electronic circuits and electronic devices

Upload: manojmanojsarma

Post on 14-Apr-2018

334 views

Category:

Documents


10 download

TRANSCRIPT

  • 7/29/2019 Electronic Circuits and Electronic Devices

    1/150

    - 1 -

    Electronic Circuitsand Electronic

    Devices

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    2/150

    - 2 -

    PREFACE

    Thelaboratoryinvestigationsinthismanualaredesignedtodemonstratetheelectronicstechnology theory explained inmybook Electronic Circuits and Electronic Devices.Atotal of43laboratoryinvestigationsareofferedinvolvingtheconstructionandtestingofcircuitsdiscussedinthetextbook.Eachlaboratoryinvestigationconsistsof:

    atitle anintroductionthatbrieflydescribestheinvestigation alistofrequiredequipmentandcomponents circuitdiagramsandconnectiondiagrams

    step

    by

    step

    procedures

    to

    be

    followed

    alaboratoryrecordsheetforrecordingdata ananalysissectionforprocessingthedata

    Eachinvestigationcannormallybecompletedwithinatwohourperiod.Theprocedurescontain some references to the textbook;however,allnecessarycircuitand connectiondiagramsareprovidedinthemanual,sothattheinvestigationscanbeperformedwithoutthetextbook.

    DavidBell

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    3/150

    - 3 -

    CONTENTS

    1 Semiconductor Diode Characteristics 42 Diode Rectifier Circuits 93 Zener Diode .. 74 BJT Characteristics .. 195 BJT Bias Circuits 246 BJT Switching Circuits . 287 BJT Common Emitter Circuit . 338 BJT CC and CB Circuits . 379 JFET Characteristics ... 4210 JFET Bias Circuits ... 47

    11 Basic JFET Circuits . 5212 CapacitorCoupled BJT Amplifier 57

    13 DirectCoupled BJT Amplifier 6214 SCR Characteristics and 90 Phase Control 6715 SCR and TRIAC Control Circuits . 7216 UJT and PUT Circuits .. 7617 Photoconductive Cell, LED, and Solar Cell . 8218 Series Resistive Circuits 8719 Parallel Resistive Circuits 95

    20 Seriesparallel Circuits. 100

    21 Resistive Networks 104

    22 Network Theorems 110

    23 DC RCCircuit 11524 Oscilloscope 120

    25 Rectifier Voltmeter 12526 AC RLCircuit. 12927 AC RCCircuit. 13328 Series & Parallel Impedance Circuits 137

    29 Series Resonance 143

    30 Parallel Resonance 147

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    4/150

    - 4 -

    0195429885_001- 005_ch01. qxd 2/ 13/ 08 4: 13 PM Page 1

    LABORATORY

    INVESTIGATION 1SemiconductorDiode

    Characteristics

    Introduction

    Theforward

    characteristics

    of

    alow

    current

    switching

    diode

    and

    amedium

    current

    recti

    fierdiodeareinvestigated.Eachdeviceisforwardbiasedtogiveseveralcurrentlevels,andtheforwardvoltageismeasuredateachcurrent.ThisproducesatableofVF andIFquantitiesforplottingthecharacteristics.Diodereversecurrentisalsoinvestigated.

    Equipment

    DCpowersupply(050V,100mA)DCvoltmeter(50V)DCammeter(100mA)DCammeter(20 A)Lowcurrentswitchingdiode,e.g.,1N914

    Rectifierdiode,

    e.g.,

    1N4005

    Resistors(470 ,5W),(68k ,0.25W),(1k ,0.5W)Circuitboard

    Procedure1 Low-CurrentDiode Characteristics

    11 ConstructthecircuitshowninFig.11accordingtotheconnectiondiagraminFig.12.Notethatthelowcurrentdiode(D1)isconnectedtoterminalsAandBwithforwardbiasedpolarity.

    100mA

    Powersupply

    1k AA

    R

    1

    V D1

    B

    Figure 1-1 Circuit for determining low-current diode forward characteristics.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    5/150

    - 5 -

    0195429885_001- 005_ch01. qxd 2/ 13/ 08 4: 13 PM Page 2

    Ammeter

    Powersupply

    AV

    A COM

    Voltmeter

    VV

    AR1 A COM

    D1

    BCircuitboard

    Figure 1-2 Connection diagram for determining diode forward characteristics.

    12 Adjustthepowersupplyvoltagecontrolforzerooutput.

    13 SwitchonthepowersupplyandcarefullyadjustthevoltagetogivethecurrentlevelslistedforProcedure13onthelaboratoryrecordsheet.(Donotexceedadiodecurrentof20mA.)Ateachcurrentlevel,recordthediodeforwardvoltageontherecordsheet.

    14 Adjustthepowersupplytoreturnthediodevoltagetozero.Switchoff;thenusingthe20 Arangeammeter,reconstructthecircuitasshowninFig.13.Notethatthediode

    polarity

    is

    reversed,

    the

    ammeter

    is

    connected

    directly

    in

    series

    with

    the

    diode,andR1 isa68k resistor.20 A

    Powersupply

    68kA A

    R1

    V D1

    B

    Figure 1-3 Circuit diagram for determining diode reverse characteristics.

    15 Switchonthepowersupplyandadjustthedevice(reverse)voltageto30V.Recordthediodereversecurrentonthelaboratoryrecordsheet.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    6/150

    - 6 -

    0195429885_001- 005_ch01. qxd 2/ 13/ 08 4: 13 PM Page 3

    Procedure2 RectifierDiode Characteristics

    21 Resetthepowersupplyoutputtozeroandremovethelowcurrentdiodefromthecircuit.

    22 ReconstructthecircuitasillustratedinFig.14,andconnecttherectifierdiode(D2)withforwardbiasedpolaritytoterminalsAandB.NotethatR1 isnow470 andthatthevoltmeterisconnecteddirectlyinparallelwithD2.

    100mA

    Powersupply

    470 AA

    R1

    V D2

    B

    Figure 1-4 Circuit for determining rectifier diode forward characteristics.

    23 Switch on the power supply and adjust the diode voltage in steps as listed forProcedure23onthelaboratoryrecordsheet.(Donotexceedadiodecurrentof60mA.)At each voltage step, record thediode forward current on the laboratory recordsheet.

    24 SwitchoffthepowersupplyandrearrangethecircuitasinFig.13,usingtherectifierdiodeanda20 Aammeter.

    25 Switchonthepowersupplyandadjustthedevice(reverse)voltageto30V.Record

    the

    reverse

    current

    on

    the

    laboratory

    record

    sheet.

    Analysis

    1 Plot the forwardcharacteristicof the lowcurrentdiode (D1) from the resultsofProcedure1.

    2 Plot the forward characteristic of the rectifier diode (D2) from the results ofProcedure2.

    3 Fromtheforwardcharacteristics,determinetheapproximateforwardvoltagedropanddc forwardresistance forD1 andforD2.Estimate theac resistance foreachdiode.

    4Comment

    on

    the

    results

    of

    Procedures

    1

    5

    and

    2

    5

    (reverse

    biased

    diode

    current

    measurements).

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    7/150

    - 7 -

    0195429885_001- 005_ch01. qxd 2/ 13/ 08 4: 13 PM Page 4

    RecordSheetL1-1

    RecordSheetLab.#1 Semiconductor Diode Characteristics

    Date

    Procedure 1-3

    Low-Current Diode Forward Characteristics

    IF(mA)

    VF (V)

    0.1 1 2 3 5 10 15 20

    Procedure 1-5

    Reverse BiasVR IR

    30 V

    Procedure2-3

    Rectifier Diode Forward Characteristics

    IF(mA)

    VF (V)

    0.5 1 5 10 20 30 40 50 60

    Procedure2-5

    Reverse BiasVR IR

    30 V

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    8/150

    - 8 -

    0195429885_001- 005_ch01. qxd 2/ 13/ 08 4: 13 PM Page 5

    RecordSheetL1-2

    Low-Current Diode Forward Characteristics

    (mA)

    20

    15

    IF10

    5

    00 0.1 0.2 0.3 0.4

    VF

    0.5 0.6 0.7 0.8(V)

    Rectifier Diode Forward Characteristics

    (mA)

    60

    50

    40

    IF30

    20

    10

    00 0.1 0.2 0.3 0.4

    VF

    0.5 0.6 0.7 0.8(V)

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    9/150

    - 9 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 6

    LABORATORY

    INVESTIGATION 2Diode Rectifier Circuits

    Introduction

    Ahalfwaverectifiercircuitisconstructed,anditsinputandoutputwaveformsareinvestigated.Thenafullwavebridgerectifiercircuitisconstructedandtested.Finally,atwodiodefullwaverectifiercircuitusingacentretappedtransformerisconstructed,anditsoutputwaveformsareinvestigated.

    Equipment

    115V,60Hzvariablevoltagetransformer(variac)115V,60Hz,1:1isolatingtransformer115V,60Hz,transformerwithcentretappedsecondaryOscilloscopeLowcurrentdiodes(4 1N914)Resistor(100 ,0.5W)Circuitboard

    Procedure1 Half-WaveRectification

    11 ConstructthehalfwaverectifiercircuitshowninFig.21accordingtotheconnectiondiagraminFig.22.(ThisistherectifiercircuitinFig.31ainthetextbook.)

    115V

    60Hz

    VariacIsolatingtransformer

    D1

    RL

    100

    Vi

    Vo

    Tooscilloscope

    Figure 2-1 Half-wave rectifier test circuit.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    10/150

    - 10 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 7

    Oscilloscope

    VariacIsolatingtransformer

    Circuitboard

    D1

    RL

    Figure 2-2 Connection diagram for the half-wave rectifier test circuit.

    12 Adjustthevariacforthelowestoutputvoltage;thenconnectthe115V,acsupply.

    13 Switchontheacsupplyandslowlyincreasethevariacoutputuntilthediodecircuitinputwaveform(attheisolatingtransformeroutput)measures10Vpeaktopeakasdisplayedontheoscilloscope.

    14 Measurethepeaklevelofthediodecircuitoutputvoltage.Neatlysketchthecircuit

    inputand

    output

    waveforms

    on

    the

    laboratory

    record

    sheet

    and

    record

    the

    measured

    peaklevels(ViandVo).

    15 Increasethediodecircuitinputto20VpeaktopeakandrepeatProcedure14.

    16 Switchofftheacsupplyandreversethediodeterminals.

    17 SwitchontheacsupplyandrepeatProcedure14withVi 10Vpeaktopeak.

    Procedure2 Full-Wave Bridge Rectifier

    21 Construct the fullwave rectifiercircuit shown inFigs. 23 and24. (This rectifiercircuitisthesameasinFig.36inthetextbook.)

    22Repeat

    Procedures

    1

    2

    through

    1

    5.

    23 Switch off the ac supply, and then disconnect (opencircuit) one terminal of onediode.

    24 Switchontheacsupply,andnotetheopencircuiteffectontheoutput.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    11/150

    - 11 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 8

    Vi

    115V60Hz

    Isolating

    Variac

    transformer

    D1 D3Vo

    RL100

    Tooscilloscope

    D2 D4

    Figure 2-3 Bridge rectifier circuit.

    Tooscilloscope

    Isolatingtransformer

    Circuitboard

    Tooscilloscope

    Fromvariac

    D1 D3

    RLD2 D4

    Figure 2-4 Connection diagram for the bridge rectifier circuit.

    Procedure3 Two-Diode Full-Wave Rectifier

    31 ConstructthefullwaverectifiercircuitshowninFig.25accordingtotheconnectiondiagraminFig.26.(ThisrectifiercircuitisthesameasinFig.33inthetextbook.)

