electronic structure of cubic copper monoxides* paul m. grant stanford (visiting scholar) wolter...

48
Electronic Structure of Cubic Copper Monoxides* • Paul M. Grant • Stanford (Visiting Scholar) • Wolter Siemons • Stanford (U. Twente) • Gertjans Koster • Stanford (U. Twente) • Robert H. Hammond • Stanford •Theodore H. Geballe • Stanford Y23.00007, 12:51 PM, Friday, 14 March Session Y23: Electronic Structure of Complex Oxides 2008 APS March Meeting, New Orleans, LA * Research Funded by US AFOSR & EPRI

Upload: kathlyn-morrison

Post on 14-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Electronic Structure of Cubic Copper Monoxides*

• Paul M. Grant• Stanford (Visiting Scholar)

• Wolter Siemons• Stanford (U. Twente)

• Gertjans Koster• Stanford (U. Twente)

• Robert H. Hammond• Stanford

•Theodore H. Geballe• Stanford

Y23.00007, 12:51 PM, Friday, 14 March Session Y23: Electronic Structure of Complex Oxides

2008 APS March Meeting, New Orleans, LA

* Research Funded by US AFOSR & EPRI

Page 2: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Tenorite (Monoclinic CuO)

CuO

Return

Page 3: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Comparison of Tenorite (111) to CuO – MgO Proxy (100)

(111) Tenorite (100) MgO

O

Cu

O

Cu

Cu

O

Page 4: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Néel Temperature vs. TMO Atomic Number

Page 5: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

“CuO – MgO Proxy” Converged Energies

CuO & CuO - MgO Proxies (Primitive Cells)

-1789.89

-1789.84

-1789.79

-1789.74

-1789.69

-1789.64

-1789.59

-1789.54

-2% -1% -1% 0% 1% 1% 2%

Departure from MgO Unit Cell (%)

En

erg

y (e

V)/

Cu

O

-1%a (MgO)

1%a MgO)0%

a (MgO)

CuOTenorite

-1%a (MgO)

1%a MgO)0%

a (MgO)

Page 6: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Proto-TMO AF Rock Salt [111]

Page 7: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Proto-TMO AF Rock Salt

[-1-1-1]

Page 8: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 9: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 10: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 11: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Extended Hubbard Hamiltonian

, , ,2ij i j i jsi iij i ij s

VH t c c U n n n n

Qualitative Description of the Physical Properties of Antiferromagnetic Insulators

One-electron “band” term

On-site “Hubbard” double occupation coulomb repulsion

Off-site repulsion

2 24 /NkT t S U

Page 12: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Mott-Hubbard Insulator

After Imada, et al, RMP 70, 1039 (1998)

Page 13: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Charge Transfer Insulator

After Imada, et al, RMP 70, 1039 (1998)

Page 14: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Cu2+ 3d Multiplet Splitting (Cubic)

3d9

t2g

eg

Cu2+ Ion Cubic

Page 15: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

DFT & (LDA + U)

• Implemented in LMTO by Anisimov, et al, JPCM 2, 3973 (1990)– Applied to NiO, MnO, FeO, CoO and La2CuO4

• Plane-Wave Pseudopotential Implementation by Cococcioni and de Gironcoli, PRB 71, 035105 (2005)– Applied to FeO and NiO – Download open-source package from

http://www.pwscf.org

LDA+U LDA HUB DC( ) ( ) l lmE n E n E n E n r r

Page 16: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

On Seeking Insight from Numbers

• “The computer is a tool for clear thinking.” Freeman Dyson

• “Garbage In, Garbage Out” Anon., IBM ca. 1954

– Q: “Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?”

– A: “I am not able rightly to comprehend the kind of confusion of ideas that could provoke such a question.”

