor

Electrode+

Sensor

Electrode-

10Ω

10Ω

270pF

270pF

680pF

AIN0

AIN1

+5V

+2.5V

AVSS

AVDD1 AVDD2

0.1μF 0.1μF

RegCapA RegCapD

0.1μF 0.1μF

1μF 1μF

IOVDD

+3.3V

0.1μF

DOUT/RDY

DIN

SCLK

CS

Analog Devices

ADSP-BF504F

Rg

RgREF

+5V

-5V 0.1μF10μF

10μF 0.1μF

+5V-5V

0.1μF0.1μF

REFOUT

0.1μF

5KΩ

5KΩ OP07DRZ

AD8220ARMZ

Gain =5

to 10 24-bit ΣΔ ADC

AD7172-2/AD7173-8/

AD7175-2

Page 13: Electromagnetic Flowmeter Design for Industrial Process

Oversampling AFE Test Circuits:

Proposed Approach_2A’

Pro:

•41% lower cost, 23% lower noise.

•Very cost efficient

Con:

•Need ±8V or ±15V power rail to take

wider CMV range.

•Potential CMRR degrade due to

pseudo-differential signaling.

Electrode+

Electrode-

10Ω

10Ω

270pF

270pF

680pF

AIN0

AIN1

+5V

AVSS

AVDD1 AVDD2

0.1μF 0.1μF

RegCapA RegCapD

0.1μF 0.1μF

1μF 1μF

IOVDD

+3.3V

0.1μF

DOUT/RDY

DIN

SCLK

CS

Analog Devices

ADSP-BF504F

Rg

RgREF

+5V

-5V 0.1μF10μF

10μF 0.1μF

REFOUT

0.1μF

AD8220ARMZ

Gain =5

to 10 24-bit ΣΔ ADC

AD7172-2/AD7173-8/

AD7175-2

Page 14: Electromagnetic Flowmeter Design for Industrial Process

Oversampling AFE Test Circuits:

Proposed Approach_2B

Pro:

•29% lower cost, 22% lower noise.

•More integration

•Capable of driving varied precision ADCs

Con:

•Need ±8V or ±15V power rail to

take wider CMV range.

•Not fully differential signaling.

Electrode+

Electrode-

10Ω

10Ω

270pF

270pF

680pF

AIN0

AIN1

+5V

AVSS

AVDD1 AVDD2

0.1μF 0.1μF

RegCapA RegCapD

0.1μF 0.1μF

1μF 1μF

IOVDD

+3.3V

0.1μF

DOUT/RDY

DIN

SCLK

SYNC/ERROR

CS

Analog Devices

ADSP-BF504F

Rg

RgREF

+5V

-5V 0.1μF10μF

10μF 0.1μF

REFOUT

0.1μF

AD8220ARMZ

Gain = 12.5

-5V

0.1μF

AD8475

1kΩ

1kΩ

1.25kΩ

1.25kΩ

1.25kΩ

1.25kΩ

+Vs

-Vs NC -OUT

+OUTVOCM-IN 0.4x-IN 0.8x

+IN 0.8x +IN 0.4x

10μF

+5V0.1μF 10μF

+2.5VREF

31KSPS AD7172-2

24-bit ΣΔ ADC

Gain = 0.8x

Page 15: Electromagnetic Flowmeter Design for Industrial Process

Oversampling AFE Test PCB:

EMF-AFE with SDP-B Block Diagram

E.M. FLOW SENSOR

24-Bit ΣΔ ADC

31kSPS AD7173-2

Electrode+

Electrode-

AGNDVCCBST

FB

COMP

EN

SS/TRK FREQ PG

VIN

SW

PGND

GND2GND2

GND2

GND2

GND2GND2GND2

Vcc

ADR5040

GND2

Vout

Vexc

GND2

Rset

150mV

ADP2441

I = 150mV

Rset

ANALOG FRONT-END

SGND

SDP-B

CS

SCLK

DIN

DOUT/RDY

PULSE1

PULSE2

GND

3.3VCC

3.3VCC

GND

GND

GND

GND

PC

US

B

US

B

ISOLATED H-BRIDGE DRIVE

CONSTANT

CURRENT SINK

EMF-AFE TEST PCB

24V1

GND1

24V

GND2

GND

15V

-15V

POWER

SUPPLIES

iCoupler

Digital Isolator

ADuM3210A

iCoupler

Digital Isolator

ADuM3210A

SYNC/ERROR

SYNC/ERROR

Page 16: Electromagnetic Flowmeter Design for Industrial Process

Oversampling AFE Test PCB:

