electromagnetic waves maxwell`s equations, transmission...

106
Electromagnetic Waves Maxwell`s Equations, Transmission Lines and Waveguides By: Dr. Supreet Singh

Upload: others

Post on 26-Mar-2020

5 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Electromagnetic WavesMaxwell`s Equations,

Transmission Lines andWaveguides

By: Dr. Supreet Singh

Page 2: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission
Page 3: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission
Page 4: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission
Page 5: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission
Page 6: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission
Page 7: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

POYNTING VECTOR

•This is a measure of power per area. Unitsare watts per meter2.

•Direction is the direction in which the waveis moving.

S E B 1

0S E B

1

0

Page 8: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

POYNTING VECTOR

•However, since E and B are perpendicular,

S EB

E

Bc

Sc

Ec

B

1

1

0

0

2

0

2

and since

S EB

E

Bc

Sc

Ec

B

1

1

0

0

2

0

2

and since

Page 9: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

MAXWELL’S EQUATIONSMAXWELL’S EQUATIONS

E A E s

B A B s

dq

dd

dt

d d id

dt

B

E

0

0 00

E A E s

B A B s

dq

dd

dt

d d id

dt

B

E

0

0 00

Page 10: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

AMPERE’S LAWOriginal:

As modified by Maxwell:

B s

B s

d i

d id

dtE

0

0 0

Original:

As modified by Maxwell:

B s

B s

d i

d id

dtE

0

0 0

Page 11: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Reasons for the Extra Term

SYMMETRY

CONTINUITY

Page 12: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

SYMMETRY

A time varying magnetic field produces anelectric field.

A time varying electric field produces amagnetic field.

Page 13: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

SYMMETRYMaxwell' s Equations in Free Space

q i

d dd

dt

d dd

dt

B

E

0 0

0

0 0 0

E A E s

B A B s

Maxwell' s Equations in Free Space

q i

d dd

dt

d dd

dt

B

E

0 0

0

0 0 0

E A E s

B A B s

Page 14: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

CONTINUITY

Page 15: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

CONTINUITYWithout Maxwell' s modification:

At

At

At

P d i

P d

P d i

1 0

2

3 0

0

:

:

:

B s

B s

B s

Without Maxwell' s modification:

At

At

At

P d i

P d

P d i

1 0

2

3 0

0

:

:

:

B s

B s

B s

Page 16: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

CONTINUITYWith Maxwell's modification:

At

At

At

"Displacement current"

P d i

P dd

dti

P d i

d

dti

Ed

Ed

1 0

2 0 0 0

3 0

0

:

:

:

B s

B s

B s

With Maxwell's modification:

At

At

At

"Displacement current"

P d i

P dd

dti

P d i

d

dti

Ed

Ed

1 0

2 0 0 0

3 0

0

:

:

:

B s

B s

B s

Page 17: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

CONTINUITYi i

q CV

CA

dV Ed

qA

dEd AE

idq

dt

d

dti

d

E

Ed

0

0 0 0

0

i i

q CV

CA

dV Ed

qA

dEd AE

idq

dt

d

dti

d

E

Ed

0

0 0 0

0

Page 18: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

AMPERE’S LAW

Page 19: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

AMPERE’S LAWFor path 1:

For path 2:

For path 3:

since

B s

B s

B s

d i

d i i

d i i

i id

d

0

0 0

0 0

( )

( )

For path 1:

For path 2:

For path 3:

since

B s

B s

B s

d i

d i i

d i i

i id

d

0

0 0

0 0

( )

( )

Page 20: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

ELECTROMAGNETICWAVES

Maxwell' s Equations in Free Space

q i

d dd

dt

d dd

dt

B

E

0 0

0

0 0 0

E A E s

B A B s

Maxwell' s Equations in Free Space

q i

d dd

dt

d dd

dt

B

E

0 0

0

0 0 0

E A E s

B A B s

Page 21: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

ELECTROMAGNETICWAVES

E

x

B

t

B

x

E

t

E

B

E

Bc

c

m

m

0 0

0 0

8130 10. m/s

E

x

B

t

B

x

E

t

E

B

E

Bc

c

m

m

0 0

0 0

8130 10. m/s

Page 22: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

MAXWELL’S EQUATIONSMAXWELL’S EQUATIONS

E A E s

B A B s

dq

dd

dt

d d id

dt

i i

B

E

d

0

0 0

0

0

( )

