electronic circuits – ee359apersonal.stevens.edu/~bmcnair/ee359-s15/class 12.pdf148 electronic...

23
148 Electronic Circuits – EE359A Bruce McNair B206 [email protected] 201-216-5549 Lecture 12

Upload: others

Post on 07-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

148

Electronic Circuits – EE359A Bruce McNair

B206

[email protected] 201-216-5549

Lecture 12

Page 2: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

149

Field Effect (MOS) Transistor

Typical dimensions

L = 0.03 - 1 µm

W = 0.1 - 100 µm

tox = 1 – 10nm

Page 3: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

150

The induced channel acquires a tapered shape and its resistance increases as vDS is increased.

vGS > Vt.

Saturation Region

Page 4: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

151

Increasing vDS beyond vDSsat causes the channel pinch-off point to move slightly away from the drain, thus reducing the effective channel length (by ΔL).

Page 5: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

152

The MOSFET parameter VA is typically in the range of 30 to 200 V.

Effect of vDS on iD in the saturation region.

Page 6: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

153

• n-channel MOSFET in saturation, incorporating the output resistance ro.

• The output resistance ro ≅ VA/ID.

Large-signal equivalent circuit model

Page 7: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

154

The current-voltage characteristics of a depletion-type n-channel MOSFET for which Vt = -4 V and k’n(W/L) = 2 mA/V2

iD - vDS characteristics iD - vGS saturation

Page 8: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

155

MOSFET as an amplifier.

Page 9: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

156

Instantaneous voltages vGS and vD

Small Signal

Page 10: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

157

Models for MOSFET neglecting the dependence of iD on vDS in saturation (channel-length modulation effect)

Page 11: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

158

Model with Output Resistance

Including the effect of channel-length modulation modeled by output resistance ro = |VA|/ID.

Page 12: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

159

T model of the MOSFET augmented with the drain-to-source resistance ro.

T model of the MOSFET

Page 13: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

160

MOSFET current mirror.

Sample Circuit Output characteristic of the current

current mirror Q2 is matched to Q1.

Page 14: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

161

The CMOS common-source amplifier

Page 15: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

162

The CMOS common-gate amplifier

Page 16: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

163

(a)  circuit;

(b)  small-signal equivalent circuit

(c)  simplified version of the equivalent circuit.

The source follower

Page 17: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

164

graphical determination of the transfer characteristic

NMOS amplifier with enhancement load

transfer characteristic.

Page 18: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

165

The NMOS amplifier with depletion load: (a) circuit; (b) graphical construction to determine the transfer characteristic; and (c) transfer characteristic.

Page 19: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

166

With the body effect of Q2.

Small-signal equivalent circuit of the depletion-load amplifier

Page 20: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

167

Simplified circuit schematic for the inverter.

The CMOS inverter

Page 21: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

168

v1 is high: (a) circuit with v1 = VDD (logic-1 level, or VOH); (b) graphical construction to determine the operating point; and (c) equivalent circuit.

CMOS inverter operation

Page 22: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

169

v1 is low: graphical construction to determine the operating point; and (c) equivalent circuit.

CMOS inverter operation

Page 23: Electronic Circuits – EE359Apersonal.stevens.edu/~bmcnair/EE359-S15/Class 12.pdf148 Electronic Circuits – EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 12

170

Voltage transfer characteristic of the CMOS inverter.