em course module 1 for 2009 india programs

Upload: mayam-ayo

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    1/141

    Fundamentals of Electromagnetics

    for Teaching and Learning:A Two-Week Intensive Course for Faculty in

    Electrical-, Electronics-, Communication-, andComputer- Related Engineering Departments in

    Engineering Colleges in India

    by

    Nannapaneni Narayana RaoEdward C. Jordan Professor Emeritus

    of Electrical and Computer EngineeringUniversity of Illinois at Urbana-Champaign, USADistinguished Amrita Professor of Engineering

    Amrita Vishwa Vidyapeetham, India

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    2/141

    Program for Hyderabad Area and Andhra Pradesh FacultySponsored by IEEE Hyderabad Section, IETE Hyderabad

    Center, and Vasavi College of EngineeringIETE Conference Hall, Osmania University Campus

    Hyderabad, Andhra PradeshJune 3 June 11, 2009

    Workshop for Master Trainer Faculty Sponsored byIUCEE (Indo-US Coalition for Engineering Education)

    Infosys Campus, Mysore, Karnataka

    June 22

    July 3, 2009

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    3/141

    1-2

    Maxwells Equations

    Electric field

    intensity

    Magnetic

    flux density

    Charge density

    Magnetic

    field intensity

    Current

    densityDisplacement

    flux density

    V m Wb m2 C m3

    A m A m

    2

    C m

    2

    Edl=ddt BdSSC DdS= rdvVS

    Hdl= J

    dS+ d

    dtSC

    DdS

    S

    BdS=0

    S

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    4/141

    1-3

    Module 1Vectors and Fields

    1.1 Vector algebra1.2 Cartesian coordinate system1.3 Cylindrical and spherical coordinate systems1.4 Scalar and vector fields1.5 Sinusoidally time-varying fields

    1.6 The electric field1.7 The magnetic field1.8 Lorentz force equation

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    5/141

    1-4

    Instructional Objectives

    1. Perform vector algebraic operations in Cartesian,cylindrical, and spherical coordinate systems

    2. Find the unit normal vector and the differential surface ata point on the surface

    3. Find the equation for the direction lines associated with a

    vector field4. Identify the polarization of a sinusoidally time-varying

    vector field5. Calculate the electric field due to a charge distribution by

    applying superposition in conjunction with the electric

    field due to a point charge6. Calculate the magnetic field due to a current distribution

    by applying superposition in conjunction with themagnetic field due to a current element

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    6/141

    1-5

    Instructional Objectives (Continued)

    7. Apply Lorentz force equation to find the electric andmagnetic fields, for a specified set of forces on a charged

    particle moving in the field region

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    7/141

    1-6

    1.1 Vector Algebra(EEE, Sec. 1.1; FEME, Sec. 1.1)

    In this series of PowerPoint presentations, EEE refers toElements of Engineering Electromagnetics, 6th Edition,

    Indian Edition (2006), and FEME refers to Fundamentals of

    Electromagnetics for Engineering, Indian Edition (2009).

    Also, all D Problems and P Problems are from EEE.

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    8/141

    1-7

    (1) Vectors(A) vs. Scalars(A)

    Magnitude and direction Magnitude only

    Ex: Velocity, Force Ex: Mass, Charge

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    9/141

    1-8

    (2) Unit Vectorshave magnitude

    unity, denoted by symbol awith subscript. We shall use

    the right-handed system

    throughout.

    Useful for expressing vectors in terms of their

    components.

    aA = AA

    = A1a1 A2a2 A3a3A

    12 A

    22 A

    32

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    10/141

    1-9

    (3) Dot Productis a scalar

    AA B=ABcos a

    B

    Useful for finding angle between two vectors.

    cos a = A BAB

    A = A1a1 A2a2 A3a3B = B1a1 B2a2 B3a3

    = A1B1 A2B2 A3B3A

    12 A

    22 A

    32 B

    12 B

    22 B

    32

    A

    B

    a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    11/141

    1-10

    (4) Cross Productis a vector

    AA B=ABsin a

    B

    is perpendicular to both Aand B.