E A E s

B A B s

dq

dd

dt

d d id

dt

i i

B

E

d

0

0 0

0

0

( )

Page 23: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

TRANSMISSION LINES ANDWAVEGUIDES

Page 24: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

ReferencesTEXT BOOK

1. John D Ryder, “Networks lines and fields”, Prentice Hall of India,New Delhi, 2005

REFERENCES1.William H Hayt and Jr John A Buck, “Engineering Electromagnetics”Tata Mc Graw-Hill Publishing Company Ltd, New Delhi, 2008

2.David K Cheng, “Field and Wave Electromagnetics”, PearsonEducation Inc, Delhi, 2004

3.John D Kraus and Daniel A Fleisch, “Electromagnetics withApplications”, Mc Graw Hill Book Co,2005

4.GSN Raju, “Electromagnetic Field Theory and Transmission Lines”,Pearson Education, 2005

5.Bhag Singh Guru and HR Hiziroglu, “Electromagnetic FieldTheory Fundamentals”, Vikas Publishing House, New Delhi, 2001.

6. N. Narayana Rao, “ Elements of Engineering Electromagnetics” 6

Page 25: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Transmission Line

Has two conductors running parallel Can propagate a signal at any frequency (in theory) Becomes lossy at high frequency Can handle low or moderate amounts of power Does not have signal distortion, unless there is lossMay or may not be immune to interference Does not have Ez or Hz components of the fields (TEMz)

Properties

Coaxial cable (coax)Twin lead

(shown connected to a 4:1impedance-transforming balun)

3

Page 26: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Transmission Line (cont.)

CAT 5 cable(twisted pair)

The two wires of the transmission line are twisted to reduce interference andradiation from discontinuities.

4

Page 27: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Transmission Line (cont.)

Microstrip

h

w

er

er

w

Stripline

h

Transmission lines commonly met on printed-circuit boards

Coplanar strips

her

w w

Coplanar waveguide (CPW)

her

w

5

Page 28: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Transmission Line (cont.)

Transmission lines are commonly met on printed-circuit boards.

A microwave integrated circuit

Microstrip line

6

Page 29: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Fiber-Optic GuideProperties

Uses a dielectric rod Can propagate a signal at any frequency (in theory) Can be made very low loss Has minimal signal distortion Very immune to interference Not suitable for high power Has both Ez and Hz components of the fields

7

Page 30: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Waveguides

Has a single hollow metal pipe Can propagate a signal only at high frequency:>c The width must be at least one-half of a wavelength Has signal distortion, even in the lossless case Immune to interference Can handle large amounts of power Has low loss (compared with a transmission line) Has either Ez or Hz component of the fields (TMz or TEz)

Properties

http://en.wikipedia.org/wiki/Waveguide_(electromagnetism) 8

Page 31: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Lumped circuits: resistors, capacitors, inductors

neglect time delays (phase)

account for propagation andtime delays (phase change)

Transmission-Line Theory

Distributed circuit elements: transmission lines

We need transmission-line theory whenever the length ofa line is significant compared with a wavelength.

9

Page 32: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Transmission Line

2 conductors

4 per-unit-length parameters:

C = capacitance/length [F/m]

L = inductance/length [H/m]

R = resistance/length [/m]

G = conductance/length [ /m or S/m]

Dz

10

Page 33: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

11

Transmission Line (cont.)

z

,i z t

+ + + + + + +- - - - - - - - - - ,v z tx x xB

11

RDz LDz

GDz CDz

z

v(z+z,t)

+

-

v(z,t)

+

-

i(z,t) i(z+z,t)

Page 34: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

12

( , )( , ) ( , ) ( , )

( , )( , ) ( , ) ( , )

i z tv z t v z z t i z t R z L z

tv z z t

i z t i z z t v z z t G z C zt

Transmission Line (cont.)

