electrostatics and magnetostatics nathaniel j. c. libatique, ph.d. [email protected] 3 december...

33
Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. [email protected] 3 December 2009

Upload: andrew-adams

Post on 28-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Electrostatics and Magnetostatics

Nathaniel J. C. Libatique, [email protected]

3 December 2009

Page 2: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

f f c c

Page 3: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Fields and WavesFields and Waves

Page 4: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Statics: very importantStatics: very important

Magnetic Storage: HDD TechnologyMagnetic Storage: HDD Technology Fields in transmission linesFields in transmission lines MEMS actuatorsMEMS actuators E-InkE-Ink Electrostatic separationElectrostatic separation ESDESD

Page 5: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

HDDsHDDs

http://www.pcworld.com/article/128400/hitachi_introduces_1terabyte_hard_drive.html

Hitachi Introduces 1-Terabyte Hard Drive

Colossal storage reaches new milestone with a drive that holds 1000 gigabytes.Melissa J. Perenson, PC World

Jan 5, 2007 1:00 pm

Hitachi Global Storage Technologies is first to the mat with an announcement of a 1-terabyte hard disk drive. Industry analysts widely expected a 1TB drive to ship sometime in 2007; Hitachi grabbed a head start on the competition by announcing its drive today, just before the largest U.S. consumer electronics show starts next week.

Page 6: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

ESDESD

Photos from Rohm Electronics

This failed IC was one of several rejected as low input resistance (leaky) at a particular input pin. Sectioning in Japan identified the partial short through the silicon from the top as shown by the small well on the track i.e. top of short circuit.

This transistor was also confirmed failed by ESD. You can see where the discharge energy surge has buried through the weakest point(s) in the oxide layer through to the silicon. Bipolar devices are becoming very small and susceptible to ESD.

http://www.electrostatics.net/library/articles/ESD_damage.htm

mcgonnigle.files.wordpress.com/2007/02/lightning.jpg

Page 7: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Fields in Transmission Fields in Transmission LinesLines

Two-wire

Coaxial

Microstrip

Triplate

Page 8: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

E-InkE-Ink

http://www.eink.com/technology/howitworks.html

Page 9: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

MEMSMEMS

http://mems.sandia.gov/gallery/images/m10.jpg

Page 10: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Capacitors and InductorsCapacitors and Inductors

Capacitors store electric fluxCapacitors store electric flux Q = CVQ = CV, , i = CdV/dti = CdV/dt Charging up a capacitor: Charging up a capacitor: = RC = RC

Inductors store magnetic fluxInductors store magnetic flux = LI, v = Ldi/dt= LI, v = Ldi/dt Fluxing up an inductor: Fluxing up an inductor: = L/R = L/R

Page 11: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

DemonstrationsDemonstrations

Faraday’s LawFaraday’s Law Lorentz ForceLorentz Force

Conducting rod in a magnetic fieldConducting rod in a magnetic field Deflecting electrons in a CRT via Deflecting electrons in a CRT via

magnets magnets Induced fields and currents in a 5 Induced fields and currents in a 5

turn loopturn loop

Page 12: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

How does one “see” How does one “see” an electric or magnetic an electric or magnetic

field?field? Fields give rise to measurable forcesFields give rise to measurable forces Static fields create “other” static Static fields create “other” static

fieldsfields Dynamic fields give rise to “other” Dynamic fields give rise to “other”

time varying fieldstime varying fields

Page 13: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Electrostatics: Electrostatics: Coulomb’s LawCoulomb’s Law

Qo

Q1

F1

F1 =Qo Q1

4 R2

a1

F1 = Q1 E0

R

E-field source is Q0

Qe = - 1.60219 x 10-19 C

= permittivitty of free space = 8.854 x 10-12 F/m1/4o = 9 x 109 m/F

Page 14: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Electrostatic Field Electrostatic Field SourcesSources

Charge distributions give rise to E fieldsIt takes work to “create” charge distributions, hence charge distributions store energy.

Page 15: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Ampere’s Force LawAmpere’s Force Law

I1

I2

dl1

dl2Ra12

dF2

dF2 = I2 dl2

k I1 dl1 a12

R2

dF1 = I1 dl1

k I2 dl2 a21

R2

dB1

(dB) = Weber/m2 k = o/4o = magnetic permeability = 4 x 10-7 H/m

Page 16: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Biot-Savart LawBiot-Savart Law

Current distributions give rise to magnetic flux densities

I

dl

A

R

dB =

I dl aR

R2

Page 17: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Infinitely Long Straight Infinitely Long Straight WireWire

I

r

?B

B = r

a

Page 18: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Infinite Plane Sheet of Infinite Plane Sheet of CurrentCurrent

JS ?

B

?