    Useful for finding unit vector perpendicular to

    two vectors.

    an = A BAB sina

    = A BA B

    ana

    right hand

    screw A

    B

    an

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    12/141

    1-11

    where

    (5) Triple Cross Product

    in general.

    A B =a1 a2 a3

    A1 A2 A3

    B1 B2 B3

    A (B C) is a vectorA (B C) B (C A) C (A B)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    13/141

    1-12

    (6) Scalar Triple Product

    is a scalar.

    AB C = B C A = C A B

    = A1 A2 A3B1 B2 B3C1 C2 C3

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    14/141

    1-13

    Volume of the parallelepiped

    an C

    B

    A

    Area of base Height

    n

    =

    =

    =

    =

    =

    A B C a

    A BA B C

    A B

    C A B

    A B C

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    15/141

    1-14

    D1.2 (EEE) A= 3a1+ 2a2+ a3

    B= a1+ a2a3

    C= a1+ 2a2+ 3a3

    (a) A+ B4C

    = (3 + 14)a1+ (2 +18)a2

    + (1112)a3

    = 5a212a3

    A B4C = 25 144 = 13

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    16/141

    1-15

    (b) A+ 2BC

    = (3 + 21)a1+ (2 + 22)a2

    + (123)a3

    = 4a1+ 2a24a3

    Unit Vector

    =

    =

    4a1 2a24a34a1 2a24a31

    3(2a1 a22a3)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    17/141

    1-16

    (c) A C= 3 1 + 2 2 + 1 3

    = 10

    (d)

    =

    = 5a14a2+ a3

    B C = a1 a2 a31 1 11 2 3

    (3 2)a1 (13)a2 (21)a3

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    18/141

    1-17

    (e)

    = 158 + 1 = 8

    Same as

    A (B C) = (3a1+ 2a2+ a3) (5a14a2+ a3)

    = 3 5 + 2 (4) + 1 1

    = 158 + 1

    = 8

    AB C =3 2 1

    1 1 1

    1 2 3

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    19/141

    1-18

    P1.5 (EEE)

    D= BA ( A+ D= B)

    E= CB ( B+ E= C)

    Dand Elie along a straight line.

    D

    A

    B

    E

    C

    CommonPoint

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    20/141

    1-19

    What is the geometric interpretation of this result?

    =DE 0

    =B A C B 0

    + =BC AC BB AB 0

    A B + B C + C A = 0

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    21/141

    1-20

    E1.1 Another Example

    Given

    Find A.

    1 2 3

    2 1 3

    2 (1)

    2 (2)

    = +

    =

    a A a a

    a A a a

    2 3 1 3

    31 2

    1 2 3

    = 2 2

    0 2 21 201 2

    C

    C C

    +

    = = + +

    A a a a a

    aa a

    a a a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    22/141

    1-21

    To find C, use (1) or (2).

    1 2 32 2 = + +A a a a

    1 1 2 3 2 3

    3 2 2 3

    2 2 2

    2 21

    C

    CC

    + + = +

    = +=

    a a a a a a

    a a a a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    23/141

    1-22

    Review Questions

    1.1. Give some examples of scalars.1.2. Give some examples of vectors.

    1.3. Is it necessary for the reference vectors a1, a2, and a3

    to be an orthogonal set?

    1.4. State whether a1, a

    2, and a

    3directed westward,

    northward, and downward, respectively, is a right-

    handed or a left-handed set.

    1.5. State all conditions for which ABis zero.

    1.6. State all conditions for which ABis zero.

    1.7. What is the significance of ABC=0?1.8. What is the significance of A(BC)=0?

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    24/141

    1-23

    Problem S1.1. Performing several vector algebraic

    manipulations

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    25/141

    1-24

    Problem S1.1. Performing several vector algebraic

    manipulations (continued)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    26/141

    1-25

    1.2 Cartesian

    Coordinate System(EEE, Sec. 1.2; FEME, Sec. 1.2)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    27/141