12

RDz LDz

GDz CDz

z

v(z+z,t)

+

-

v(z,t)

+

-

i(z,t) i(z+z,t)

Page 35: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

13

Hence

( , ) ( , ) ( , )( , )

( , ) ( , ) ( , )( , )

v z z t v z t i z tRi z t L

z ti z z t i z t v z z t

Gv z z t Cz t

Now let ∆z 0:

v iRi L

z ti v

Gv Cz t

“Telegrapher’sEquations”

TEM Transmission Line (cont.)

13

Page 36: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

14

To combine these, take the derivative of the first one withrespect to z:

2

2

2

2

v i iR L

z z z t

i iR L

z t z

vR Gv C

t

v vL G C

t t

Switch theorder of thederivatives.

TEM Transmission Line (cont.)

14

Page 37: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

15

2 2

2 2( ) 0

v v vRG v RC LG LC

z t t

The same equation also holds for i.

Hence, we have:

2 2

2 2

v v v vR Gv C L G C

z t t t

TEM Transmission Line (cont.)

15

Page 38: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

16

Let

Convention:

Solution:

2 ZY

( ) z zV z Ae Be

1/2

( )( )R j L G j C

principal square root

2

2

2( )

d VV

dzThen

TEM Transmission Line (cont.)

is called the "propagation constant."

/2jz z e

j

0, 0

attenuationcontant

phaseconstant

16

Page 39: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

17

TEM Transmission Line (cont.)

0 0( ) z z j zV z V e V e e

Forward travelling wave (a wave traveling in the positive z direction):

0

0

0

( , ) Re

Re

cos

z j z j t

j z j z j t

z

v z t V e e e

V e e e e

V e t z

g0t

z0

zV e

2

g

2g

The wave “repeats” when:

Hence:

17

Page 40: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

18

Phase Velocity (cont.)

0

constant

t z

dz

dtdz

dt

Set

Hence pv

1/2

Im ( )( )p

vR j L G j C

In expanded form:

18

Page 41: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

19

Characteristic Impedance Z0

0

( )

( )

V zZ

I z

0

0

( )

( )

z

z

V z V e

I z I e

so 00

0

VZ

I

+V+(z)-

I+ (z)

z

A wave is traveling in the positive z direction.

(Z0 is a number, not a function of z.)

19

Page 42: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

20

Use Telegrapher’s Equation:

v iRi L

z t

sodV

RI j LIdz

ZI

Hence0 0

z zV e ZI e

Characteristic Impedance Z0 (cont.)

20

Page 43: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

21

From this we have:

Using

We have

1/2

00

0

V Z ZZ

I Y

Y G j C

1/2

0

R j LZ

G j C

Characteristic Impedance Z0 (cont.)

Z R j L

Note: The principal branch of the square root is chosen, so that Re (Z0) > 0.21

Page 44: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

22

00

0 0

j z j j z

z z

z j zV e e

V z V e V

V e e e

e

e

0

0 cos

c

, R

os

e j t

z

z

V e t

v z t V z

z

V z

e

e t

Note:

wave in +zdirection wave in -z

direction

General Case (Waves in Both Directions)

22

Page 45: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

23

Backward-Traveling Wave

0

( )

( )

V zZ

I z

0

( )

( )

V zZ

I z

so

+V -(z)-

I - (z)

z

A wave is traveling in the negative z direction.

Note: The reference directions for voltage and current are the same asfor the forward wave.

23

Page 46: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

24

General Case

0 0

0 00

( )

1( )

z z

z z

V z V e V e

I z V e V eZ

A general superposition of forward andbackward traveling waves:

Most general case:

Note: The referencedirections for voltageand current are thesame for forward andbackward waves.