    32 RepeatProcedures12through15.

    115V60Hz

    Variac

    Transformerwithcentre

    tappedsecondary

    D1 RL

    100

    D2

    Vi

    Vo To

    oscilloscope

    Figure 2-5 Two-diode full-wave rectifier circuit.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    12/150

    - 12 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 9

    Fromvariac

    Transformerwith

    centretapped

    secondary

    Tooscilloscope

    Circuitboard

    D1

    Tooscilloscope

    RL

    D2

    Figure 2-6 Connection diagram for the two-diode full-wave rectifier circuit.

    Analysis

    1 DiscusstheresultsofProcedure1.Explainthedifferencebetweentheinputandoutputwaveforms.

    2 DiscusstheresultsofProcedure2.Explaintheeffectofopencircuitingonediode.3 DiscusstheresultsofProcedure3.Comparethetwodiodefullwaverectifiertothebridgerectifier.Whataretheadvantagesanddisadvantagesofeachcircuit?

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    13/150

    - 13 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 10

    RecordSheetL2-1

    RecordSheetLab.# 2 DiodeRectifier Circuits

    Date

    Half-WaveRectifier Circuit

    Procedure 1-4

    Input voltage. Vi = 10Vp-to-p

    Output voltage. Vo =

    Procedure 1-5

    Input voltage. Vi = 20 Vp-to-p

    Output voltage. Vo =

    Procedure 1-7

    Input voltage. Vi = 10Vp-to-p

    Output voltage. Vo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    14/150

    - 14 -

    0195429885_006- 011_ch02. qxd 2/ 13/ 08 4: 15 PM Page 11

    RecordSheetL2-2

    RecordSheet 2Lab.#2

    Full-Wave Bridge Rectifier Circuit

    Procedure2-2

    Input voltage. Vi = 10Vp-to-p

    Output voltage. Vo =

    Input voltage. Vi = 20 Vp-to-p

    Output voltage. Vo =

    Date

    Procedure2-4

    Procedure3-2

    Input voltage. Vi = 10Vp-to-p

    Output voltage. Vo =

    Input voltage. Vi = 20 Vp-to-p

    Output voltage. Vo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    15/150

    - 15 -

    LABORATORY

    INVESTIGATION 3

    ZenerDiode

    Introduction

    ThereversecharacteristicsofaZenerdiodeare firstinvestigated.Thedevice is reversebiasedinstepvoltagelevels,andthereversecurrentismeasuredateachstepuntilreversebreakdown occurs.After thebreakdown voltage is reached, the reverse current is increasedinstepsandthediodevoltageismeasuredateachstep.InthiswayatableofVRandIRquantitiesisobtainedforplottingthereversecharacteristics.(Zenerdiodeforwardcharacteristicscanbeinvestigatedinthesamewayasforanordinarylowcurrentdiode.)AsimpleZenerdioderegulatorcircuitisconstructedandtestedusingahalfwaverectifier

    powersupply

    as

    an

    input.

    Equipment

    DCpowersupply(050V,100mA)OscilloscopeDCAmmeter(050mA)Multirangedcvoltmeter(020V)4digit(orbetter)digitalvoltmeter115V,60Hzvariablevoltagetransformer(variac)115V,60Hz,1:1isolatingtransformer

    Zenerdiode1N753

    Lowcurrentdiode1N9141Wresistors120 ,150Capacitor(330 F,25V)Circuitboard

    Procedure1 1N753 Characteristics

    11 Connect the circuit and test equipment as shown in Fig. 41a according to theconnection diagram in Fig. 41b. Note that the Zener diode is connected withreversebiaspolarity.

    12 Adjustthepowersupplyforzerooutput;thenconnectitsacsupplyandswitchon.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    16/150

    - 16 -

    0195429885_016- 019_ch04. qxd 2/ 13/ 08 4: 17 PM Page 17

    Power

    supply

    150kA

    R1

    V

    D1

    1N753

    Ammeter

    Voltmeter(a)Circuit

    PowersupplyA

    VA COM

    VV

    A

    CircuitR1 A COM

    board D1

    B

    (b)Connection

    diagram

    Figure 4-1 Determination of Zener diode characteristics.

    13 CarefullyincreasethediodereversevoltageinstepsaslistedforProcedure13onthe laboratory record sheetuntil thediodegoes into reversebreakdown.Ateachvoltagestep,recordthediodereversecurrentontherecordsheet.

    14 When thediodebreakdownvoltage isreached,carefullyadjustthepowersupplyvoltagetosetthediodecurrenttothestepslistedforProcedure14onthelaboratoryrecordsheet.Ateachcurrentstep,recordthemeasuredreversevoltage.

    Procedure2 Zener DiodeRegulator

    21 Construct the halfwave rectifier power supply and Zener regulator shown inFig.42, togetherwith the test equipment. (This is the regulator circuitdesignedinExample317inthetextbookandanalyzedinExample318.)

    22 Adjustthevariacforzerooutput;thenconnectthe115Vacsupply.

    23 Switchontheacsupplyandslowlyincreasethevariacoutputtogivea16Vdcinput(Vi(dc))totheregulator.MeasureandrecordtheregulatoroutputvoltageattheZenerdiodeterminals.

    24 Usingtheoscilloscope,measuretheregulatorpeaktopeakinputripplevoltage(Vri)andthepeaktopeakoutputripplevoltage(Vro).

    2

    5

    Adjust

    the

    ac

    input

    voltage

    to

    increase

    Vi(dc)by

    10%.

    Measure

    and

    record

    the

    dc

    out

    putvoltagechange(theregulatorsourceeffect), Vo(source).

    26 ResetthevariactosettheregulatorinputbacktoVi(dc) 16V.

    27 DisconnectoneendofRL andobservetheoutputvoltagechangefromfullloadtonoload(theregulatorloadeffect), Vo(load ).Record Vo(load ).

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    17/150

    - 17 -

    C

    0195429885_016- 019_ch04. qxd 2/ 13/ 08 4: 17 PM Page 18

    115V

    60Hz

    VariacIsolatingtransformer

    D11N914

    C1330 F V Vi(dc)

    R1

    150

    D21N753

    RL

    120

    Vri

    Vro

    V

    Tooscilloscope

    (a)Circuit

    Voltmeter

    VV

    A COM

    Tooscilloscope

    R1D1

    1 D2

    4digitvoltmeter

    VV

    A COM

    RL

    Variac Isolatingtransformer Circuitboard

    (b)Connectiondiagram

    Figure 4-2 Zener diode regulator test circuit.

    Analysis1 FromtheresultsofProcedures13and14,plotagraphshowingtheZenerdiodereversecharacteristics.

    2 From theZenerdiode reverse characteristics,determine the reversevoltage atIZ 20mA.Calculatethedynamicimpedanceforthedevice.

    3 Calculate the line regulation, load regulation,and ripple reduction factorproducedby theZenerdioderegulator.Compare theresults to thosecalculated inExample318inthetextbook.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    18/150

    - 18 -

    0195429885_016- 019_ch04. qxd 2/ 13/ 08 4: 17 PM Page 19

    RecordSheetL4-1

    RecordSheetLab.#4 ZenerDiode

    Date

    Zener DiodeReverseCharacteristics

    Procedure 1-3VR(V) 2

    IR(mA)

    4 6 6.05 6.1 6.2

    Procedure 1-4VR(V)

    IR(mA) 5 10 20 30 40

    Zener DiodeRegulator

    Procedure2-3 Output Voltage Vo = VZ =

    Procedure2-4 Peak-to-peakripple Voltage:

    Vri = Vro =

    Procedure2-5 Source effect Vo(source)=

    Procedure2-7 Load effect Vo(load) =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    19/150

    - 19 -

    LABORATORY

    INVESTIGATION 4

    BJT Characteristics

    Introduction

    Thecommonemitter(CE)andcommonbase(CB)outputcharacteristicsaredeterminedforaBJTbythepointbypointprocess.ThetransistorisfirstconnectedinCEconfigurationanditsbasecurrent(IB)issetataparticularlevel.Thecollectoremittervoltage(VCE)invariedinsteps,andthecollectorcurrent(IC)isnotedateachVCE step.ThisgivesatableofICversusVCE levelsfromwhichtheCEoutputcharacteristiccanbeplotted.TheprocessisrepeatedforseveralIB levelstogiveafamilyofCEcharacteristics. TheBJTcommonbase(CB)outputcharacteristicsaredeterminedinasimilarway,andtheCEandCBcurrent

    gaincharacteristics

    are

    derived

    from

    the

    output

    characteristics.

    Equipment

    2dcpowersupplies(0to20V)DCvoltmeter(0to25V)DCammeter(0to100 A)2dcammeters(0to10mA)Resistors(2.2k ,0.5W),(100k ,0.25W)LowcurrentgeneralpurposenpnBJT(e.g.,2N3904)Circuitboard

    Procedure1 Common Emitter Output Characteristics

    11 ConnectthecircuitandtestequipmentasshowninFig.71aaccordingtotheconnectiondiagraminFig.71b.(Notethatthebasecurrentammeteristomeasureinmicroamps.)

    12 Setbothpowersuppliesforzerooutput,andthenswitchon.

    13 SetVCE to15V,andthenincreasethebasebiasvoltagetogiveIB 10 A.

    14 ReadtheIC levelandrecorditonthelaboratoryrecordsheet.

    15 MaintainingIB constant,adjustVCE toeachofthevoltageslistedforProcedure1on

    thelaboratory

    record

    sheet.

    Record

    the

    measured

    IC at

    each

    VCE level.

    (At

    each

    IC

    measurement,carefullycheckandadjustIB ifnecessary.)

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    20/150

    - 20 -

    0195429885_032- 036_ch07. qxd 2/ 13/ 08 4: 20 PM Page 33

    IC

    AIB

    R1

    APower

    Powersupply

    100k VA supply

    (a)CEtestcircuit

    Ammeter(IB) Ammeter(IC) Voltmeter(VCE)

    VA

    VA COM

    AVA COM

    VA COM

    Powersupply

    R1 CBEQ1

    Powersupply

    Circuitboard

    (b)Connectiondiagram

    Figure 7-1 Circuit and connection diagram for determining BJ T CE characteristics.

    16 ReadjustVCE to15VandsetIB to20 A.ReadtheIC levelandrecorditonthelaboratoryrecordsheet.

    17 RepeatProcedure15.

    18 ReadjustVCE to15VandsetIB to30 A.ReadtheIC levelandrecorditonthelabo

    ratory

    record

    sheet.

    19 RepeatProcedure15.

    110 ReadjustVCE to15Vandset IB to40 A.Read the IC levelandrecord iton thelaboratoryrecordsheet.

    111 RepeatProcedure15.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    21/150

    - 21 -

    0195429885_032- 036_ch07. qxd 2/ 13/ 08 4: 20 PM Page 34

    Procedure2 Common Base Output Characteristics

    21 Set thepowersupplyvoltages tozero,switchoff,and thenmodify thecircuitasshowninFig.72.

    IE ICR1

    Powersupply

    A2.2k A

    PowerV supply

    (a)CBtestcircuit

    Ammeter(IE) Ammeter(IC) Voltmeter(VCE)

    VA

    VA COM

    AV

    A COM

    VA COM

    R1CBEQ1

    Power

    supply

    Power

    supply

    Circuitboard

    (b)Connectiondiagram

    Figure 7-2 Circuit and connection diagram for determining BJ T CB characteristics.