EMF-AFE with SDP-B Photo

Page 17: Electromagnetic Flowmeter Design for Industrial Process

Sync-Demodulation the A/D Samples

Coil Drive Ctrl Signal 1

Coil Drive Ctrl Signal 2

Digitized Sensor Output

Flow rate Result =

(Pos. phase) - (Neg. phase)

Cycle (n) Cycle (n+1) Cycle (n+2) Cycle (n+3)

Result (n-1) Result (n) Result (n+1) Result (n+2)

Cycle (n) Cycle (n+1) Cycle (n+2) Cycle (n+3)

Cycle (n) Cycle (n+1) Cycle (n+2) Cycle (n+3)

Refresh Refresh Refresh

Pos. +

(Neg-)

Time

Net Output from Sensor

Cycle (n) Cycle (n+1) Cycle (n+2) Cycle (n+3)

Pos.+

(Neg-) (Neg-) (Neg-)

Pos.+ Pos+

Page 18: Electromagnetic Flowmeter Design for Industrial Process

Sync-Demodulation the A/D Samples

0.1m/s flow rate 0.1m/s flow rate

0.5m/s flow rate0.5m/s flow rate

A/D Sample Plots vs. Time A/D Sample Histogram

A/D Sample Plots vs. Time A/D Sample Histogram

Flow Rate (m/s) 0.1 0.2 0.5 1 2 5 10 15

Center of Peak_1 (Negative Phase) 8386984 8386738 8385892 8384575 8381731 8373345 8359418 8345540

Center of Peak_2 (Positive Phase) 8387533 8387870 8388675 8390193 8392903 8401347 8415454 8429595

Gap btw two centers (LSB) 549 1132 2783 5618 11172 28002 56036 84055

Response (LSB per m/s) 5490 5660 5566 5618 5586 5600 5604 5604

Page 19: Electromagnetic Flowmeter Design for Industrial Process

12

13

14

15

16

17

18

19

20

21

22

5 50 500 5000 50000

Pea

k-tp

-pea

k R

eso

luti

on

(B

it)

ADC Output Data Rate (SPS)

pk-pk Resolution Comparison for Oversampling EMF-AFE , Int2.5Vref

Approach_2A Approach_2B

0.1

1

10

100

5 50 500 5000 50000

RTI

pk-

pk

No

ise

(μV

)

ADC Output Data Rate (SPS)

RTI pk-pk Noise Comparison for Oversampling EMF-AFE, Int2.5Vref

Approach_2A Approach_2B

Oversampling EMF-AFEs Performance Check

--Short AIN+/AIN-, RTI pk-pk Noise (μV) & Resolution

Evaluation Results of Oversampling EMF-AFE(SDP-B)

--Short AIN+/AIN-, RTI pk-pk Noise (μV) & Resolution

Achieved <1 μVP-P noise (>20+bit) for resolving 0.005m/s instantaneous flow rate.

Page 20: Electromagnetic Flowmeter Design for Industrial Process

0

1000

2000

3000

4000

5000

6000

0.001 0.01 0.1 1

Pre

spo

nse

(μV

pe

r m

/s)

Flow Rate (m/s)

Referred-to-ADC Input EMF-AFE Response Comparison at Low Flow Rates

Approach_2A Response Approach_2B Response

1

10

100

0.001 0.01 0.1 1

RTI

pk-

pk

No

ise

V)

Flow Rate (m/s)

Referred-to-ADC Input pk-pk Noise Comparison for Oversampling EMF-AFE, Int2.5Vref

Approach_2A Approach_2B

Evaluation Results of Oversampling EMF-AFE(SDP-B)

--Attached to a Flow Signal Simulator

Linear response in the very low flow rate range.Resolve 0.005m/s instantaneous flow rate.