24

+V (z)-

I (z)

z

Page 47: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Lossless Case

0, 0R G

1/ 2

( )( )j R j L G j C

j LC

so 0

LC

1/2

0

R j LZ

G j C

0

LZ

C

1pv

LC

pv

(indep. of freq.)(real and indep. of freq.)25

Page 48: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

26

Lossless Case (cont.)1

pvLC

In the medium between the two conductors is homogeneous (uniform)and is characterized by (,), then we have that

LC

The speed of light in a dielectric medium is1

dc

Hence, we have that p dv c

The phase velocity does not depend on the frequency, and it is always thespeed of light (in the material).

(proof given later)

26

Page 49: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

What if we know

@V V z and

0 0V V V e

z zV z V e V e

0V V e

0 0V V V e

Terminated Transmission Line (cont.)

0 0z zV z V e V e

Hence

Can we use z = - l asa reference plane?

Terminating impedance (load)

27

Page 50: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

( ) ( )z zV z V e V e

Terminated Transmission Line (cont.)

0 0z zV z V e V e

Compare:

Note: This is simply a change of reference plane, from z = 0 to z = -l.

Terminating impedance (load)

28

Page 51: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

0 0z zV z V e V e

What is V(-l )?

0 0V V e V e

0 0

0 0

V VI e e

Z Z

propagatingforwards

propagatingbackwards

Terminated Transmission Line (cont.)

l distance away from load

The current at z = - l is then

Terminating impedance (load)

29

Page 52: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

20

0

1 L

VI e e

Z

200

00 0 1

VV eV V e ee

VV

Total volt. at distance lfrom the load

Ampl. of volt. wave prop.towards load, at the loadposition (z = 0).

Similarly,

Ampl. of volt. wave prop.away from load, at theload position (z = 0).

0

21 LV e e

L Load reflectioncoefficient

Terminated Transmission Line (cont.)

0,Z

l Reflection coefficient at z = -l

30

Page 53: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

20

2

2

0

0

2

0

1

1

1

1

L

L

L

L

V V e e

VI e e

Z

V eZ Z

I e

Input impedance seen “looking” towards loadat z = -l .

Terminated Transmission Line (cont.)

0,Z

Z

31

Page 54: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Simplifying, we have

00

0

tanh

tanhL

L

Z ZZ Z

Z Z

Terminated Transmission Line (cont.)

202

0 0 00 0 2

2 0 00

0

0 00

0 0

00

0

1

1

cosh sinh

cosh sinh

L

L L L

L LL

L

L L

L L

L

L

Z Ze

Z Z Z Z Z Z eZ Z Z

Z Z Z Z eZ Ze

Z Z

Z Z e Z Z eZ

Z Z e Z Z e

Z ZZ

Z Z

Hence, we have

32

Page 55: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

20

20

0

2

0 2

1

1

1

1

j jL

j jL

jL

jL

V V e e

VI e e

Z

eZ Z

e

Impedance is periodicwith periodg/2

2

/ 2g

g

Terminated Lossless Transmission Line

j j

Note: tanh tanh tanj j

tan repeats when

00

0

tan

tanL

L

Z jZZ Z

Z jZ

33

Page 56: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

For the remainder of our transmission line discussion we will assume that thetransmission line is lossless.

20

20

0

2

0 2

00

0

1

1

1

1

tan

tan

j jL

j jL

jL

jL

L

L

V V e e

VI e e

Z

V eZ Z

I e

Z jZZ

Z jZ

0

0

2

LL

L

g

p

Z Z

Z Z

v

Terminated Lossless Transmission Line

0 ,Z

Z

34

Page 57: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Matched load: (ZL=Z0)

0

0

0LL

L

Z Z

Z Z

For any l

No reflection from the load

A

Matched Load

0 ,Z

Z

0Z Z

0

0

0

j

j

V V e

VI e

Z

35

Page 58: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Short circuit load: (ZL = 0)

0

0

0

01

0

tan

L

Z

Z

Z jZ

Always imaginary!Note:

B

2g

scZ jX

S.C. can become an O.C.with a g/4 trans. line

g/

Short-Circuit Load

0 ,Z

0 tanscX Z

36

Page 59: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Using Transmission Lines to Synthesize Loads

A microwave filter constructed from microstrip.