B

B

B =

JS an

Page 19: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

B

B

Superposition of manywires coming off the page…

Infinite Plane Sheet of Infinite Plane Sheet of CurrentCurrent

Page 20: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Lorentz ForceLorentz ForceF = q (E + v B)

Page 21: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

• CRT

• Ink Jet Printer

• Mass Spectrometer

• Electron Microscope

• Particle Accelerators

SlingshotSlingshot

Page 22: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

A very low concentration of sample molecules is allowed to leak into the ionization chamber (which is under a very high vacuum) where they are bombarded by a high-energy electron beam. The molecules fragment and the positive ions produced are accelerated through a charged array into an analyzing tube. The path of the charged molecules is bent by an applied magnetic field. Ions having low mass (low momentum) will be deflected most by this field and will collide with the walls of the analyzer. Likewise, high momentum ions will not be deflected enough and will also collide with the analyzer wall. Ions having the proper mass-to-charge ratio, however, will follow the path of the analyzer, exit through the slit and collide with the Collector. This generates an electric current, which is then amplified and detected. By varying the strength of the magnetic field, the mass-to-charge ratio which is analyzed can be continuously varied.

http://www.chem.uic.edu/web1/ocol/spec/MS1.htm

SampleFeed

Page 23: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

http://www.chem.ucalgary.ca/courses/351/Carey/Ch13/ch13-ms.html

Page 24: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

The molecular ion, again, represents loss of an electron and the peaks above the molecular ion are due to isotopic abundance. The base peak in toluene is due to loss of a hydrogen atom to form the relatively stable benzyl cation. This is thought to undergo rearrangement to form the very stable tropylium cation, and this strong peak at m/e = 91 is a hallmark of compounds containing a benzyl unit. The minor peak at m/e = 65 represents loss of neutral acetylene from the tropylium ion and the minor peaks below this arise from more complex fragmentation.

http://www.chem.uic.edu/web1/ocol/spec/MS1.htm

The mass spectrum of toluene (methyl benzene) is shown. The spectrum displays a strong molecular ion at m/e = 92, small m+1 and m+2 peaks, a base peak at m/e = 91 and an assortment of minor peaks m/e = 65 and below.

Page 25: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Millikan Oil DropMillikan Oil Drop

e/m = charge to mass ratioe/m = charge to mass ratio e = 1.602 × 10e = 1.602 × 10-19-19 Coulombs Coulombs

http://en.wikipedia.org/wiki/Oil-drop_experiment

Page 26: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

ConductionConduction

http://hyperphysics.phy-astr.gsu.edu/Hbase/electric/ohmmic.html#c1

• Electron Gas• Distribution of velocities: seen as temperature macroscopically• Electrons have mean free time between colllissions• vd = E• J = E• Resistance vs. resistivity

Page 27: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

The common U.S. wire gauges (called AWG gauges) refer to sizes of copper wire. The resistivity of copper at 20 C is about

1.724 x 10-8 m

AWG wire size (solid)

Diameter(inches)

Resistance per1000 ft (ohms)

Resistance per1000 m (ohms)

24 0.0201 25.67 84.2

22 0.0254 16.14 52.7

20 0.0320 10.15 33.2

18 0.0403 6.385 20.9

16 0.0508 4.016 13.2

14 0.0640 2.525 8.28

12 0.0808 1.588 5.21

10 0.1019 0.999 3.28

http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/wirega.html#c1

Page 28: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

MaterialResistivity (ohm m)

Temperaturecoefficientper degree C

Conductivity

x 107 /m

Silver 1.59 x10^-8 .0061 6.29

Copper 1.68 x10^-8 .0068 5.95

Aluminum 2.65 x10^-8 .00429 3.77

Tungsten 5.6 x10^-8 .0045 1.79

Iron 9.71 x10^-8 .00651 1.03

Platinum 10.6 x10^-8 .003927 0.943

Manganin 48.2 x10^-8 .000002 0.207

Lead 22 x10^-8 ... 0.45

Mercury 98 x10^-8 .0009 0.10

Nichrome(Ni,Fe,Cr alloy)

100 x10^-8 .0004 0.10

Constantan 49 x10^-8 ... 0.20

http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/rstiv.html#c1

Page 29: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Carbon*(graphite)

3-60 x10^-5 -.0005 ...

Germanium* 1-500 x10^-3 -.05 ...

Silicon* 0.1-60 ... -.07 ...

Glass 1-10000 x10^9 ... ...

Quartz(fused)

7.5 x10^17 ... ...

Hard rubber 1-100 x10^13

Page 30: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/Hall.html#c2

Hall EffectHall Effect

Page 31: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

http://content.honeywell.com/sensing/prodinfo/solidstate/technical/chapter2.pdfhttp://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html#c1http://hyperphysics.phy-astr.gsu.edu/hbase/electric/miccur.html#c4http://www.allegromicro.com/en/Products/Design/hall-effect-sensor-ics/index.asp

Page 32: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009

Q = CV = L I

d/dt = L dI/dt

Electric field lines, magnetic flux linesCharging up a capacitor, differential equation solution, particular and homogeneousFluxing up an inductor, differential equationsUnits and Dimensions

Page 33: Electrostatics and Magnetostatics Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com 3 December 2009