Page 21: Electromagnetic Flowmeter Design for Industrial Process

“Wet Calibration” Test in Customer’s Rig

Page 22: Electromagnetic Flowmeter Design for Industrial Process

“Wet Calibration” Test Results

Approach_2A

±0.2% accuracy of reading typical on range 0.5m/s to 2.2m/s

Approach_2B

±0.2% accuracy of reading typical on range 0.5m/s to 2.2m/s

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2ER

RO

R O

F R

EA

DIN

G (

%)

FLOW RATE (m/s)

ERROR CURVE OF EMF-AFE APPROACH_2A, 50mm DIAMETER

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2ER

RO

R O

F R

EA

DIN

G (

%)

FLOW RATE (m/s)

ERROR CURVE OF EMF-AFE APPROACH_2B, 50mm DIAMETER

Page 23: Electromagnetic Flowmeter Design for Industrial Process

“Wet Calibration” Test Results

Approach_2A’ single-ended signal to ADC

±0.2% accuracy of reading typical on range 0.5m/s to 2.2m/s

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

ER

RO

R O

F R

EA

DD

IN

G(%

)

FLOW RATE (m/s)

ERROR CURVE OF EMF-AFE APPROACH_2A(SE), 50mm DIAMETER

Page 24: Electromagnetic Flowmeter Design for Industrial Process

EMF-AFE-BF504F Diagram

ADI BOM: AD8220 OP07D AD7172-2 ADSP-BF504F ADUM744x ADP2441 ADR5040 AD5410 ADP1720…

E.M. FLOW SENSOR

24-Bit ΣΔ ADC

31kSPS AD7172-2

Electrode+

Electrode-

AGNDVCCBST

FB

COMP

EN

SS/TRK FREQ PG

VIN

SW

PGND

GND2GND2

GND2

GND2

GND2GND2GND2

Vcc

ADR5040

GND2

Vout

Vexc

GND2

Rset

150mV

ADP2441

I = 150mV

Rset

ANALOG FRONT-END

SGND

SDP-S

PULSE1

PULSE2

PCUS

B

US

B

ISOLATED

H-BRIDGE

DRIVE

CONSTANT

CURRENT SOURCE

EMF-AFE-BF504F PCB24V1

GND1

24V

GND2

GND

15V

-15V

POWER

SUPPLIES

iCoupler

Digital Isolator

ADuM7440A

PWM

SPI1

SPI0

ADSP-BF504F

Blackfin

Embedded

Processor

4-20mA

Current DAC

AD5410

Timer

Freq_Out

EEPROMI2C

32KBit

GND1

24V1iCoupler

Digital Isolator

4-20mA Out

/RESET

GPIO

2*16 Char LCD

ADuM7441A

SW3

SW2

AD8220

Page 25: Electromagnetic Flowmeter Design for Industrial Process

EMF-AFE-BF504F Power Supply Diagram

220V/50Hz

Line Power+15V

+24V

+8V

Vexc Sensor

excitation

OP-Amps

and ADC

0.3A

1000 V

ISOLATION

1000 V

ISOLATION

-15V -5VAGND

MC78L08

-8V

20mA

0.2A

MC79M08AGND

MC79L05

AGND

30mA

10mA

10mA

0.1A

GND2

5VA

10mA

GND2

ADP1720-

5.0

+5V

10mA

DGND

ADP1720-

5.0

5V2

GND1

DSP INT

ADP1720-

5.0

Field Bus

Excitation Low

Voltage Circuits

AGND

ADP124-

3.3

VddFlash

1.8V/70mA

DGND

ADP121-

1.8

VdspIO

3.3V/200mA

Vout

250mAADP2441

GND2

Power the DSP

IO and the

Peripherals

+24V1

GND1

GND

110V/60Hz

Line Power

N

2500 V

ISOLATION

DB101G

DB101G

DB101G

DB101G

Power Supply Board

ADP123-

ADJ

VdspINT

1.4V/104mA

Flash Memory

ADP23015Vd

5V/200mA

Page 26: Electromagnetic Flowmeter Design for Industrial Process

Electromagnetic Flowmeter Analog Front-end Demo

(EMF-AFE-BF504F)