    22 Withbothpowersuppliessettozero,switchon.

    23 AdjustVCB to15V;thenincreasethebasebiasvoltagetoproducea1mAemittercurrent(IE).

    24Read

    the

    IC level

    and

    record

    it

    on

    the

    laboratory

    record

    sheet.

    25 MaintainingIE constant,adjustVCB toeachofvoltageslistedforProcedure2onthelaboratoryrecordsheet.RecordthemeasuredIC ateachVCB level.(AteachICmeasurement,carefullycheckandadjustIE ifnecessary.)

    26 ReadjustVCB to15VandsetIE to3mA.ReadtheIC levelandrecorditonthelaboratoryrecordsheet.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    22/150

    - 22 -

    0195429885_032- 036_ch07. qxd 2/ 13/ 08 4: 20 PM Page 35

    27 RepeatProcedure25.

    28 ReadjustVCB to15VandsetIE to5mA.ReadtheIC levelandrecorditonthelabo ratoryrecordsheet.

    29Repeat

    Procedure

    25.

    Analysis

    1 PlottheBJTCEcharacteristicsfromtheresultsofProcedure1.2 DrawaverticallineontheCEcharacteristicsatVCE 5V.Fromtheintersectionsofthislinewiththedevicecharacteristics,prepareatableofcorrespondingIC andIB levels.Seethelaboratoryrecordsheet.

    3 CalculatethehFEvaluesforeachIC levelintheVCE 5VcolumnintheIC/IBtable,andrecordtheseinthetable.

    4Plot

    the

    BJT

    CE

    current

    gain

    characteristics

    from

    the

    IC/IBtable.

    5 PlottheBJTCBcharacteristicsfromtheresultsofProcedure2.6 DrawaverticallineontheCBcharacteristicsatVCB 5V.Fromtheintersectionsofthislinewiththedevicecharacteristics, prepareatableofcorrespondingICandIElevels.Seethelaboratoryrecordsheet.

    7 CalculatethehFBvaluesforeachIC levelintheIC/IEtable.8 PlottheBJTCBcurrentgaincharacteristicsfromtheIC/IEtable.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    23/150

    - 23 -

    0195429885_032- 036_ch07. qxd 2/ 13/ 08 4: 20 PM Page 36

    RecordSheetL7-1

    RecordSheetLab.# 7 BJTCharacteristics

    Date

    Procedure 1 Common-Emitter Characteristics

    (IB= 10 A)

    (IB= 20 A)

    (IB= 30 A)

    (IB= 40 A)

    VCE(V)

    IC(mA)

    IC(mA)

    IC(mA)

    IC(mA)

    0.5 1 2 5 10 15

    Fromthe CE Characteristics

    (VCE = 5 V) IB(A) 10

    IC(mA)

    hFE

    20 30 40

    Procedure2 Common-Base Characteristics

    (IE = 1 mA)

    (IE= 3 mA)

    (IE= 5 mA)

    VCB(V)

    IC(mA)

    IC(mA)

    IC(mA)

    0.5 1 2 5 10 15

    Fromthe CB Characteristics

    (VCB = 5 V) IE(mA) 1 3 5

    IC(mA)

    hFB

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    24/150

    - 24 -

    LABORATORY

    INVESTIGATION 5

    BJT Bias Circuits

    Introduction

    ThreebasicBJTbiascircuitsareinvestigated:basebias,collectortobasebias,andvoltagedividerbias.TwotransistorswithdifferenthFEvalues(hFE(A)andhFE(B))areusedtodemonstratethedccurrentgaineffectoneachbiascircuit.Eachcircuitisconstructed,andthedcvoltagesthroughoutthecircuitaremeasuredfortheBJTwithhFE(A) andthenfortheBJTwithhFE(B).Theresultsarecomparedwithcircuitsinthetextbook.

    Equipment

    DCpower

    supply(0

    to

    20

    V)

    DCvoltmeter(0to20V)0.25Wresistors470k,270k,33k,12k,2.2k,1.2k,1k2differenttypeoflowcurrentnpnBJTs(e.g.,2N3904and2N718)Circuitboard

    Procedure1 Base Bias and hFE Values

    11 IdentifythetwotransistorsasAandB.

    12 UsingtransistorA,connect thebasebiascircuitand testequipmentasshown inFig.91.

    13Switch

    on

    the

    power

    supply

    and

    adjust

    its

    output

    to

    give

    VCC 18

    V.

    14 MeasureVCE. IftransistorQ1 issaturated,increasethebaseresistorasnecessarytomoveQ1outofthesaturatedstate.Onthelaboratoryrecordsheet,recordVCEandtheresistanceofRB forthebasebiascircuitwithtransistorA.

    15 Switchoffthepowersupply,andsubstitutetransistorBfortransistorA.

    16 SwitchthepowersupplyonandagainandcheckthatVCC 18V.

    17 MeasureVCE andagain increaseRB ifnecessary tomove the transistoroutof thesaturatedstate.RecordVCE andtheresistanceofRB forthebasebiascircuitwithtransistorBonthelaboratoryrecordsheet.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    25/150

    - 25 -

    0195429885_041- 044_ch09. qxd 2/ 13/ 08 4: 22 PM Page 42

    Powersupply

    VCC

    18V

    VoltmeterCircuitboard

    RCRB470k RC2.2k V RB

    VA COM

    Q1

    CB Q1E

    (a)Basebiastestcircuit (b)Connectiondiagram

    Figure 9-1 Base bias test circuit and connection diagram.

    Procedure2 Collector-to-BaseBias

    21 UsingtransistorA,connectthecollectortobasebiascircuitandtestequipmentasshowninFig.92.

    Powersupply

    VCC

    18V

    RC

    VoltmeterCircuitboard

    RC

    RB270k

    2.2kQ1

    V

    VA COM

    RB

    CB Q1E

    (a)Collectortobasebiastestcircuit (b)Connectiondiagram

    Figure 9-2 Collector-to-basebias test circuit and connection diagram.

    22 SwitchonthepowersupplyandadjustitsoutputtogiveVCC 18V.

    23Measure

    VCE,

    and

    on

    the

    laboratory

    record

    sheet,

    note

    the

    measured

    voltage

    for

    collectortobasebiaswithtransistorA.

    24 Switchoffthepowersupply,andsubstitutetransistorBfortransistorA.

    25 SwitchthepowersupplyonandagaincheckthatVCC 18V.

    26 MeasureVCE againandrecordthemeasuredvoltageforcollectortobasebiaswithtransistorB.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    26/150

    - 26 -

    0195429885_041- 044_ch09. qxd 2/ 13/ 08 4: 22 PM Page 43

    Procedure3 Voltage DividerBias

    31 UsingtransistorA,connect thevoltagedividerbiascircuitand testequipmentasshowninFig.93.

    R1 RC

    VCC

    18V VoltmeterCircuitboard

    Powersupply

    33k

    R212k

    1.2kQ1

    RE1k

    V

    VA COM

    R1 RC

    CB Q1E

    R2 RE

    (a)Voltagedividerbiastestcircuit (b)Connectiondiagram

    Figure 9-3 Voltage divider bias test circuit and connection diagram.

    32 SwitchonthepowersupplyandadjustitsoutputtogiveVCC 18V.

    33 MeasureVC andVE andnotethemeasuredvoltagesforvoltagedividerbiaswithtransistorAonthelaboratoryrecordsheet.

    34 Switchoffthepowersupply,andsubstitutetransistorBfortransistorA.

    35 SwitchthepowersupplyonandonceagaincheckthatVCC 18V.

    36 MeasureVC andVE againandnotethemeasuredvoltagesforvoltagedividerbiaswithtransistorBonthelaboratoryrecordsheet.

    Analysis

    1 FromtheresultsofProcedure1calculatehFE(A)andhFE(B).2 OnthelaboratoryrecordsheettabulatethemaximumandminimumVCE levelsforeachbiascircuitfortransistorsAandB.UsethemeasuredvoltagestocalculateIC

    for

    each

    circuit.

    Record

    the

    IC levels

    in

    the

    table

    on

    the

    laboratory

    record

    sheet.

    3 Drawadcloadlineandmarkthebiaspointextremesforeachbiascircuit.4 ComparethecircuitstabilityforeachbiascircuittothesimilarcircuitsinSection55inthetextbook.

    5 UsingthemeasuredhFEvalues,analyzeeachcircuittocalculateICandVCE.Comparethecalculatedandmeasuredquantities.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    27/150

    - 27 -

    0195429885_041- 044_ch09. qxd 2/ 13/ 08 4: 22 PM Page 44

    RecordSheetL9-1

    RecordSheetLab.#9 BJTBias Circuits

    Date

    Procedure 1

    Transistor A

    Transistor B

    VCE RB IB IC hFE

    Procedure2

    Transistor ATransistor B

    VCE RB IB IC

    Procedure 3

    Transistor A

    Transistor B

    VC VE VCE IC

    Analysis

    VCE(min)

    VCE(max)

    IC(min)

    IC(max)

    Basebias Collector-to-base

    bias

    Voltage divider

    bias

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    28/150

    - 28 -

    0195429885_045- 049_ch10. qxd 2/ 13/ 08 4: 23 PM Page 45

    LABORATORY

    INVESTIGATION 6BJT Switching Circuits

    Introduction

    AdirectcoupledBJTswitchingcircuit isconstructedand testedwithdc inputvoltagesandwithasquarewaveinput.Twocapacitorcoupledswitchingcircuitsarealsotested:onewiththeBJTbiasedinanormallyonstate,andtheotherwiththeBJTnormallyoff.

    Equipment

    OscilloscopeSquarewavegenerator2dcpowersupplies(0to20V)DCvoltmeter(0to20V)Resistors(4.7k ,0.25W),(8.2k ,0.25W),(27k ,0.25W),(39k ,0.25W)Capacitors(0.22 F,25V)LowcurrentgeneralpurposenpnBJT(e.g.,2N3904)Circuitboard

    Procedure1 Direct-Coupled Switching Circuit

    11 ConstructthedirectcoupledBJTswitchingcircuit inFig.101. (This isthecircuitdesignedinExample522inthetextbook.)

    VCC

    12V Powersupply

    CircuitboardPowersupply

    RB

    27k

    RC8.2k

    Q1

    RC

    RB CB Q1E

    (a)Directcoupledswitchingcircuit (b)Connectiondiagram

    Figure 10-1 Direct-coupled BJ T switching circuit.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    29/150

    - 29 -

    RB

    0195429885_045- 049_ch10. qxd 2/ 13/ 08 4: 23 PM Page 46

    12 SwitchonthecollectorpowersupplyandadjustVCC to12V.

    13 SwitchonthebasepowersupplyandadjustVB to0V.

    14 MeasureandrecordVCE.

    15 AdjustVB to5VandagainmeasureandrecordVCE.

    16 SubstitutethesignalgeneratorforthebasesupplyvoltageasinFig.102,andconnecttheoscilloscope(using10:1probes)tomonitorthewaveforms.

    VCC

    12V

    Tooscilloscope

    Powersupply

    Tooscilloscope

    RB

    RC8.2k

    Q1

    SignalgeneratorRC

    CQ

    B 1

    27kE

    (a)Directcoupledcircuit

    Circuitboard

    (b)Connectiondiagram

    Figure 10-2 Waveform investigation for a direct-coupled BJ T switching circuit.

    17 Setthesignalgeneratoroutputfora;3V,10kHzsquarewave.

    18 Sketchthecircuitinputandoutputwaveformsonthelaboratoryrecordsheet,andnotetheupperandlowerpeakvoltages.

    19Increase

    the

    signal

    frequency

    to

    investigate

    the

    circuit

    switching

    times.