    1-26

    Cartesian Coordinate System

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    28/141

    1-27

    Cartesian Coordinate System

    x

    yx

    y

    z

    Oaz z

    az

    ay

    ayax

    ax

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    29/141

    1-28

    Right-handed system

    xyz xy

    ax, ay, azare uniformunit vectors, that is, the

    direction of each unit vector is same everywhere inspace.

    ax ay = azay az= axaz ax = ay

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    30/141

    1-29

    1 12 2

    12 2 1

    + =

    =

    r R r

    R r r

    zP2

    P1R12

    r1 r2

    y

    x

    O

    2 2 2

    1 1 1

    2 1 2 1 2 1

    x y z

    x y z

    x y z

    x y z

    x y zx x y y z z

    = + +

    + += + +

    a a a

    a a aa a a

    Vector drawn from one point to another: From

    P1

    (x1

    , y1

    , z1

    ) toP2

    (x2

    , y2

    , z2

    )

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    31/141

    1-30

    x

    x2

    x1

    O

    (x2 x

    1)a

    x r

    1 z

    1

    r2

    z

    P1

    P2R12

    (z2z1)az

    (y2y1)ay

    y1

    z2

    y2y

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    32/141

    1-31

    P1.8 A(12, 0, 0), B(0, 15, 0), C(0, 0,20).

    (a)Distance fromBto C

    =

    =

    (b)Component of vector fromAto Calong vector

    fromBto C

    = Vector fromAto C

    Unit vector along vector fromBto C

    (00)ax (015)ay (200)az152 202 = 25

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    33/141

    1-32

    (c) Perpendicular distance fromAto the line throughB

    and C

    = (Vector fromAto C) (Vector fromBto C)BC

    12 20 15 20

    25

    x z y z =

    a a a a

    15 20

    12 20

    15 20

    40016

    25

    y z

    x z

    y z

    =

    = =

    a aa a

    a a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    34/141

    1-331-33

    (2) Differential Length Vector(dl)

    180 240 300

    25=

    a a az y x

    12 2=

    dl = dxax

    dyay

    dzaz

    , ,Q x dx y dy z dz + + +

    dzdx

    , ,P x y z

    dl

    dyya

    xa

    za

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    35/141

    1-34

    dl= dx ax+ dy ay

    = dx ax+f(x) dx ay

    Unit vector normal to a surface

    andl2

    dl1

    Curve 2

    Curve 1an = dl1 dl2dl1 dl2

    dldx

    y =f(x)

    dy=f(x) dxz= constant plane

    dz= 0

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    36/141

    1-35

    D1.5 Find dlalong the line and having the projection dzon

    thez-axis.

    (a)

    (b)

    x = 3,y =4dx = 0,dy = 0dl = dzazx y = ,y z=dx dy = 0,dy dz= 0

    dy=dz,dx

    =dy

    =dz

    x y z

    x y z

    d dz dz dz

    dz

    = +

    = +

    l a a a

    a a a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    37/141

    1-36

    (c) Line passing through (0, 2, 0) and (0, 0, 1).

    x = 0, dy02

    = dz10

    dx = 0,dy = 2dz

    2

    2

    y z

    y z

    d dz dz

    dz

    = +

    = +

    l a a

    a a

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    38/141

    1-37

    (3) Differential Surface Vector(dS)

    Orientation of the surface is defined uniquely by thenormal anto the surface.

    For example, in Cartesian coordinates, dSin any planeparallel to thexyplane is

    dS = dSan = dl1 dl2an = dl1 dl2

    dx dyaz = dxax dyay

    adS

    dl1

    dl2

    an

    x

    ydSdx

    dy

    az

    1 2

    1 2

    sindS dl dl

    d d

    a== l l

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    39/141

    1-38

    (4) Differential Volume(dv)

    In Cartesian coordinates,

    dv = dl1dl2 dl3

    dv = dxax dyay dzaz= dx dy dz dz dy

    dx

    z

    y

    x

    dl2

    dl1

    dl3 dv

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    40/141

    1-39

    Review Questions

    1.9. What is the particular advantageous characteristicassociated with unit vectors in the Cartesian coordinatesystem?

    1.10. What is the position vector?1.11. What is the total distance around the circumference of a

    circle of radius 1 m? What is the total vector distancearound the circle?

