electrostatics numerical integration

35

Upload: eunice

Post on 03-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Electrostatics numerical integration. Electrostatics. +Q. +Q. +Q. - Q. electric field. r. y. r. y. . x. x. . . symmetry. r. y. . x. . . z. r. y. x. Gauss's law. infinite charged sheet. Voltage -- work. Voltage – work Superposition. numerical integration. y. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Electrostatics numerical integration
Page 2: Electrostatics numerical integration

ruF2

21

4 r

QQ

o

1210854.8 o

CoulombsQ 1910602.1

+Q +Q- Q+Q

meter

farads91036

1

Electrostatics

Page 3: Electrostatics numerical integration

21 Q

FE ru

21

4 r

Q

o

Coulomb

Newtons

meter

volts

electric field

Page 4: Electrostatics numerical integration

cos4 2r

dydE

o

L

r

x

r

dydE

o

L24

24 r

dydE

o

L

xy

r

22 yxr

xy

r

Page 5: Electrostatics numerical integration

xy

r

r

x

r

dydE

o

L24

a

a

o

L

yx

x

yx

dyE

222224

222 ax

a

xE

o

L

xa o

L

2E

lim

Page 6: Electrostatics numerical integration

uE

24 o

Q

dsudsE 24 o

Q x y

z

22

44

o

encQ dsE

o

encQ

dsE

Page 7: Electrostatics numerical integration

o

encQ

dsE

o

sE2

yxsQ ssenc

yxEsE 22

E

yx

E

Page 8: Electrostatics numerical integration

Voltage -- work

uE

2o4

Q

b

adlFwork

b

adlEq

b

a 2o

dl4

Qq u

b

ao4

Qq

Page 9: Electrostatics numerical integration

Voltage – work

Superposition

2o

2

1o

1

4

Q

4

QV

jo

j

4

QV

Page 10: Electrostatics numerical integration
Page 11: Electrostatics numerical integration

+

a

x

z

yb

z

Page 12: Electrostatics numerical integration

+

a

x

z

yb

z

Page 13: Electrostatics numerical integration

k,jk,j R4

QV

1m

b

1n

aQ s

k,j

1m

1k

1n

1jVV

j = 2

+

a

x

z

yb

Rj,k

z

j = 1k = 1

k = 2

j = 3

k = 3

Page 14: Electrostatics numerical integration

1 2 3 n-1 n

2

3

m

1

k

j

b

a

m-1

2

1nj

2

1mk

1m

b

1n

a

Page 15: Electrostatics numerical integration

2

2

22k,j

1m

b

2

mk

1n

a

2

nj

zR

j = 2

+

a

x

z

yb

Rj,k

z

j = 1k = 1

k = 2

j = 3

k = 3

2k,j2

k,j RnormR

Page 16: Electrostatics numerical integration

+

a

x

z

yb

z

kjR ,

222o

k,j

43z4

QV

16 b 12a

Page 17: Electrostatics numerical integration

43

6

8

12

135

22 435

22 12513

Page 18: Electrostatics numerical integration

+

a

x

z

yb

z

kjR ,

222o

k,j

43z4

QV

16 b 12a

2

1kk,j

2

1jVV

Page 19: Electrostatics numerical integration

+

a

x

z

yb

A

dz

Page 20: Electrostatics numerical integration

clear; clf

n=3; a=12; m=3; b=16; dz=12;

V=0;

for j=1: n-1

for k=1: m-1

A=[dz ((n/2)-j)*(a/(n-1))

((m/2)-k)*(b/(m-1))];

R=norm(A);

V=V+1/R;

end

end

V

V = .3077 = 4/13

+

a

x

z

yb

A

dz

Page 21: Electrostatics numerical integration
Page 22: Electrostatics numerical integration

clear

n=3; a=12; m=3; b=16; dz=12;

V=0;

for j=1: n-1

for k=1: m-1

A=[dz ((n/2)-j)*(a/(n-1))

((m/2)-k)*(b/(m-1))];

R=norm(A);

V=V+1/R;

end

end

V

V = .3077 = 4/13

+

a

x

z

yb

A

dz

#1

Page 23: Electrostatics numerical integration

for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on endendxlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black')

#1

Page 24: Electrostatics numerical integration

clear

n=3; a=12; m=3; b=16; dz=12;

V=0;

for j=1: n-1

for k=1: m-1

A=[dz ((n/2)-j)*(a/(n-1))

((m/2)-k)*(b/(m-1))];

R=norm(A);

V=V+1/R;

end

end

V

V = .3077 = 4/13

+

a

x

z

yb

A

dz

#1

#2;

Page 25: Electrostatics numerical integration

for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on endendxlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black')

#1

#2

Page 26: Electrostatics numerical integration

for w=-1:2 for ddz=1:10; dz=ddz*10^w; V=0; loglog(dz,V,'o') hold on endendxlabel('dz','fontsize',18) ylabel('V','fontsize',18) set(gca,'fontsize',18) whitebg('black')

Page 27: Electrostatics numerical integration

10-1

100

101

102

103

10-3

10-2

10-1

100

dz

V

slope = -1

Page 28: Electrostatics numerical integration

Electric field normal to a surface

• Two regions –

• The first region is very close to the surface so the surface almost appears to be infinite in extent.

• The second is at distances that are large with respect to the dimensions of the surface and the surface appears to be a point charge.

Page 29: Electrostatics numerical integration

quadrature function ”quad”

• the function “quad” approximates the integral of a function from a to b with an error of 10- 6 using “recursive adaptive Simpson quadrature.”

• This also holds true for “dblquad” & “triplequad.”

Page 30: Electrostatics numerical integration

% electric field at different distancesclear;clffor z= 1: 100 f=inline('10*z./(sqrt(x.^2+y.^2+(z/10).^2).^3)'); coefficient(z) =dblquad(f, -.5, .5, -.5, .5, [ ],'',z);endloglog(1: 100, coefficient,'-s')hold onplot([10/(10^(1/2)) 100], [1000 1],'--','linewidth', 3)xlabel ('z/a','fontsize', 18)ylabel ('coefficient','fontsize', 18)set(gca,'fontsize', 18)grid onlegend ('numerical integration','slope = -2', 3)

Page 31: Electrostatics numerical integration
Page 32: Electrostatics numerical integration

Comparison of the two integration techniques

Page 33: Electrostatics numerical integration

12

x

y

z

12

12

6

V(z = 6) = ?

Find V(z)

Page 34: Electrostatics numerical integration

66

12

6

x

y

z

V(z = 6) = ?

Find V(z)

Page 35: Electrostatics numerical integration