    110 Measureandrecordtheturnontime(ton)andtheturnofftime(toff),andsketchthewaveformsontherecordsheet.

    Procedure2 Normally-On Capacitor-CoupledSwitching Circuit

    21 ConstructthenormallyoncapacitorcoupledBJTswitchingcircuitinFig.103.(Thiscircuit is designed inExample 523 in the textbook.)Leave the signal generatorunconnectedatthistime.

    22 SwitchonthecollectorpowersupplyandadjustVCC to9V.

    23Measure

    VCE and

    note

    the

    voltage

    on

    the

    record

    sheet.

    24 ShortcircuitthetransistorbaseandemitterterminalsandagainmeasureandrecordVCE.Removetheshortcircuit.

    25 Connectthesignalgeneratorandadjustthesignaltoa;3V,10kHzsquarewave.

    26 Sketchthecircuitinputandoutputwaveformsonthelaboratoryrecordsheet,andnotetheupperandlowerpeakvoltages.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    30/150

    - 30 -

    E

    0195429885_045- 049_ch10. qxd 2/ 13/ 08 4: 23 PM Page 47

    RB39k

    VCC

    9V

    RC

    Tooscilloscope

    Powersupply

    Tooscilloscope

    4.7kSignalgenerator

    RBRC

    C1

    Q1

    0.22 F

    CB Q1E

    C1

    (a)Normallyoncircuit

    Circuitboard

    (b)Connectiondiagram

    Figure 10-3 Normally-on capacitor-coupled BJ T switching circuit.

    Procedure3 Normally-OffCapacitor-CoupledSwitching Circuit

    31 Switchoffthepowersupply,andreconstructthecircuitintothenormallyoffcapacitorcoupledswitchingcircuitinFig.104.

    To RC

    VCC

    9V

    Tooscilloscope

    Powersupply

    oscilloscope 4.7kC1

    Q10.22 F

    SignalgeneratorRC

    CQ

    RB39k B 1C1 RB

    (a)Normallyoffcircuit

    Circuitboard

    (b)Connectiondiagram

    Figure 10-4 Normally-off capacitor-coupled BJ T switching circuit.

    32 SwitchonthepowersupplyandsetVCC to9V.

    33 MeasureVCE andnotethevoltageontherecordsheet.

    34 Connectthesignalgeneratorandadjustthesignaltoa;3V,10kHzsquarewave.

    35 Sketchthecircuitinputandoutputwaveformsonthelaboratoryrecordsheet,andnotetheupperandlowerpeakvoltages.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    31/150

    - 31 -

    0195429885_045- 049_ch10. qxd 2/ 13/ 08 4: 23 PM Page 48

    Analysis

    1 Discuss themeasuredvoltagesandwaveforms for thedirectcoupled switching

    circuit.2 Analyze thedirectcoupledcircuit todetermine IC,IB,andhFE(min).Calculate the

    minimumbaseinputvoltagetodrivethetransistorintosaturation.3 Discussthecircuitswitchingtimes.4 Discussthemeasuredvoltagesandwaveformsforthenormallyoncapacitorcoupledswitchingcircuit.

    5 AnalyzethenormallyoncapacitorcoupledcircuittodetermineIC,IB,andhFE(min).Calculatetheminimumbaseinputvoltagetodrivethetransistorintocutoff.

    6 Discussthemeasuredvoltagesandwaveformsforthenormallyoffcapacitorcoupledswitchingcircuit.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    32/150

    - 32 -

    0195429885_045- 049_ch10. qxd 2/ 13/ 08 4: 23 PM Page 49

    RecordSheetL10-1

    RecordSheetLab.# 10 BJTSwitching Circuits

    Date

    Procedure 1-4

    Procedure 1-5

    Procedure 1-8

    +Vo(pk) =Vo(pk) =

    (Vi = O)

    (Vi= 5 V)

    VCE =

    VCE =

    Input

    waveform

    Output

    waveform

    Procedure 1-10

    ton=toff=

    Input

    waveform

    Output

    waveform

    Procedure2-3

    Procedure2-4

    Procedure2-6

    +Vo(pk) =Vo(pk) =

    (Vi = O)

    VCE =

    VCE =

    Input

    waveform

    Output

    waveform

    Procedure3-3

    Procedure3-5

    +Vo(pk) =Vo(pk) =

    VCE =

    Input

    waveform

    Output

    waveform

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    33/150

    - 33 -

    0195429885_050- 053_ch11. qxd 2/ 13/ 08 4: 24 PM Page 50

    LABORATORY

    INVESTIGATION 7BJT Common EmitterCircuit

    Introduction

    ABJT commonemitter circuit is constructed and tested for dc and ac performance.Circuitmaximumacoutputvoltageisinvestigatedtogetherwithacvoltagegain,inputimpedance,andoutputimpedance.Thecircuitisthenmodifiedtohaveanunbypassedemitterresistor,andtheacperformanceisagaininvestigated.

    Equipment

    DCpowersupply(0to20V)DCvoltmeter(0to20V)OscilloscopeSignalgenerator0.25Wresistors3.9k,4.7k,56k,68k,82k15Vcapacitors0.12 F,10 F,180 FLowcurrentgeneralpurposenpnBJT(e.g.,2N3904)

    Circuitboard

    Procedure1 DC and AC Conditions

    11 ConstructthecircuitinFig.111.(ThisisthecircuitinFig.624inthetextbook.)Leavethesignalgeneratorandoscilloscopeunconnectedatthistime.

    12 SwitchonthepowersupplyandadjustitsoutputforVCC 12V.

    13 MeasureandrecordthelevelsofVB,VE,andVC.

    14 ConnectthesignalgeneratorandoscilloscopetothecircuitasillustratedinFig.111b.

    15 Setthesignalgeneratortoproducea3kHzsinewaveandadjustthesignalamplitudetogivemaximumundistortedoutputfromthecircuit.(Notethatitmaybenecessary

    touse

    avoltage

    dividertypically

    a100

    k and

    a100

    resistorto

    reduce

    the

    signalamplitude.)

    16 Sketch the input and outputwaveforms, and record the peak input and outputvoltages.

    17 Adjustthesignalamplitudetoproducea;1Voutput.RecordthepeaklevelsofViandVo andcalculatethecircuitvoltagegain.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    34/150

    - 34 -

    1

    0195429885_050- 053_ch11. qxd 2/ 13/ 08 4: 24 PM Page 51

    R168k RC3.9k

    VCC

    12V

    C3

    C1

    10 F

    vs R256k

    Q1

    RE4.7k

    0.12 F

    C2180 F

    RL82k Tooscilloscope

    R1

    Tooscilloscope

    RCC3

    (a)Commonemittertestcircuit

    Signalgenerator

    C1

    R2 RE

    PowersupplyCB QE

    C2 RL

    Circuitboard

    (b)Connectiondiagram

    Figure 11-1 Common-emitter circuit and test equipment.

    Procedure2 Input and Output Impedances

    21 SetthesignalgeneratorasinProcedure17.

    22 Temporarilydisconnect thesignalgeneratorandconnecta1.8k resistor (Ra) inserieswiththesignalgeneratorandthecircuitinput,asillustratedinFig.112.

    Ra

    1kvs

    R168kC1

    R256k

    Tooscilloscope

    R1

    C1

    Tooscilloscope

    RCC3

    Powersupply

    (a)Circuitmodification

    Signalgenerator

    Ra

    R2 RE

    CB Q1E

    C2 RL

    Circuitboard

    (b)Connectiondiagrammodification

    Figure 11-2 Common-emitter circuit input resistance measurement.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    35/150

    - 35 -

    0195429885_050- 053_ch11. qxd 2/ 13/ 08 4: 24 PM Page 52

    23 CheckthatthesignalvoltageamplitudeappliedtoRa isthesameasthatmeasuredinProcedure17.

    24 Observe theamplitudeof thecircuitacoutputvoltage.Change the resistanceof

    Ra asnecessary

    to

    give

    an

    output

    amplitude

    which

    is

    half

    of

    that

    measured

    in

    Procedure15.RecordtheresistanceofRa asthecircuitinputimpedance(Zi).

    25 Disconnect Ra, reconnect the signal generator, and adjust the signal level to thatmeasuredinProcedure17onceagain.

    26 Temporarilydisconnectthe82k loadresistor(RL)andsubstitutea3.9k resistor(Rb)forRL.

    27 Observe theamplitudeof thecircuitacoutputvoltage.Change the resistanceofRb as necessary togive anoutput amplitudewhich ishalfof thatmeasured inProcedure16.RecordtheresistanceofRb asthecircuitoutputimpedance(Zo).

    Procedure3 UnbypassedEmitter Resistor31 DisconnectRbandreconnectRL.

    32 Disconnecttheemitterbypasscapacitor;thenrepeatProcedure17.

    33 RepeatProcedures21through27startingwithanewresistanceofRa 27k andusingRb 3.9k ,asbefore.

    Analysis

    1 FromtheresultsofProcedure1,plotthedcandacloadlinesfortheCEcircuitandshowthemaximumoutputvoltageswing.

    2Analyze

    the

    circuit

    to

    determine

    the

    dc

    voltages

    and

    compare

    to

    the

    measured

    voltages.3 Analyze the circuit todetermineAv,and compare to theAv from the resultsofProcedure17.Commentonthephaserelationshipbetweentheinputandoutputwaveforms.

    4 AnalyzethecommonemittercircuittoestimateZiandZo.ComparethecalculatedvaluestothosemeasuredinProcedure2.

    5 FromtheresultsofProcedure33,calculatethevoltagegain(Av)forthecommonemittercircuitwithanunbypassedemitterresistor.AnalyzethecircuittodetermineAvandcomparetothemeasuredAv.

    6 AnalyzethecommonemittercircuitwithanunbypassedemitterresistortoestimateZiandZ

    o

    .ComparethecalculatedvaluestothosemeasuredinProcedure33.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    36/150

    - 36 -

    0195429885_050- 053_ch11. qxd 2/ 13/ 08 4: 24 PM Page 53

    RecordSheetL11-1

    RecordSheetLab.#11 BJTCommon-Emitter Circuit

    Date

    Procedure 1-3 VCC VB VE VC

    Procedure 1-6Input

    wavefor

    m

    Output

    wavefor

    m

    Procedure 1-7 Vi(pk) = Vo(pk) = Av =

    Procedure2-4 Zi =

    Procedure2-7 Zo =

    Procedure3-2 Vi(pk) = Vo(pk) = Av =

    Procedure3-3 Zi = Zo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    37/150

    - 37 -

    0195429885_054- 058_ch12. qxd 2/ 13/ 08 4: 25 PM Page 54

    LABORATORY

    INVESTIGATION 8

    BJT CC and CB Circuits

    Introduction

    BJTcommoncollectorandcommonbasecircuitsareconstructedandtestedfordcandacperformance.Voltagegain,inputimpedance,andoutputimpedanceareinvestigatedforbothcircuits.