This is very useful is microwave engineering.

37

Page 60: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

00

0

tan

tanL

inL

Z jZ dZ Z d Z

Z jZ d

inTH

in TH

ZV d V

Z Z

0Z

Example

Find the voltage at any point on the line.

38

Page 61: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Note: 021 j

LjV V e e

0

0

LL

L

Z Z

Z Z

20 1j d j d in

THin TH

LV dZ

Ze V

ZV e

2

2

1

1

jj din L

TH j dm TH L

Z eV V e

Z Z e

At l = d :

Hence

Example (cont.)

0 2

1

1j din

TH j din TH L

ZV V e

Z Z e

39

Page 62: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Some algebra: 2

0 2

1

1

j dL

in j dL

eZ Z d Z

e

2

20 20

2 220

0 2

20

20 0

2

0

20 0

0

111

1 111

1

1

1

j dL

j dj dLL

j d j dj dL TH LL

THj dL

j dL

j dTH L TH

j dL

j dTH THL

TH

in

in TH

eZ

Z ee

Z e Z eeZ Z

e

Z e

Z Z e Z Z

eZ

Z

Z

Z Z

Z Z Ze

Z Z

Z

2

0

20 0

0

1

1

j dL

j dTH THL

TH

e

Z Z Z Ze

Z Z

Example (cont.)

40

Page 63: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

2

02

0

1

1

jj d L

TH j dTH S L

Z eV V e

Z Z e

20

20

1

1

j din L

j din TH TH S L

Z Z e

Z Z Z Z e

where 0

0

THS

TH

Z Z

Z Z

Example (cont.)

Therefore, we have the following alternative form for the result:

Hence, we have

41

Page 64: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

2

02

0

1

1

jj d L

TH j dTH S L

Z eV V e

Z Z e

Example (cont.)

0Z

Voltage wave that would exist if there were no reflections fromthe load (a semi-infinite transmission line or a matched load).

42

Page 65: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

2 2

2 2 2 20

0

1 j d j dL L S

j d j d j d j dTH L S L L S L S

TH

e eZ

V d V e e e eZ Z

Example (cont.)

0Z

Wave-bounce method (illustrated for l = d):

43

Page 66: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Example (cont.)

22 2

22 2 20

0

1

1

j d j dL S L S

j d j d j dTH L L S L S

TH

e e

ZV d V e e e

Z Z

Geometric series:

2

0

11 , 1

1n

n

z z z zz

2 2

2 2 2 20

0

1 j d j dL L S

j d j d j d j dTH L S L L S L S

TH

e eZ

V d V e e e eZ Z

2j dL Sz e

44

Page 67: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Example (cont.)

or

2

0

202

1

1

1

1

j dL s

THj dTH

L j dL s

eZV d V

Z Ze

e

2

02

0

1

1

j dL

TH j dTH L s

Z eV d V

Z Z e

This agrees with the previous result (setting l = d).

Note: This is a very tedious method – not recommended.

Hence

45

Page 68: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

00

0

tan

tanL T

in TT L

Z jZZ Z

Z jZ

2

4 4 2g g

g

00

Tin T

L

jZZ Z

jZ

0

20

0

0in in

T

L

Z Z

ZZ

Z

Quarter-Wave Transformer

20T

inL

ZZ

Z

so

1/2

0 0T LZ Z Z

Hence

This requires ZL to be real.

ZLZ0 Z0T

Zin

46

Page 69: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

20 1 Lj j

LV V e e

20

20

1

1 L

j jL

jj jL

V V e e

V e e e

max 0

min 0

1

1

L

L

V V

V V

max

min

V

VVoltage Standing Wave Ratio VSWR

Voltage Standing Wave Ratio

0 ,Z

1

1L

L

VSWR

z

1+ L

1

1- L

0

( )V z

V

/ 2z 0z

47

Page 70: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

General Transmission Line Formulas

tanG

C

0 0 r rLC

0losslessL

ZC characteristic impedance of line (neglecting loss)(1)

(2)

(3)

Equations (1) and (2) can be used to find L and C if we know the materialproperties and the characteristic impedance of the lossless line.