26

Electromagnetic

flow sensor

Coil excitation

Sensor output

Freq & 4-20mA

output

Power supply

PC

Sensor Drive

Power supply

Field bus supply

AD7172-2:

31.25kSPS 24-bit ΣΔ ADC with RR

Input Buffer

ADSP-BF504F:

Blackfin DSP with

executable flash

AD8220:

JFET Input In-

amp

AD5410/5420:

12/16 bit 4-20mA

Current DAC

ADP2441:

36V/1A Sync buck

DC-DC regulator

ADuM744x:

Quad-Ch digital

isolator 1kV

Page 27: Electromagnetic Flowmeter Design for Industrial Process

PC Software GUI

Page 28: Electromagnetic Flowmeter Design for Industrial Process

PC Software GUI

Page 29: Electromagnetic Flowmeter Design for Industrial Process

EMF-AFE-BF504F Calibration Test Results in Flow Rig

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.5 1 1.5 2 2.5

ER

RO

R O

F R

EA

DIN

G (

%)

FLOW RATE (m/s)

ERROR CURVE of EMF-AFE-BF504F, 25mm DIAMETER

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 0.5 1 1.5 2 2.5

ER

RO

R O

F R

EA

DIN

G (

%)

FLOW RATE (m/s)

ERROR CURVE of EMF-AFE-BF504F, 50mm DIAMETER

Page 30: Electromagnetic Flowmeter Design for Industrial Process

Performance Comparison

Measurement Accuracy Curve

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 0.5 1 1.5 2 2.5

Err

or

of

Read

ing

(%

)

Flow rate (meter/second)

ADI Solution Meter 1 Meter 2 Meter 3 Meter 4 Meter 5

Page 31: Electromagnetic Flowmeter Design for Industrial Process

Tested a switching-mode constant current source steered by the MOSFET-

bridge. Quad channel iCoupler ADuM7440 to drive the MOSFETs.

The SMPS solution with ADP2441 consumes 17% less current (~50mA),

save 83% space, compared with the linear regulated current source +

Optocoupler + NPN/PNP transistor bridge.

Driving the Isolated MOSFET-Bridge on bottom of SMPS

Constant Current Source

24V

Opto

Opto

DVDD

E.M. FLOW

SENSOR

PULSE1

PULSE2

VOLTAGE

REFERENCE

ADR3412OP07D

ADP2441 Switching-mode

Current Source driver

Linear Regulated

Current Source driver

AGND VCC BST

FB

COMP

EN

SS/TRKFREQPG

VIN

SW

PGND

GND2 GND2

GND2

GND2

GND2 GND2 GND2

Vcc

ADR5040

GND2

Vout

24V

GND2

Rset

150mV

ADP2441

I = 150mV

Rset

ISOLATED H-BRIDGE DRIVE

CONSTANT

CURRENT SOURCE

iCoupler

Digital

Isolator

ADuM7440

PULSE1

PULSE2

E.M. FLOW

SENSOR

Page 32: Electromagnetic Flowmeter Design for Industrial Process

The oversampling EMF-AFE approaches from Analog Devices show big improvement in the circuit board area, power consumption, material cost.

The EMF-AFE(SDP-B) and EMF-AFE-BF504F test circuits have achieved excellent accuracy performance in both bench test and the flow rig calibration.

The ADI EMF-AFE-BF504F is good for the electromagnetic flow meter customers’ evaluation and further product development.

Conclusion

Page 33: Electromagnetic Flowmeter Design for Industrial Process

Collateral and Technical Support

►Article

Electromagnetic Flow Meters Achieve High Accuracy in Industrial

Applications

http://www.analog.com/library/analogdialogue/archives/48-

02/flow_meter.html

►Email for support at [email protected]

►Schematics

Available under NDA on request

Page 34: Electromagnetic Flowmeter Design for Industrial Process

Thank You For Watching!

View Additional Webcasts at

www.analog.com/Webcasts

Ask Questions on EngineerZone

ez.analog.com/Webcasts

Order ADI Products on Arrow

‘www.arrow.com’