    Equipment

    DCpowersupply(0to20V)DCvoltmeter(0to20V)OscilloscopeSignalgenerator0.25Wresistors(56 ,1k ,1.2k ,3.9k ,4.7k ,27k ,56k ,68k ,82k )15Vcapacitors(0.12 F,10 F,180 F)LowcurrentgeneralpurposenpnBJT(e.g.,2N3904)Circuitboard

    Procedure1 Common-CollectorCircuit (EmitterFollower)

    11 ConstructthecircuitinFig.121.Leavethesignalgeneratorandoscilloscopeunconnectedatthistime.

    12 SwitchonthepowersupplyandadjustitsoutputforVCC 12V.

    13 MeasureVB,VE,andVC,andrecordthevoltagesonthelaboratoryrecordsheet.

    14 ConnectthesignalgeneratorandoscilloscopetothecircuitasillustratedinFig.121.

    15 Setthesignalgeneratorfrequencyto3kHzandadjustthesignalamplitudetogivea;0.5Voutput.

    16 Sketchtheinputandoutputwaveformsonthelaboratoryrecordsheet,andrecordthepeakinputandoutputvoltagelevels.

    17Temporarily

    disconnect

    the

    signal

    generator

    and

    connect

    a27

    k resistor

    (Ra)

    in

    serieswiththesignalgeneratorandthecircuitinput.

    18 CheckthattheacsignalvoltagetoRa isthesameasthecircuitinputvoltagemeasuredinProcedure16.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    38/150

    - 38 -

    1

    0195429885_054- 058_ch12. qxd 2/ 13/ 08 4: 25 PM Page 55

    R168k

    VCC

    12V

    C1

    Q110 F C2

    Powersupply

    vR2

    s 56kRE

    4.7k 180 F RL1kTooscilloscope

    R1

    (a)Commoncollectortestcircuit

    Signalgenerator

    C1

    R2 RE

    CB Q ToE

    oscilloscope

    C2 RL

    Circuitboard

    (b)Connectiondiagram

    Figure 12-1 BJ T Common-collector circuit and test equipment.

    19 Observetheamplitudeofthecircuitacoutputvoltage.ChangetheresistanceofRaasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure16.RecordtheresistanceofRaasthecircuitinputimpedance(Zi).

    110 DisconnectRa,reconnect thesignalgenerator,andagainadjust thesignal level tothat

    measured

    in

    Procedure

    16.

    111 Temporarilyconnecta56 resistor(Rb)inparallelwithRL;thenreadjusttheinputamplitudetogivethemaximumundistortedoutput.

    112 DisconnectandreconnectRb toseeifitspresencereducestheoutputamplitudebyafactorof2.ChangeRb asnecessary togivethiseffect.RecordtheresistanceofRbasthecircuitoutputimpedance(Zo).

    Procedure2 Common-Base Circuit

    21 ConvertthecommoncollectorcircuitintoacommonbasecircuitbythemodificationsshowninFig.122.Leavethesignalgeneratorandoscilloscopeunconnectedatthis

    time.(The

    circuit

    in

    Fig.

    12

    2a

    is

    the

    same

    as

    in

    Fig.

    638

    in

    the

    textbook.)

    22 SwitchonthepowersupplyandadjustitsoutputforVCC 12V.

    23 MeasureVB,VE,andVC,andrecordthevoltagesonthelaboratoryrecordsheet.

    24 Connect the signal generator and oscilloscope to the circuit as illustrated inFig.122.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    39/150

    - 39 -

    s R

    0195429885_054- 058_ch12. qxd 2/ 13/ 08 4: 25 PM Page 56

    R168k RC3.9k

    VCC

    12V

    C3Circuitboard

    C3

    Powersupply

    R2C110 F

    0.12 FQ1

    C2

    180 F

    R1

    RL82k

    C1R

    RC

    CB Q1E

    Tooscilloscope

    56k RE v4.7k E2 C2 RL

    (a)Commonbasetestcircuit

    Tooscilloscope

    Signalgenerator

    (b)Connectiondiagram

    Figure 12-2 BJ T Common-base circuit and test equipment.

    25 Setthesignalgeneratorfor3kHzsinewaveandadjustthesignalamplitudetogivea;1Voutputfromthecircuit.

    26 Sketchtheinputandoutputwaveformsonthelaboratoryrecordsheetandrecordthepeakinputandoutputvoltagelevels.

    27 Temporarilydisconnectthesignalgeneratorandconnecta56 resistor(Ra)inseries

    withthe

    signal

    generator

    and

    the

    circuit

    input.

    28 CheckthattheacsignalvoltagetoRa isthesameasthecircuitinputvoltagemeasuredinProcedure26.

    29 Observetheamplitudeoftheacoutputvoltage.ChangetheresistanceofRa asnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure26.RecordtheresistanceofRaasthecircuitinputimpedance(Zi).

    210 DisconnectRa,reconnectthesignalgenerator,andadjustthesignalleveltothatmeasuredinProcedure26onceagain.

    211 Temporarilydisconnecttheloadresistor(RL)andsubstitutea3.9k resistor(Rb)forRL.

    212 Observe theamplitudeof theacoutputvoltage.Change the resistanceofRb as

    necessaryto

    give

    an

    amplitude

    which

    is

    half

    of

    that

    measured

    in

    Procedure

    26.

    RecordtheresistanceofRb asthecircuitoutputimpedance(Zo).

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    40/150

    - 40 -

    0195429885_054- 058_ch12. qxd 2/ 13/ 08 4: 25 PM Page 57

    Analysis

    1 From the resultsofProcedure1,plot thedcandac load lines for the common

    collectorcircuit

    and

    show

    the

    maximum

    output

    voltage

    swing.

    2 Calculate the commoncollector circuit voltage gain (Av) from the results ofProcedure 16.Analyze the circuit to determineAv, and compare it to theAvcalculatedfromthemeasurements.

    3 Analyze thecommoncollectorcircuit toestimateZi andZo.Compare thecalculatedvaluestothosemeasuredinProcedure1.

    4 From the resultsofProcedure2,plot thedcandac load lines for thecommoncollectorcircuitandshowthemaximumoutputvoltageswing.

    5 Calculate the commoncollector circuit voltage gain (Av) from the results ofProcedure26.AnalyzethecircuittodetermineAv,andcomparetotheAv calculatedfromthemeasurements.

    6 AnalyzethecommoncollectorcircuittoestimateZiandZo.Comparethecalculated

    valuesto

    those

    measured

    in

    Procedure

    2.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    41/150

    - 41 -

    0195429885_054- 058_ch12. qxd 2/ 13/ 08 4: 25 PM Page 58

    RecordSheetL12-1

    RecordSheetLab.# 12 BJT CCandCB Circuit

    Date

    Procedure 1-3 VCC VB VE VC

    Procedure 1-6Vi(pk) =

    Vo(pk) =

    Av =

    Input

    wavefor

    m

    Output

    wavefor

    m

    Procedure 1-9 Zi =

    Procedure 1-12 Zo =

    Procedure2-3 VCC VB VE VC

    Procedure2-6Vi(pk) =

    Vo(pk) =

    Av =

    Input

    wavefor

    m

    Output

    wavefor

    m

    Procedure2-9 Zi =

    Procedure2-12 Zo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    42/150

    - 42 -

    0195429885_059- 063_ch13. qxd 2/ 13/ 08 4: 26 PM Page 59

    LABORATORY

    INVESTIGATION 9JFET Characteristics

    Introduction

    DrainandtransfercharacteristicsareconstructedforannchannelJFETbythepointbypointprocess.TheJFETisfirstconnectedinCSconfiguration,anditsgatevoltage(VGS)issetatzero.Thedrainsourcevoltage(V

    DS) invariedinsteps,andthedraincurrent(I

    D)

    is noted at eachVDS step.This gives a tableof ID versusVDS levels fromwhich thedraincharacteristiccanbeplotted.TheprocessisrepeatedforseveralVGS levelstogiveafam ilyofdraincharacteristics.TheJFETtransfercharacteristicispreparedinasimilarwaybyholding VDS constantwhilevarying VGS andnoting the corresponding levelsofID andVGS.DraincharacteristicsarealsoobtainedbytheuseofanXYrecorder.

    Equipment

    2dcpowersupplies(0to20V)DCvoltmeter(0to25V)DCammeter(0to20mA)

    Resistors(1k ,

    0.25

    W),

    (1

    M ,

    0.25

    W)

    LowcurrentgeneralpurposenchannelJFET(e.g.,2N5486)CircuitboardXYrecorder

    Procedure1 Drain Characteristics

    11 ConnectthecircuitandtestequipmentasshowninFig.131aaccordingtotheconnectiondiagraminFig.131b.

    12 Setbothpowersuppliesforzerooutput;thenswitchon.

    13 Maintaining VGS constant, carefully adjust VDS to eachof thevoltages listed for

    Procedure1on

    the

    laboratory

    record

    sheet.

    Record

    the

    measured

    IDat

    each

    VDS level

    forVGS 0.

    14 CarefullyadjustVGS to 1V;thenrepeatProcedure13toproduceatableofcorrespondingVGS andID levelsforVGS 1V.

    15 RepeatProcedure13forVGS 2Vand 3V.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    43/150

    - 43 -

    0195429885_059- 063_ch13. qxd 2/ 13/ 08 4: 26 PM Page 60

    ID

    A

    R

    1

    Powersupply

    VGS V

    1M Q1 V VDS Powersupply

    Voltmeter

    (a)JFETtestcircuit

    Voltmeter Ammeter

    V VV

    A COM

    VA COM

    AVA COM

    Powersupply

    DR1 S

    G

    Q1

    Circuitboard

    (b)Connectiondiagram

    Powersupply

    Figure 13-1 Circuit and connection diagram for determining J FET characteristics.

    Procedure2 TransferCharacteristics

    21 Usingthesamecircuitas inFig.131,setVGS to0andVDS to10V.MeasuretheID level,andrecorditonthetableforProcedure2onthelaboratoryrecordsheet.

    22 Maintaining VDS constant at 10V, adjust VGS to each of the voltages listed forProcedure 2 on the laboratory record sheet. Record the measured ID at eachVGSlevel.

    Procedure3 Drain Characteristic Plotting on XY Recorder31 Connect the circuit and test equipment as shown in Fig. 132a according to the

    connectiondiagraminFig.132b.

    32 SetbothpowersuppliesforzerooutputandtheXYrecordersensitivityfor1V/cmverticaldeflectionandhorizontaldeflection.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    44/150

    - 44 -

    1

    0195429885_059- 063_ch13. qxd 2/ 13/ 08 4: 26 PM Page 61

    XYrecorder R21k

    R1Q1

    1MV

    Drainpower

    supply

    V

    Gatepowersupply

    (a)JFETtestcircuit DrainpowersupplyV=

    (1V/cm)

    ID

    VDS

    XYrecorder

    Vertical

    Horizontal

    R2

    DS QG

    R1

    V/A COM

    V=

    (1V/cm)

    Circuitboard

    (b)Connectiondiagram

    Gatepowersupply

    V/A COM

    Voltmeter

    Figure 13-2 Use of an XY recorder to draw J FET drain characteristics.

    33 InstallsuitableplottingpaperintheXYrecorder,switchontheXYrecorder,adjustitspentoasuitablezerovoltagestartingpoint,andlowerthepenontothepaper.

    34 SlowlyincreasethedrainvoltagetoproduceasuitabletracerepresentingtheJFETdraincharacteristicforVGS 0.

    35 RaisetheXYrecorderpenatthemaximumpointonthecharacteristic;thenreducethedrainsupplyvoltagetozero.

    36 CarefullyincreasethegatepowersupplyvoltagetoproduceVGS 1V.

    37 Lower thepen again; then slowly increase thedrainvoltage toproduce a tracerepresentingtheJFETdraincharacteristicforVGS 1V.

    38Raise

    the

    XY

    recorder

    pen

    at

    the

    maximum

    point

    on

    the

    characteristic;

    then

    reduce

    thedrainsupplyvoltagetozero.