Equation (3) can be used to find G if we know the material loss tangent.

a bR R R

tanG

C

(4)

Equation (4) can be used to find R (discussed later).

,iC i a b contour of conductor,

2

2

1( )

i

i s sz

C

R R J l dlI

48

Page 71: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

General Transmission Line Formulas (cont.)

tanG C

0losslessL Z

0/ losslessC Z

R R

Al four per-unit-length parameters can be found from0 ,losslessZ R

49

Page 72: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

Common Transmission Lines

0 0

1ln [ ]

2lossless r

r

bZ

a

Coax

Twin-lead

100 cosh [ ]

2lossless r

r

hZ

a

2

1 2

12

s

h

aR R

a h

a

1 1

2 2sa sbR R Ra b

a

b

,r r

h

,r r

a a

50

Page 73: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

At high frequency, discontinuity effects can become important.

Limitations of Transmission-Line Theory

Bend

incident

reflected

transmitted

The simple TL model does not account for the bend.

ZTH

ZLZ0

+-

51

Page 74: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

At high frequency, radiation effects can become important.

When will radiation occur?

We want energy to travel from the generator to the load, without radiating.

Limitations of Transmission-Line Theory (cont.)

ZTH

ZLZ0

+-

52

Page 75: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

r a

bz

The coaxial cable is a perfectlyshielded system – there is neverany radiation at any frequency, orunder any circumstances.

The fields are confined to the regionbetween the two conductors.

Limitations of Transmission-Line Theory (cont.)

53

Page 76: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

The twin lead is an open type of transmissionline – the fields extend out to infinity.

The extended fields may causeinterference with nearby objects.(This may be improved by using“twisted pair.”)

+ -

Limitations of Transmission-Line Theory (cont.)

Having fields that extend to infinity is not the same thing as having radiation, however.

54

Page 77: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

The infinite twin lead will not radiate by itself, regardless of how far apartthe lines are.

h

incident

reflected

The incident and reflected waves represent an exact solution to Maxwell’sequations on the infinite line, at any frequency.

*1 ˆRe E H 02t

S

P dS

S

Limitations of Transmission-Line Theory (cont.)

No attenuation on an infinite lossless line

55

Page 78: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

A discontinuity on the twin lead will cause radiation to occur.

Note: Radiation effectsincrease as thefrequency increases.

Limitations of Transmission-Line Theory (cont.)

h

Incident wavepipe

Obstacle

Reflected wave

Bend h

Incident wave

bend

Reflected wave 56

Page 79: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

To reduce radiation effects of the twin lead at discontinuities:

h

1) Reduce the separation distance h (keep h <<).2) Twist the lines (twisted pair).

Limitations of Transmission-Line Theory (cont.)

CAT 5 cable(twisted pair)

57

Page 80: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

58

Rectangularguide

Circularguide

Ridge guide

Common Hollow -pipe waveguides

Page 81: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

59

TRANSMISSION MEDIA

• TRANSVERSE ELECTROMAGNETIC (TEM):– COAXIAL LINES– MICROSTRIP LINES (Quasi TEM)– STRIP LINES AND SUSPENDED SUBSTRATE

• METALLIC WAVEGUIDES:– RECTANGULAR WAVEGUIDES–CIRCULAR WAVEGUIDES

• DIELECTRIC LOADED WAVEGUIDES

ANALYSIS OF WAVE PROPAGATION ON THESETRANSMISSION MEDIA THROUGH MAXWELL’SEQUATIONS

Page 82: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

60

Auxiliary Relations:

tyPermeabiliRelative

H/m104;5.

ConstantDielectricRelative

F/m10854.8;4.

CurrentConvection;3.

CurrentConduction;tyConductivi

Law)s(Ohm'2.

