elektromagnetika teknikpersamaan pertama maxwell engineering electromagnetics. aplikasi hukum gauss:...

18
Elektromagnetika Teknik CHAPTER 3 ELECTRIC FLUX AND DIVERGENCE

Upload: others

Post on 03-Dec-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Elektromagnetika TeknikCHAPTER 3 ELECTRIC FLUX AND DIVERGENCE

Page 2: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Bab 3Elemen Volume Diferensial, Divergensi dan

Persamaan Pertama Maxwell

Engineering Electromagnetics

Page 3: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

We are now going to apply the methods of Gauss’s law to a slightly different type of problem: a surface without symmetry.

We have to choose such a very small closed surface that D is almost constant over the surface, and the small change in D may be adequately represented by using the first two terms of the Taylor’s-series expansion for D.

The result will become more nearly correct as the volume enclosed by the Gaussian surface decreases. We intend eventually to allow this volume to approach zero.

Page 4: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

0x

0( )f x

0x x x

0( ) ( )f x x f x

0( ) ( )f x f x x

20 0 00

( ) ( ) ( )( ) ( ) ( ) ( )

1! 2! !

nnf x f x f x

f x f x x x xn

A point near x0

Only the linear terms are used for the linearization

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Taylor’s Series Expansion

Page 5: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Consider any point P, located by a rectangular coordinate system.

The value of D at the point P may be expressed in rectangular components:

0 0 0 0x x y y z zD D D D a a a

We now choose as our closed surface, the small rectangular box, centered at P, having sides of lengths Δx, Δy, and Δz, and apply Gauss’s law:

S

d Q D S

front back left right top bottomS

d D S

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Page 6: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

We will now consider the front surface in detail.

The surface element is very small, thus D is essentially constant over this surface (a portion of the entire closed surface):

front frontfront

D S

front xy z D a

,frontxD y z

The front face is at a distance of Δx/2 from P, and therefore:

,front 0 rate of change of with 2

x x x

xD D D x

02

xx

DxD

x

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Page 7: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

We have now, for front surface:

0front

2

xx

DxD y z

x

In the same way, the integral over the back surface can be found as:

back backback

D Sback ( )xy z D a

,backxD y z

,back 02

xx x

DxD D

x

0back

2

xx

DxD y z

x

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Page 8: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

If we combine the two integrals over the front and back surface, we have:

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

front back xD

x y zx

right left

yDy x z

y

top bottom zD

z x yz

Repeating the same process to the remaining surfaces, we find:

These results may be collected to yield:

S

yx zDD D

d x y zx y z

D S

S

yx zDD D

d Q vx y z

D S

dan

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Page 9: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Charge enclosed in volume yx z

DD Dv v

x y z

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

The previous equation is an approximation, which becomes better as Δv becomes smaller, and in the following section the volume Δv will be let to approach zero.

For the moment, we have applied Gauss’s law to the closed surface surrounding the volume element Δv.

The result is the approximation stating that:

Aplikasi Hukum Gauss: Elemen Volume Diferensial

Page 10: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Let D = y2z3 ax + 2xyz3 ay + 3xy2z2 az nC/m2 in free space. (a) Find the total electric flux passing through the surface x = 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1 in a direction away from the origin. (b) Find |E| at P(3,2,1). (c) Find an approximate value for the total charge contained in an incremental sphere having a radius of 2 mm centered at P(3,2,1).

ψ SS

d D S(a)

1 2

2 3 3 2 2

0 03

2 3 x y z xz y

x

y z xyz xy z dydz

a a a a

1 22 3

0 0y z dydz

2 11 13 4

3 40 0y z

2

3nC

Contoh soal

Page 11: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

(b) 2 3 3 2 22 3x y zy z xyz xy z D = a a a2 3 3 2 2(2) (1) 2(3)(2)(1) 3(3)(2) (1)P x y z D = a a a

24 12 36 nC mx y z = a a a

2 2 2(4) (12) (36)P PD D =

238.158nC m

0

P

P

D

E2

12

38.158 nC m

8.854 10

4.31 kV m

Solusi

Page 12: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

(c) yx zDD D

Q vx y z

yx zP

P

DD DQ v

x y z

43 2 3 3 3 33

321

0 2 6 nC m (2 10 ) mxyz

xz xy z

43 2 3 3

30 2(3)(1) 6(3)(2) (1) (2 10 ) nC

152.61 10 C

Solusi

Page 13: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

We shall now obtain an exact relationship, by allowing the volume element Δv to shrink to zero.

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Syx zdDD D Q

x y z v v

D S

0 0lim limSyx z

v v

dDD D Q

x y z v v

D S

The last term is the volume charge density ρv, so that:

0lim Syx z

vv

dDD D

x y z v

D S

Divergence

Page 14: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Divergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Let us no consider one information that can be obtained from the last equation:

0lim Syx z

v

dDD D

x y z v

D S

This equation is valid not only for electric flux density D, but also to any vector field A to find the surface integral for a small closed surface.

0lim Syx z

v

dAA A

x y z v

A S

Page 15: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

This operation received a descriptive name, divergence. The divergence of A is defined as:

0Divergence of div lim S

v

d

v

A SA A

“The divergence of the vector flux density A is the outflow of flux from a small closed surface per unit volume as the volume shrinks to zero.”

A positive divergence of a vector quantity indicates a source of that vector quantity at that point.

Similarly, a negative divergence indicates a sink.

Divergence

Page 16: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

div yx z

DD D

x y z

D

1 1div ( ) z

D DD

z

D

2

2

1 1 1div ( ) (sin )

sin sinr

Dr D D

r r r r

D

Persegi

Silinder

Bola

Divergence

Page 17: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

If D = e–xsiny ax – e–x cosy ay + 2z az, find div D at the origin and P(1,2,3).

div yx z

DD D

x y z

D sin sin 2x xe y e y 2

Regardless of location the divergence of D equals 2 C/m3.

Contoh Soal

Page 18: Elektromagnetika TeknikPersamaan Pertama Maxwell Engineering Electromagnetics. Aplikasi Hukum Gauss: Elemen Volume Diferensial Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

Maxwell’s First Equation (Electrostatics)

Chapter 3 Electric Flux Density, Gauss’s Law, and DIvergence

We may now rewrite the expressions developed until now:

div yx z

DD D

x y z

D

0div lim S

v

d

v

D SD

div vD Maxwell’s First EquationPoint Form of Gauss’s Law

This first of Maxwell’s four equations applies to electrostatics and steady magnetic field.

Physically it states that the electric flux per unit volume leaving a vanishingly small volume unit is exactly equal to the volume charge density there.