    39 RepeatProcedures36through38forVGS levelsof 2Vand 3V.

    310 RaisetheXYrecorderpenatthemaximumpointonthelastcharacteristicandremovethepaper.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    45/150

    - 45 -

    0195429885_059- 063_ch13. qxd 2/ 13/ 08 4: 26 PM Page 62

    Analysis

    1 PlottheJFETdraincharacteristicsfromtheresultsofProcedure1.

    2Plot

    the

    JFET

    transfer

    characteristics

    from

    the

    results

    of

    Procedure

    2.

    3 FromthedraincharacteristicforVGS 0,determinethevaluesoftherD andYosparameters.

    4 From the transfer characteristic,determine thevalues of the Yfs parameters atVGS 1VandVGS 4V.

    5 DrawhorizontalandverticalscalesonthedraincharacteristicsplottedbytheXYrecorder.IdentifyeachcharacteristicaccordingtotheVGS level.PrinttheJFETtypenumberonthecharacteristics.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    46/150

    - 46 -

    0195429885_059- 063_ch13. qxd 2/ 13/ 08 4: 26 PM Page 63

    RecordSheetL13-1

    RecordSheetLab.# 13 JFETCharacteristics

    Date

    Procedure 1 Drain Characteristics

    (VGS = 0)

    (VGS = 1 V)

    (VGS = 2 V)

    (VGS = 3 V)

    VDS (V)

    ID (mA)

    ID (mA)

    ID (mA)

    ID (mA)

    0.5 1 2 3 4 5 10

    Procedure2 Transfer Characteristic

    (VDS = 10 V)

    VGS (V) 0

    ID (mA)

    1 2 3 4 5 6 7 8

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    47/150

    - 47 -

    0195429885_064- 068_ch14. qxd 2/ 13/ 08 4: 27 PM Page 64

    LABORATORY

    INVESTIGATION 10JFET Bias Circuits

    Introduction

    ThreebasicJFETbiascircuitsareinvestigated:gatebias,selfbias,andvoltagedividerbias.Twotransistors(Q1andQ2)areusedtodemonstratetheeffectofdifferentVGS(off) andIDSSvalues.Eachcircuit isconstructed,and thedcvoltages throughout thecircuitaremeasured,firstwithQ1 inthecircuitandthenwithQ2.Theresultsarecomparedwithcircuits

    inthe

    textbook.

    Equipment

    DCpowersupply(0to20V)DCvoltmeter(0to20V)0.25Wresistors470k,270k,33k,12k,2.2k,1.2k,1k2 lowcurrent general purpose nchannel JFETs of different types (e.g., 2N5457 andMPF102)

    Circuitboard

    Procedure1 DeviceParameters and Gate Bias

    11 IdentifythetwoJFETsasQ1andQ2;thenusingQ1,connectthegatebiascircuitandtestequipmentasshowninFig.141.

    12 SwitchonthepowersuppliesandadjustVGS tozeroandVDD to18V.

    13 MeasureIDandrecorditonthelaboratoryrecordsheetasthedrainsourcesaturationcurrentIDSS forQ1withVGS 0.

    14 IncreaseVGS to 1VandmeasureID.RecordIDonthelaboratoryrecordsheetrecordforQ1withVGS 1V.

    15 Increase VGS untilID fallstoapproximately0.1mA.

    16 MeasureVGS andrecorditasthegatesourcecutoffvoltageVGS(off) forQ1withID 0.

    17Switch

    off

    the

    power

    supplies

    and

    substitute

    transistor

    Q2 fortransistorQ1.

    18 RepeatProcedures12through16usingJFETQ2.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    48/150

    - 48 -

    S

    0195429885_064- 068_ch14. qxd 2/ 13/ 08 4: 27 PM Page 65

    ID

    A

    R1

    Powersupply

    VGS V

    1M Q1 V VDS Powersupply(a)Gatebiascircuit

    Voltmeter Voltmeter Ammeter

    V VV

    A COM

    VA COM

    AV

    A COM

    Powersupply

    R1DG

    Q1

    Circuitboard

    (b)Connectiondiagram

    Powersupply

    Figure 14-1 J FET gate bias circuit and connection diagram.

    Procedure2 JFET Self Bias

    21 UsingtransistorQ1,connecttheselfbiascircuitandtestequipmentasshown inFig.142.

    22 SwitchonthepowersupplyandadjustVDD to18V.

    23 MeasureVD andVSandnoteonthelaboratoryrecordsheetfortransistorQ1.

    24 SwitchoffthepowersupplyandsubstituteQ2 forQ1.

    25 SwitchthepowersupplyonandagaincheckthatVDD 18V.

    26 MeasureVD andVS againandrecordthevoltagesfortransistorQ2.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    49/150

    - 49 -

    0195429885_064- 068_ch14. qxd 2/ 13/ 08 4: 27 PM Page 66

    Powersupply

    RD4.7k

    VDD

    18V

    Voltmeter

    Circuitboard

    RD

    RS680

    DV S

    G

    RS

    VA COM

    (a)Selfbias circuit (b)Connectiondiagram

    Figure 14-2 J FET self bias test circuit.

    Procedure3 JFET Voltage DividerBias

    31 UsingtransistorQ1,connectthevoltagedividerbiascircuitandtestequipmentasshowninFig.143.

    R1 RD

    VDD

    18VCircuitboard

    Powersupply

    2.2M

    R2560k

    2.7k

    RS2.7k

    Voltmeter

    V

    VA COM

    R1 RD

    DSG

    R2 RS

    (a)JFETvoltagedividerbiascircuit (b)Connectiondiagram

    Figure 14-3 J FET voltage divider bias test circuit.

    32 SwitchonthepowersupplyandadjustVDD to18V.

    33Measure

    VD,

    VS,

    and

    VG and

    note

    the

    levels

    on

    the

    laboratory

    record

    sheet

    for

    the

    voltagedividerbiascircuitwithQ1.

    34 SwitchoffthepowersupplyandsubstituteQ2 forQ1.

    35 SwitchthepowersupplyonandagaincheckthatVDD 18V.

    36 MeasureVD,VS,andVGonceagainandnotethelevelsonthelaboratoryrecordsheetforthevoltagedividerbiascircuitwithQ2.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    50/150

    - 50 -

    0195429885_064- 068_ch14. qxd 2/ 13/ 08 4: 27 PM Page 67

    Analysis

    1 OnthelaboratoryrecordsheettabulatetheVDS levelsforeachbiascircuitfortran

    sistorsQ1 and

    Q2.

    Use

    VDS to

    calculate

    ID for

    each

    circuit

    and

    record

    it

    in

    the

    tableonthelaboratoryrecordsheet.2 Drawadcloadlineandmarkthebiaspointextremesforeachcircuit.3 ComparethecircuitstabilityforeachbiascircuittothesimilarcircuitsinSection105inthetextbook.

    4 Using themeasuredVP and IDSS valuesand the ID levelsforVGS = 1V,drawapproximatemaximumandminimumtransfercharacteristicsforQ1andQ2.

    5 Drawbias lines for each circuit on the transfer characteristics, and determineVDS(max) andVDS(min).Comparethecalculatedandmeasuredquantities.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    51/150

    - 51 -

    0195429885_064- 068_ch14. qxd 2/ 13/ 08 4: 27 PM Page 68

    RecordSheetL14-1

    RecordSheetLab.# 14 JFETBias Circuits

    Date

    Procedure 1 Gate BiasIDSS(VGS = 0) IDS(VGS = 1 V) VGS(off)

    Transistor Q1

    Transistor Q2

    Procedure2 SelfBias

    VDD VD VS ID = VS/RS

    Transistor Q1

    Transistor Q2

    18 V

    18 V

    Procedure3 Voltage-DividerBias

    Transistor Q1

    Transistor Q2

    VDD

    18 V

    18 V

    VD VS VG

    Analysis

    VDS(min)

    VDS(max)

    Gate bias Selfbias Voltage divider

    bias

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    52/150

    - 52 -

    0195429885_069- 073_ch15. qxd 2/ 13/ 08 4: 28 PM Page 69

    LABORATORY

    INVESTIGATION 11Basic JFET Circuits

    Introduction

    AJFETcommonsourcecircuitisconstructedandtestedfordcconditions.Theacvoltagegain,inputimpedance,andoutputimpedancearemeasured.Thecircuitisthenconvertedinto commondrain and commongate configurations,and the acperformanceof eachconfigurationisinvestigated.

    Equipment

    DCpowersupply(0to25V)DCvoltmeter(0to25V)OscilloscopeSinusoidalsignalgenerator;1V,3kHz0.25Wresistors(2 2.7k),120k,1M,5.6M25Vcapacitors(0.02 F,0.15 F,10 F)LowcurrentgeneralpurposenchannelJFET(e.g.,2N5486)

    Circuitboard

    Procedure1 Common-Source Voltage Gain

    11 Construct thecircuit inFig.151. (This is thecircuit inFig.119 in the textbook.)Leavethesignalgeneratorandoscilloscopeunconnectedatthistime.

    12 SwitchonthepowersupplyandadjustitsoutputforVDD 25V.

    13 MeasureVG,VS,andVD.Recordthevoltagesonthelaboratoryrecordsheet.

    14 ConnectthesignalgeneratorandoscilloscopetothecircuitasillustratedinFig.151.

    15 Setthesignalgeneratorfrequencyto3kHzandadjustthesignalamplitudetogivea;1Voutputfromthecircuit.

    16 Sketchtheinputandoutputwaveformsonthelaboratoryrecordsheet,andrecordthepeakinputandoutputvoltages.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    53/150

    - 53 -

    1

    C

    0195429885_069- 073_ch15. qxd 2/ 13/ 08 4: 28 PM Page 70

    R15.6M RD2.7k

    VDD

    25V

    C3

    C1

    0.02 F

    vsR21M

    Q1

    RS2.7k

    0.15 F

    C210 F

    RL120k

    Tooscilloscope

    R1

    Tooscilloscope

    RDC3

    (a)Commonsourcetestcircuit

    Signalgenerator

    DC1 SQG

    R2 RS

    RLC2

    Powersupply

    Circuitboard

    (b)Connectiondiagram

    Figure 15-1 J FET common-sourcecircuit and test equipment.

    Procedure2 Common-Source Input and Output Impedance

    21 SetthesignalgeneratorasinProcedure15.

    22 Temporarilydisconnect thesignalgeneratorandconnecta1M resistor (Ra) inserieswiththesignalgeneratorandthecircuitinput,asillustratedinFig.152.

    R1

    Ra C1

    1MR1

    1

    Ra

    Signalgenerator

    vs R2 R2

    (a)Circuitmodification (b)Connectiondiagram

    Figure 15-2 Common-source circuit input resistance measurement.

    23 CheckthatthesignalvoltageamplitudeappliedtoRa isthesameasthatmeasuredinProcedure16.

    24 Observe the amplitudeof the circuit ac outputvoltage.Change the resistance ofRaasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure15.RecordtheresistanceofRaasthecircuitinputimpedance(Zi).

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    54/150

    - 54 -

    1

    0195429885_069- 073_ch15. qxd 2/ 13/ 08 4: 28 PM Page 71

    25 DisconnectRa,reconnectthesignalgenerator,andadjustthesignalleveltothatmeasuredinProcedure16onceagain.

    26 Temporarilydisconnectthe loadresistor(RL)andsubstitutea2.7k resistor(Rb)

    forRL.

    27 Observetheamplitudeofthecircuitacoutputvoltage.ChangetheresistanceofRbasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure16.RecordtheresistanceofRbasthecircuitoutputimpedance(Zo).