Velocity;Charge

Newton.1

r

12o

12

HHB

EED

JvJ

J

EJ

vq

BvEqF

or

r

oor

Page 83: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

61

Maxwell’s Equations in Large Scale Form

SdDt

SdJldH

SdMSdBt

ldE

SdB

dvSdD

SSl

SSl

S

SV

0

Page 84: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

ENEE482 62

•Maxwell’s Equations for the Time - Harmonic Case

DjJHMBjE

BD

EEtEE

eEEejEEE

jEEa

jEEajEEazyxE

ezyxEtzyxE

xrxixixr

jtjxixr

tjxixrx

zizrz

yiyryxixrx

tj

tj

,

0,

)/(tan,)cos(

]Re[])Re[(

)(

)()(),,(

]),,(Re[),,,(

: then,variationseAssume

122

22

Page 85: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

63

Boundary Conditions at a General Material Interface

s

s

s

sttnn

s

snn

stt

JHHn

MEEn

BBn

DDn

JHHBB

DD

MEE

)(ˆ)(ˆ

0)(ˆ)(ˆ

;

DensityChargeSurface

21

21

21

21

2121

21

21

D1n

D2n

h

Ds

h

E1t

E2t

m1,e1

m2,e2

Page 86: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

64

)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ

0;

0

0

21

21

21

21

2121

21

21

HnHn

EnEn

BnBn

DnDn

HHBB

DD

EE

ttnn

nn

tt

Fields at a Dielectric Interface

Page 87: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

65

HnHJ

B

Dn

ts

n

ˆ0Bn0

ˆρD

0EnoE

:ConductorPerfectaatConditionsBoundary

sn

t

+ + +n

rs

Js

Ht

Page 88: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

66

0)(ˆ)(ˆ

0)(ˆ

0)(ˆ

Hn

MEn

Bn

Dn

s

Page 89: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

67

2/;0

;0

:mediumfreeSourceaFor

)(

)(

22

2222

2

vkHkH

kEkE

EjJj

HjEEE

Wave Equation

Page 90: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

68

zayaxar

kakakakAeE

kkk

zyxE

zyxiEkz

E

y

E

x

E

Ekz

E

y

E

x

EEkE

zyx

zzyyxxzjkyjkxjk

x

zy

x

iiii

zys

Let,

k

variablesofseparation Using),,,(forSolve

,,,0

0

20

222x

202

2

2

2

2

2

202

2

2

2

2

220

2

Page 91: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

69

space.freeofadmittanceintrinsic theis

377spacefreeofimpedanceinterensic theis

1

111

waveplanecalledissolutionThe

.knpropagatioofdirection thelar toperpendicuis vectorThe

00Since

,Similarly,

0

0

00

0

0

0

0

00

00

00

0

0

00

Y

EnEnYEnEnk

eEkeEj

eEj

H

HjE

E

EkEeEE

CeEBeEAeE

rkjrkjrkj

rkj

rkjz

rkjy

rkjx

Page 92: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

70

s

j

1)1(

2j)(1

j

21

2j)(1

jjj

s

Page 93: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

71

The field amplitude decays exponentially from its surfaceAccording to e -u/d

s where u is the normal distance into theConductor, ds is the skin depth

Hn,1

:ImpedancesurfaceThe

EJ,2

msmts

m

s

ZJZEj

Z

Page 94: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

72

Parallel Polarization

z

x

Ei

Et

Er

q3

q1

q2

n1

n3

n2e0

e

0

0000

202

101

Y,

,

,120

110

k

EnYHeEE

EnYHeEE

rrrnjk

r

iirnjk

i

Page 95: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

73

sin,cos

sin,cos

sin,cos

sinsin

cossin

cossin

cossin

,,

,

331333

221222

111111

3121

333

222

111

3032010

00

3313

EEEE

EEEE

EEEE

n

aan

aan

aan

nnkknnknk

nkknYY

EnYHeEE

zx

zx

zx

zx

zx

zx

xxxx

tt

rnjk

t

Page 96: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

74

Under steady -state sinusoidal time -varyingConditions, the time -average energy stored in theElectric field is