Page 17: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

c-CuO

U = 0

PP = PMG

eV

Y Z K U K

c-CuO (U = 0)

Page 18: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

c-CuO

U = 5

PP = PMG

SNE = 1,1,1,1

eV

Y Z K U K

c-CuO (U = 5 eV)

Page 19: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

EF

E (eV)

N(E

) (eV

-1)

c-CuO Density-of-States

Page 20: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

U = 0 Projections

N(E

) (eV

-1)

E (eV)

DOS Projected on

PP Orbitals

Page 21: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Tetragonal CuO

c/a = 1.36

3.9053.905

5.320

Measurements

• 2-4 ML epi on STO

• No Fermi Edge

• No Exchange Bias on ferro-SRO (Tc ~ 100-150 K)

Page 22: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 23: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

3d9

Cu2+ Ion Cubic Tetragonal

t2g

eg

Cu2+ 3d Multiplet Splitting (Tetra)

Page 24: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

t-CuO

U = 0

PP = PMG

eV

Y Z K U K

t-CuO (U = 0)

Page 25: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

t-CuO

U = 5

PP = PMG

SNE = 1,1,1,1

eV

Y Z K U K

t-CuO (U = 5 eV)

Page 26: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

t-CuO

U = 7.5

PP = PMG

SNE = 1,1,1,1

eV

Y Z K U K

t-CuO (U = 7.5 eV)

Page 27: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

U = 0 d-pdos Cu1

N(E

) (eV

-1)

E (eV)

Spin-DOS Projected on

Cu 3d-OrbitalsAs Function of

Hubbard U

Page 28: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

U = 5 d-spin-pdos Cu1

U = 0 d-spin-pdos Cu1

Spin Composition of Cu 3d pDOS as fn(Hubbard)

Page 29: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

EF

E (eV)

N(E

) (eV

-1)

t-CuO Density-of-StatesHe I UPS Spectrum

W. Siemons (PhD Thesis, Stanford)

Page 30: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Conclusions & Homework

• If you could make it, cubic rock salt copper monoxide would be a metal!

• Distortions (J-T?) are necessary to “spread” the Cu 3d10 multiplet allowing Hubbard to separate spins creating the 3d9 AF ground state and thus HTS.

• To-do– Check the LDA+U PW-PP package on tenorite– Compute “tetragonal supercell” to get to CuO plane

properties.– Then “dope” and perform e-p calculation to “see what

happens.”

Page 31: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 32: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 33: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 34: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 35: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 36: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 37: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

, , ,2ij i j i jsi iij i ij s

VH t c c U n n n n

Page 38: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 39: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 40: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 41: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

EF

Page 42: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Insight from Numbers

• “The universe is of two indivisible elements…tiny particles and the void.” Democritos, after Leucippus, 4th Century BC

• “The computer is a tool for clear thinking.” Freeman Dyson, 20th Century AD

• “Garbage In, Garbage Out” Anon., IBM ca. 1954

– Q: “Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?”

– A: “I am not able rightly to comprehend the kind of confusion of ideas that could provoke such a question.”

Page 43: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

EF

E (eV)

N(E

) (eV

-1)

t-CuO Density-of-StatesHe I UPS Spectrum

W. Siemons (PhD Thesis, Stanford)

Page 44: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

EF

E (eV)

N(E

) (eV

-1)

t-CuO Density-of-StatesHe I UPS Spectrum

W. Siemons (PhD Thesis, Stanford)

Page 45: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 46: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

3d Multiplet

3d9

t2g

eg

Cu2+ Ion Cubic

Page 47: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford
Page 48: Electronic Structure of Cubic Copper Monoxides* Paul M. Grant Stanford (Visiting Scholar) Wolter Siemons Stanford (U. Twente) Gertjans Koster Stanford

Extended Hubbard Hamiltonian

Return

, , ,2ij i j i jsi iij i ij s

VH t c c U n n n n

Qualitative Description of the Physical Properties of Antiferromagnetic Insulators

This is the energy calculated in DFT which describes the physical properties of uncorrelated systems such as semiconductors and metals. This energy depends strongly on the interatomic bond length. “t” is the energy to transfer an electron from atom to atom, and the “c’s” create and annihilate electrons as they move from site to site.

This term represents the repulsive force between two electrons on the same ionic site. It tends to separate spins of opposite sign on nearest neighbor ions, thus producing an antiferromagnetic state. “U” is the repelling energy, and “n” is the occupation number (either ) or 1) for each spin direction on ion “i”. It is independent of bond length, and thus is a simple constant for all crystallographic configurations involving the same elements.

This term is the repulsive energy between two electrons on separate ionic sites and thus dependent on bond length, but not included in the DFT formalism, and thus may play a role in setting the absolute value of the Ground State Energy for a given crystallographic configuration.