    Procedure3 Common-Drain Circuit (Source Follower)

    31 Modify the circuit to convert it into commondrain configuration as shown inFig.153. (RD isreplacedwithashortcircuit,and theoutput is takenat theJFETsourceterminal.)

    R15.6M

    C1

    0.02 F

    vs R21M RS

    2.7k

    VDD

    25V

    Q1

    C3

    0.15 F RL120k

    Signalgenerator

    Tooscilloscope

    R1

    C1

    Tooscilloscope

    C3

    DS QG

    R

    VDD

    (a)Common

    drain

    test

    circuit

    R2S

    RL

    Circuitboard

    (b)Connectiondiagram

    Figure 15-3 J FET common-draincircuit and test equipment.

    32 SwitchonthepowersupplyandcheckthatitsoutputgivesVDD 25V.

    33 RepeatProcedures15and16.

    Procedure4 Common-Gate Circuit

    41 ConvertthecommondraincircuitintoacommongatecircuitbymakingthemodificationsshowninFig.154.

    42 SwitchonthepowersupplyandcheckthatitsoutputgivesVDD 25V.

    43 RepeatProcedures15and16.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    55/150

    - 55 -

    0195429885_069- 073_ch15. qxd 2/ 13/ 08 4: 28 PM Page 72

    R15.6M RD2.7k

    Q1

    VDD

    25V

    C2

    C3

    0.15 F

    RL

    Tooscilloscope

    Tooscilloscope

    C10.02 F

    R21M RS2.7k 10 F vs 120k R1 RD

    C2

    C3

    DS Q1

    VDD

    (a)CommongatetestcircuitSignalgenerator

    G

    R2 RSC1 RL

    Circuitboard

    (b)Connectiondiagram

    Figure 15-4 J FET common-gate circuit and test equipment.

    Analysis

    1 FromtheresultsofProcedure13,plotthedcandacloadlinesfortheCScircuitandshowthemaximumoutputvoltageswing.

    2 CalculatetheCScircuitvoltagegainfromtheresultsofProcedure16.3 Analyze theCScircuit todetermineAv,Zi,andZo.Compare thecalculatedandmeasured

    values.

    Comment

    on

    the

    phase

    relationship

    between

    the

    input

    and

    output

    waveforms.4 FromtheresultsofProcedure33,calculatetheCDvoltagegain.AnalyzethecircuittodetermineAvandcomparetothemeasuredAv.

    5 FromtheresultsofProcedure43,calculatetheCGvoltagegain(Av).AnalyzethecircuittodetermineAv andcomparetothemeasuredAv.Commentonthephaserelationshipbetweentheinputandoutputwaveforms.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    56/150

    - 56 -

    0195429885_069- 073_ch15. qxd 2/ 13/ 08 4: 28 PM Page 73

    RecordSheetL15-1

    RecordSheet 1Lab.# 15 BasicJFETCircuits

    Date

    Procedure 1-3 VDD VG VS VD

    Procedure 1-6Vi(pk) =

    Vo(pk) =

    Av =

    Input

    wavefor

    m

    Output

    wavefor

    m

    Procedure2-4 Zi =

    Procedure2-7 Zo =

    Procedure3-3Vi(pk) =

    Vo(pk) =

    Av =

    Input

    wavefor

    m

    Output

    wavefor

    m

    Procedure4-3Vi(pk) =

    Vo(pk) =

    Av

    =

    Input

    wavefor

    m

    Output

    wavefor

    m

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    57/150

    - 57 -

    LABORATORY

    INVESTIGATION 12

    Capacitor-Coupled BJT Amplifier

    Introduction

    ABJT capacitorcoupled commonemitter amplifier circuit consisting of two identicalstagesisconstructedandtestedfordcandacperformance.Eachstageisfirsttestedfordcconditionsandacvoltagegain(Av).Thecircuitoverallvoltagegain,frequencyresponse,andinputandoutputimpedancesarealsoinvestigated.

    Equipment

    DCpowersupply(0to25V)DCvoltmeter(0to25V)OscilloscopeSignalgenerator;1V,(50Hzto5kHz)0.25Wresistors120k ,2 (3.9k ,12k ,39k ,120k )25Vcapacitors0.12 F,2 (10 F,150 F)2lowcurrentgeneralpurposenpnBJTs(e.g.,2N3904)Circuitboard

    Procedure1 DC Conditions

    11 Constructthecircuit inFig.161.(This is thecircuit inFig.1218 inthe textbook.)Leavethesignalgeneratorandoscilloscopeunconnected.

    12 SwitchonthepowersupplyandadjustitsoutputforVCC 24V.

    13 MeasureVB, VE, andVC foreachstageand record thevoltageson the laboratoryrecordsheet.

    Procedure2 AC Measurements

    21Connect

    the

    signal

    generator

    and

    oscilloscope

    to

    the

    circuit

    as

    illustrated

    in

    Fig.

    16

    1.

    22 Setthesignalgeneratorfrequencyto3kHzandadjustthesignalamplitudetogivea;1VoutputatthecollectorterminalofQ2.(Notethatitmaybenecessarytousearesistiveattenuator(typically560 and560k )toreducethesignalamplitude.)

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    58/150

    - 58 -

    C

    0195429885_074- 078_ch16. qxd 2/ 13/ 08 4: 44 PM Page 75

    R1120k R312k R5C3 120k R712k

    VCC

    24V

    C5

    C1

    10 Fvs

    R2

    2NQ1 3904

    10 F

    R6

    2NQ2 3904

    0.12 F

    RL

    rs 39k R43.9k 39k2 R83.9k 120kC4600 150 F 150 F

    (a)Capacitorcoupledtwostageamplifier

    Tooscilloscope

    Tooscilloscope Powersupply

    R7

    R1 R3RL

    R5C5

    C3 C

    SignalgeneratorC1

    C2R2

    CB Q1E

    R6

    B Q2E

    C4

    R4 R8

    (b)Connectiondiagram

    Figure 16-1 Two-stage capacitor-coupled BJ T amplifier.

    23 Sketchtheinputandoutputwaveformsforeachstageonthelaboratoryrecordsheetandrecordthepeakvoltages.

    24 Adjustthesignalfrequencyinstepsaslistedonthelaboratoryrecordsheet,takingcaretokeepthesignalamplitudeconstant.Recordtheoutputvoltageamplitudeateachsignalfrequency.

    Procedure3 Input and Output Impedances

    31Set

    the

    signal

    generator

    as

    in

    Procedure

    22.

    32 Temporarilydisconnectthesignalgeneratorandconnecta1.5k resistor(Ra)inserieswiththesignalgeneratorandthecircuitinput.

    33 CheckthatthesignalvoltageamplitudeappliedtoRa isthesameasthatmeasuredinProcedure22.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    59/150

    - 59 -

    0195429885_074- 078_ch16. qxd 2/ 13/ 08 4: 44 PM Page 76

    34 Observetheamplitudeofthecircuitacoutputvoltage.ChangetheresistanceofRaasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure22.RecordtheresistanceofRaasthecircuitinputimpedance(Zi).

    35Disconnect

    Ra,

    reconnect

    the

    signal

    generator,

    and

    adjust

    the

    signal

    level

    to

    that

    measuredinProcedure22onceagain.

    36 Temporarilydisconnecttheloadresistor(RL)andsubstitutea12k resistor(Rb)forRL.

    37 Observetheamplitudeofthecircuitacoutputvoltage.ChangetheresistanceofRbasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure23.RecordtheresistanceofRbasthecircuitoutputimpedance(Zo).

    Analysis

    1Compare

    the

    dc

    voltages

    for

    each

    stage

    of

    the

    amplifier

    to

    the

    design

    levels

    in

    Example122inthetextbook.Explainanydifferences.2 FromtheresultsofProcedure23calculatethevoltagegainofeachstageandtheoverallvoltagegain.

    3 Analyzethecircuittodeterminetheacvoltagegainforeachstageandtheoverallacvoltagegain.Comparethecalculatedandmeasuredquantities.

    4 FromtheresultsofProcedure24,plotthe(lowerend)frequencyresponsefortheamplifier,andestimatethecircuitlowercutofffrequency(f1).Comparethemeasuredf1 tothedesignvalueusedinExample126.

    5 DiscussthecircuitinputandoutputimpedancesasmeasuredforProcedure3.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    60/150

    - 60 -

    0195429885_074- 078_ch16. qxd 2/ 13/ 08 4: 44 PM Page 77

    RecordSheetL16-1

    RecordSheetLab.# 16 Capacitor-Coupled BJTAmplifier

    Date

    Procedure 1-3 VCC VB1 VE1 VC1 VB2 VE2 VC2

    Procedure2-3Vi(pk) =

    Vo1(pk) =

    Vo2(pk) =

    Av 1 =

    Av2 =

    Av =

    Q1inputwavefor

    m

    Q1outputwavefor

    m

    Q2output

    waveform

    Procedure2-4

    f(Hz) 30 50

    Vo(V)

    Av

    70 100 150 200 300

    f(Hz)

    Vo(V)

    Av

    400 600 800 1 k 2 k 5 k 10 k

    Procedures 3-4 and3-7

    Zi =

    Zo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    61/150

    - 61 -

    3456

    7891

    2

    3456

    7891

    2

    34

    0195429885_074- 078_ch16. qxd 2/ 13/ 08 4: 44 PM Page 78

    Log GraphPaper

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    62/150

    - 62 -

    0195429885_079- 083_ch17. qxd 2/ 13/ 08 4: 45 PM Page 79

    LABORATORY

    INVESTIGATION 13Direct-Coupled BJT Amplifier

    Introduction

    ABJTdirectcoupledtwostagecommonemitteramplifiercircuitisconstructedandtestedfordcandacperformance.Thedcconditionsthroughthecircuitarefirstchecked;thentheacvoltagegain (A

    v) is investigated foreach stage.Thecircuitoverallvoltagegainand

    frequencyresponsearealsoinvestigated.

    Equipment

    DCpowersupply(0to25V)DCvoltmeter(0to25V)OscilloscopeSignalgenerator0.25Wresistors68k ,47k ,39k ,5.6k ,4.7k ,(2 3.9k )25Vcapacitors(2 150 F),15 F,0.47 FLowcurrentgeneralpurposenpnandpnpBJTs(2N3904and2N3906)

    Circuitboard

    Procedure1 DC Conditions

    11 ConstructthecircuitinFig.171.(This isthecircuitinFig.1222inthetextbook.)Leavethesignalgeneratorandoscilloscopeunconnectedatthistime.

    12 SwitchonthepowersupplyandadjustitsoutputforVCC 14V.

    13 MeasureVB,VE,andVC foreachstageandrecordthevoltagelevelsonthelaboratoryrecordsheet.

    Procedure2 AC Measurements

    21 ConnectthesignalgeneratorandoscilloscopetothecircuitasillustratedinFig.171.

    22 Setthesignalgeneratorfrequencyto3kHzandadjustthesignalamplitudetogivea;1VoutputatthecollectorterminalofQ2.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    63/150

    - 63 -

    1

    v

    C

    0195429885_079- 083_ch17. qxd 2/ 13/ 08 4: 45 PM Page 80

    R3R5

    VCC

    14VC3

    R168k

    5.6k 3.9kQ2

    150 F

    2N

    C1

    Q 2N3904

    3906C4

    15 Fs

    R2

    0.47 F

    RL

    rs600

    47k R44.7k C2150 F R63.9k 39k

    (a)Directcoupledtwostageamplifier

    To

    oscilloscope

    (vi) (vo1)

    Powersupply

    R1 R3 R53

    SignalgeneratorC1

    CB Q1E

    EB Q2C

    C4Tooscilloscope

    C2

    R6R2

    R4

    RL(vo2)

    (b)Connectiondiagram

    Figure 17-1 Two-stage direct-coupled BJ T amplifier.