V

e

VV

e

dVEEW

dVEEdVDEW

*

**

4

thenreal,andconstantisIf

4

1

4

1Re

Page 97: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

75

S

V

V

m

dSHEP

dVHH

dVBHW

*

*

*

Re2

1

:bygivenisSsurface

closedaacrosssmittedpower tranaverage timeThe

constantandrealisif4

4

1Re

:isfieldmagnetic theinstoredenergyaverageTime

Page 98: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

76

dVMHJEdVDEHB

j

dVMHJEdVDEHBj

dSHEVdHE

EJJ

JEEDjHMBj

EHHEHE

V

s

V

s

VV

SV

s

)(2

1

442

)(2

1)(

2

2

1

2

1

)(

)()(

****

****

**

***

***

Page 99: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

77

dSHEP

dVEEHHj

dVEEHHdVEE

dSHEdVMHJE

j

S

V

VV

S

S

V

Ss

*0

**

***

**

2

1

)(2

)(22

1

2

1)(

2

1-

tyconductiviandj-,

:byzedcharacteriismedium theIf

Page 100: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

78

volume.

in thestoredenergyreactive the times2and)( volumein the

heatlost topower the,Psurfacehe through tsmittedpower tranthe

ofsum the toequalis)(Psourcesby thedeliveredpowerThe

)(2

)(2

442

2

1Im

)(2

1P

0

s

0

***

*s

P

WWjPPP

WW

dVEEHH

dSHE

dVMHJE

ems

em

VS

ss

V

s

losspoweraverageTime

2

1)(

2***

dVEEdVEEHHPVV

Page 101: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

79

C

L RI

V

networkaofimpedance theofn DefinitioGeneral2

1)(2P

)(2P

)4

1

4

1(2

2

1

)(2

1

2

1

2

1

*

2

***

***

II

WWjZ

WWjC

IILIIjRII

C

jLjRIIZIIVI

em

em

Page 102: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

80

Transmission Lines & Waveguides

Wave Propagation in the Positive z -Direction is Represented By: e-jbz

,

,

)(

)()()(

,,

,,,,,,

,,

,,,,,,

zttztt

zttztt

zjztzzztzt

zjzt

zjztzt

zjz

zjt

zt

zjz

zjt

zt

ejehjh

ejhhje

ehhjeajeeaje

ehhjeeeajE

eyxheyxh

zyxHzyxHzyxH

eyxeeyxe

zyxEzyxEzyxE

Page 103: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

81

Modes Classification:

1. Transverse Electromagnetic (TEM) Waves

0 zz HE

2. Transverse Electric (TE), or H Modes

0but,0 zz HE

3. Transverse Magnetic (TM), or E Modes

0But,0 zz EH

4. Hybrid Modes

0,0 zz EH

Page 104: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

82

TEM WAVES

zjz

zjtt

zjt

zjtt

t

t

t

tt

ttt

eeaYehH

eyxeeE

yx

yxyxe

h

e

eh

ˆ),(

0,

entialScalar Pot0,,

eha,0

hea,0

0,0

0

2

t0tzt

t0tz

t

Page 105: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

83

wavesTEMfor

0])([,0)(

,but,0

:equationHelmholtzsatisfymustfieldThe

directionz-orin thenpropagatiofor wave

H

E

Impedance Wave,1

0

20

2t

20

2

222t

20

2

0y

x

00

0

k

kEkE

ajEkE

H

E

ZY

tttt

tztt

x

y

Page 106: Electromagnetic Waves Maxwell`s Equations, Transmission ...bbsbec.edu.in/wp-content/uploads/2020/01/ECE-3rd-EMW-BTEC-303-18.pdf · Electromagnetic Waves Maxwell`s Equations, Transmission

84

TE WAVES

0

,0

,

0

let,0)(

0),()(

0

,

22

222222

222

22

ttztt

tzztztt

ttzztt

zczt

czt

zzt

ehjh

ejhajhah

heahje

hkh

kkhk

hkyxh

HkH