    1.12. Discuss the application of differential length vectors tofind a unit vector normal to a surface at a point on thesurface.

    1.13. Discuss the concept of a differential surface vector.1.14. What is the total surface area of a cube of sides 1 m?

    Assuming the normals to the surfaces to be directedoutward of the cubical volume, what is the total vectorsurface area of the cube?

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    41/141

    1-40

    Problem S1.2. Finding the unit vector normal to a surface

    and the differential surface vector, at a point on it

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    42/141

    1-41

    1.3 Cylindrical and Spherical

    Coordinate Systems(EEE, Sec. 1.3; FEME, Appendix A)

    1 42

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    43/141

    1-42

    Cylindrical Coordinate System

    1 43

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    44/141

    1-43

    Spherical Coordinate System

    1 441 44

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    45/141

    1-441-44

    Cylindrical (r, f,z) Spherical (r, q, f)

    Only azis uniform. All three unit

    arand afare vectors are

    nonuniform. nonuniform.

    Cylindrical and Spherical Coordinate Systems

    af

    f

    x

    x

    y

    yr

    z

    z ar

    az

    9090

    z

    r

    y

    ar

    90

    x

    af

    aq

    f

    q90

    1 451 45

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    46/141

    1-451-45

    x = rcos f x = rsin qcos fy = rsin f y = rsin qsin f

    z = z z = rcos qD1.7 (a) (2, 5p/6, 3) in cylindrical coordinates

    2 cos 5 6 33 1 2

    2 sin 5 6 1

    3

    p

    p

    = = + =

    = = =

    x

    y

    z

    x

    z

    3

    2 y

    5p/65 6p

    1 461 46

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    47/141

    1-461-46

    (b)

    x = 4 cos 4p 3 =2y = 4 sin 4p 3 =2 3 4 12 = 4z=1

    (4, 4 3, 1) in cylindrical coordinatesp

    1 4

    x

    y4p/3

    z

    4 3p

    1 471 47

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    48/141

    1-471-47

    (c)

    24 sin cos 3

    3 624 sin sin 3 9 3 4 4

    3 6

    4 cos 23

    p p

    p p

    p

    = =

    = = + + == =

    x

    y

    z

    (4, 2 3, 6) in spherical coordinatesp p

    x

    y

    z

    4

    6p

    2 3p

    1 481 48

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    49/141

    1-481-48

    x = 8 sinp4

    cosp

    3= 1

    = 8 sinp4

    sinp

    3= 3

    z= 8 cosp4

    = 2

    1 3 4 = 8

    (d) 8, 4, 3 in spherical coordinates.p pz

    y

    x

    8

    3p

    4p

    1 49

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    50/141

    1-49

    Conversion of vectors between coordinate systems

    arc

    af

    az

    =

    cos f sinf 0

    sinf cosf 0

    0 0 1

    ax

    ay

    az

    a

    rsaq

    af

    =

    sinqcos f sin qsinf cos q

    cos qcosf cos qsinf sin q

    sinf cos f 0

    a

    xay

    az

    axarc

    az ay

    af

    f

    az ars

    arcafa

    q

    q

    1 501 50

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    51/141

    1-501-50

    P1.18 A= ar at (2, p/6, p/ 2)

    B= aq at (1, p/3, 0)

    C= af at (3, p/4, 3p/2)

    A = sinp6

    ay cosp6

    az

    = 12

    ay 3

    2az

    1

    4 3

    4= 1

    x

    z A

    y

    2p

    6p

    1 511 51

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    52/141

    1-511-51

    B sinp

    6 ax

    cosp

    6 az

    1

    2ax

    3

    2az

    1

    4 3

    4= 1

    C = ax

    x

    y

    z

    B

    13p

    C

    x

    y

    z

    p/4

    3

    3p/2

    1 521 52

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    53/141

    1-521-52

    (a)

    (b)

    1 3 1 32 2 2 2

    3

    4

    1 3

    2 2

    0

    A B a a a a

    A C a a a

    y z x z

    y z x

    = +

    =

    = +

    =

    1-53

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    54/141

    1-53

    (c)