    23 Sketch the input and outputwaveforms for each stage on the laboratory recordsheet,andrecordthepeakvoltagelevels.

    24 Adjustthesignalfrequencyinstepsaslistedonthelaboratoryrecordsheet,takingcaretokeepthesignalamplitudeconstant.Recordtheoutputvoltageamplitudeateachsignalfrequency.

    Procedure3 Input and Output Impedances

    31 SetthesignalgeneratorasinProcedure22.

    32 Temporarilydisconnectthesignalgeneratorandconnecta1k resistor(Ra)inserieswiththesignalgeneratorandthecircuitinput.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    64/150

    - 64 -

    0195429885_079- 083_ch17. qxd 2/ 13/ 08 4: 45 PM Page 81

    33 CheckthatthesignalvoltageamplitudeappliedtoRa isthesameasthatmeasuredinProcedure22.

    34 Observe the amplitude of the circuit ac outputvoltage.Change the resistance of

    Raasnecessary

    to

    give

    an

    output

    amplitude

    which

    is

    half

    of

    that

    measured

    in

    Proce

    dure22.RecordtheresistanceofRaasthecircuitinputimpedance(Zi).

    35 DisconnectRa,reconnectthesignalgenerator,andadjustthesignalleveltothatmeasuredinProcedure22onceagain.

    36 Temporarilydisconnectthe loadresistor(RL)andsubstitutea3.9k resistor(Rb)forRL.

    37 Observetheamplitudeofthecircuitacoutputvoltage.ChangetheresistanceofRbasnecessarytogiveanoutputamplitudewhichishalfofthatmeasuredinProcedure23.RecordtheresistanceofRbasthecircuitoutputimpedance(Zo).

    Analysis

    1 FromtheresultsofProcedure13,calculatethecurrentlevelsthroughoutthecircuit.2 Analyzethecircuittodeterminethedcconditions,andcomparetothemeasureddcvoltageandcurrentlevels.

    3 FromtheresultsofProcedure23calculatethevoltagegainofeachstageandtheoverallvoltagegain.

    4 Analyzethecircuittodeterminetheacvoltagegainforeachstageandtheoverallacvoltagegain.Comparethecalculatedandmeasuredquantities.

    5 FromtheresultsofProcedure24,plotthe(lowerend)frequencyresponsefortheamplifierandestimatethecircuitlowercutofffrequency.

    6Analyze

    the

    circuit

    to

    determine

    the

    lower

    cutoff

    frequency

    for

    stage

    1and

    the

    circuit

    lowercutofffrequency.Comparethecalculatedandmeasuredcutofffrequencies.7 DiscussthecircuitinputandoutputimpedancesasmeasuredforProcedure3.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    65/150

    - 65 -

    0195429885_079- 083_ch17. qxd 2/ 13/ 08 4: 45 PM Page 82

    RecordSheetL17-1

    RecordSheetLab.#17 Direct-Coupled BJTAmplifier

    Date

    Procedure 1-3 VCC VB1 VE1 VC1 VB2 VE2 VC2

    Procedure2-3Vi(pk) =

    Vo1(pk) =

    Vo2(pk) =

    Av 1 =Av2 =

    Av =

    Q1input

    wavefor

    m

    Q1output

    waveform

    Q2 output

    waveform

    Procedure2-4

    f(Hz) 30 50

    Vo(V)

    Av

    70 100 150 200 300

    f(Hz)

    Vo(V)

    Av

    400 600 800 1 k 2 k 5 k 10 k

    Procedures 3-4 and3-7

    Zi =

    Zo =

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    66/150

    - 66 -

    3456

    7891

    2

    3456

    7891

    2

    34

    0195429885_079- 083_ch17. qxd 2/ 13/ 08 4: 45 PM Page 83

    Log GraphPaper

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    67/150

    - 67 -

    LABORATORY

    INVESTIGATION 14

    SCRCharacteristics

    and 90 Phase Control

    Introduction

    ThecharacteristicsofanSCRarefirstdeterminedbyapplyingaconstantanodevoltage(VA)and increasing thegatecathodevoltage (VGK)until theSCRswitcheson.Thegatecurrentandvoltagearenotedattheswitchoninstant,andVAK ismeasuredafterswitchon.TheprocessisrepeatedwithdifferentlevelsofVA.AnSCR90phasecontrolcircuitisnext

    constructed

    and

    tested

    by

    monitoring

    the

    ac

    supply

    and

    load

    waveforms

    for

    various

    control

    elementsettings.

    Equipment

    Twodcpowersupplies;(0to20V)Twodcvoltmeters(0to20V)DCammeter(0to100mA)DCammeter(0to20 A)Oscilloscope115V,60Hzvariablevoltagetransformer(variac)115V,60Hz,1:1isolatingtransformer

    0.25W

    resistors120

    ,270

    ,(2

    1k),1.5k,2.2k0.5Wpotentiometer1.5k

    3Wresistor100LowcurrentSCR2N5064Lowcurrentdiode1N914Circuitboard

    Procedure1 SCRForwardCharacteristics

    11 Construct the SCR circuit in Fig. 391a according to the connection diagram inFig.391b.

    12Set

    both

    power

    supply

    voltages

    to

    zero;

    then

    switch

    on

    and

    adjust

    VA to

    5V.

    At

    this

    timeVGK,IG,andIA shouldallbezero.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    68/150

    - 68 -

    R

    G

    0195429885_188- 192_ch39. qxd 2/ 13/ 08 5: 24 PM Page 189

    A

    R4 IA1k

    R1 R3

    1.5k 1kV R2

    SCR1

    A

    IG

    VA

    V VAK

    G270 V

    VGK

    (a)Circuit

    Voltmeter(VGK)

    V

    Ammeter(IG) KGA

    Bottomview2N5064

    Voltmeter(VAK) Ammeter(IA)

    VA COM

    AV

    A COM V

    Powersupply(VG)R4 V

    A COM

    AV

    A COM

    A

    R3 K1 SCR1

    R2

    (b)Connectiondiagram

    Powersupply(VA)

    Figure 39-1 Circuit for investigating SCR characteristics.

    13 SlowlyincreaseVGuntiltheSCRfires(IAsuddenlyincreases).RecordthelevelsofIGandVGK at(orjustbefore)theinstantIA increases.(Itmaybenecessarytorepeattheprocessseveraltimestogetaccuratemeasurements.Todoso,VG shouldbereducedtozero,andVAshouldbeswitchedoffandthenonagain.)

    14 RecordVAK

    andI

    AwhentheSCRison.

    15 ReduceVG tozero; thenswitchVA offandon,andagainnote the levelsofVAKandIA.

    16 AdjustVA to10V.

    17 Slowly increaseVG untiltheSCR firesagain.Record IG andVGK asexplained inProcedure13.RecordVAK andIAwiththeSCRon.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    69/150

    - 69 -

    0195429885_188- 192_ch39. qxd 2/ 13/ 08 5: 24 PM Page 190

    18 ReduceVG tozero,andthenswitchVA offandonagain.

    19 AdjustVA togiveVAK equalto15V.

    110 SlowlyincreaseVG untiltheSCRfiresagain.RecordtheIG andVGK onceagainasexplained

    in

    Procedure

    13.

    Record

    VAK andIAwiththeSCRononceagain.

    111 ReduceVG tozeroandreconnecttheVGK voltmetertomeasureVA.ThenprogressivelyadjustVA to4V,3V,and2V,recordingVAK andIAateachstep.

    112 DisconnectthevoltmetermeasuringVAK;then,observingIA,slowlyreduceVA from3Vtozero.NotethelowestlevelofIA thattheSCRconductsat(theholdingcurrent)beforeitswitchesoff.

    Procedure2 SCR 90 Phase ControlCircuit

    21 ConstructthephasecontrolcircuitshowninFig.392,keepingtheacsupplyoffand

    the

    variac

    set

    for

    zero

    output.

    (This

    is

    the

    circuit

    designed

    in

    Example

    20

    2

    in

    the

    textbook.)

    115V60Hz

    VariacIsolatingtransformer

    R12.2k

    R21.5k

    SCR1

    D1

    R3120

    RL100

    (a)Circuit

    Variac

    Isolatingtransformer

    R1

    R2 D1

    R3

    SCR1AGK

    RL

    Vi

    Tooscilloscope

    VL

    (b)Connectiondiagram

    Figure 39-2 SCR 90 control circuit.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    70/150

    - 70 -

    0195429885_188- 192_ch39. qxd 2/ 13/ 08 5: 24 PM Page 191

    22 AdjustpotentiometerR2 forminimumgatecathodevoltage(VGK).

    23 SwitchontheacsupplyandadjustthevariactogiveVi 30Vpeakasmonitoredontheoscilloscope.

    24Investigate

    the

    waveform

    (VL)developedacrossRL forvarioussettingsofR2.Note

    therelationshipbetweenVi andVL,andsketcheachwaveformontherecordsheet.

    Analysis

    1 PlottheSCRcharacteristicsfromtheresultsofProcedures13through110.2 DiscusstherelationshipbetweentheSCRanodecathodevoltageandthegatecurrentrequiredtofiretheSCR.

    3 ExplaintheresultsofProcedures111and112.4 Notethemeasuredforwardonvoltage(VTM),thegatetriggeringcurrent(IG),andtheholdingcurrent(IH),andcomparethemtothespecifiedquantitiesfortheSCRused.

    5 Discusstheloadwaveformproducedbythe90controlcircuitandtheeffectofadjustingR2.ComparetherangeofwaveformadjustmentwiththatspecifiedforExample202inthetextbook.

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    71/150

    - 71 -

    0195429885_188- 192_ch39. qxd 2/ 13/ 08 5: 24 PM Page 192

    RecordSheetL39-1

    RecordSheet DateLab.# 39 SCR Characteristicsand 90 Phase Control

    Procedure 1-3 and 1-4(VA = 5 V) IG VGK VAK IA

    Procedure 1-5VAK IA

    Procedure 1-7

    (VA = 10 V) IG VGK VAK IA

    Procedure 1-10

    (VA = 15 V) IG VGK VAK IA

    Procedure 1-11

    Procedure 1-12

    VA VAK

    (V) IA

    (mA)

    IH =

    4 V 3 V 2 V

    Procedure2-4

    R2(min) R2(max)

    Vi

    VL

    David A. Bell Electronic Circuits and Electronic Devices

    Copyright Oxford University Press, 2010

  • 7/29/2019 Electronic Circuits and Electronic Devices

    72/150

    - 72 -

    0195429885_193- 196_ch40. qxd 2/ 13/ 08 5: 25 PM Page 193

    LABORATORY

    INVESTIGATION 15SCRand TRIAC Control Circuits

    Introduction

    AnSCR180phasecontrolcircuitisconstructed,anditsoutput(load)waveformiscomparedtotheacsourcewaveform.Thecontrolelementisadjustedtodeterminethemaximumandminimumanglesoftheoutputwave.Thewaveformdevelopedacrossthecapacitorinthecontrolcircuitisalsoinvestigated.ATRIAC180phasecontrolcircuitisconstructedandtestedinasimilarwaytotheSCRcircuit.

    Equipment

    Oscilloscope115V,60Hzvariablevolta