    (d) A B C C A B

    =

    1 0 0

    01

    2

    3

    2

    12

    0 32

    3

    4

    1 3

    2 2

    1

    2

    x z x

    =

    =

    B C a a a

    1-54

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    55/141

    1-54

    Differential length vectors:

    Cylindrical Coordinates:

    dl= drar+ rdfaf +dz az

    Spherical Coordinates:

    dl= drar+ rdqaq+ rsin qdfaf

    1-55

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    56/141

    1 55

    Review Questions

    1.15. Describe the three orthogonal surfaces that define thecylindrical coordinates of a point.1.16. Which of the unit vectors in the cylindrical coordinate

    system are not uniform? Explain.1.17. Discuss the conversion from the cylindrical coordinates

    of a point to its Cartesian coordinates.1.18. Describe the three orthogonal surfaces that define thespherical coordinates of a point.

    1.19. Discuss the nonuniformity of the unit vectors in thespherical coordinate system.

    1.20. Discuss the conversion from the cylindrical coordinatesof a point to its Cartesian coordinates.

    1-56

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    57/141

    1 56

    Problem S1.3. Determination of the equality of vectors

    specified in cylindrical and spherical coordinates

    1-57

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    58/141

    1 57

    Problem S1.4. Finding the unit vector tangential to a

    curve, at a point on it, in spherical coordinates

    1-58

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    59/141

    1 58

    1.4 Scalar and Vector Fields

    (EEE, Sec. 1.4; FEME, Sec. 1.3)

    1-59

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    60/141

    59

    FIELDis a description of how a physical quantityvaries from one point to another in the region of the

    field (and with time).

    (a) Scalar fields

    Ex: Depth of a lake, d(x,y)

    Temperature in a room, T(x,y,z)

    Depicted graphically by constant magnitudecontours or surfaces.

    y

    x

    d1

    d2d3

    1-60

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    61/141

    (b)Vector Fields

    Ex: Velocity of points on a rotating disk

    v(x,y) = vx(x,y)ax+ vy(x,y)ay

    Force field in three dimensions

    F(x,y,z) =Fx(x,y,z)ax+Fy(x,y,z)ay

    +Fz(x,y,z)az

    Depicted graphically by constant magnitudecontours or surfaces, and direction lines (or

    stream lines).

    1-61

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    62/141

    Example: Linear velocity vector field of points

    on a rotating disk

    1-62

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    63/141

    (c) Static FieldsFields not varying with time.

    (d) Dynamic Fields

    Fields varying with time.

    Ex: Temperature in a room, T(x,y,z; t)

    1-63

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    64/141

    2 2 2

    0

    2 2

    0

    , , , 0 1 0 2 1 1 4

    4

    T x y z T x y z

    T x z

    = + + +

    = +

    2 24 const.x z+ =

    2 2 20= 1 sin 2 1 cos 4T x t y t z p p+ + +

    D1.10 T(x, y, z, t)

    Constant temperature surfaces are elliptic cylinders,

    (a)

    1-64

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    65/141

    (b)

    Constant temperature surfaces are spheres

    (c)

    Constant temperature surfaces are ellipsoids,

    22 2

    0

    2 2 20

    , , , 0.5 1 1 2 1 0 4

    4 4 4

    T x y z T x y z

    T x y z

    = + + +

    = + +

    2 2 2 const.x y z+ + =

    2 2 2

    0

    2 2 2

    0

    , , , 1 1 0 2 1 1 4

    16 4

    T x y z T x y z

    T x y z

    = + + + +

    = + +

    2 2 216 4 const.x y z+ + =

    1-65

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    66/141

    Procedure for finding the equation for the

    direction lines of a vector fieldThe field Fis

    tangential to the

    direction line at

    all points on a

    direction line.

    dl F =ax ay az

    dx dy dz

    Fx Fy Fz

    = 0

    dx

    Fx= dy

    Fy= dz

    Fz

    dlF

    F

    F

    dl

    1-66

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    67/141

    Similarly

    dr

    Fr= r df

    Ff= dz

    Fz

    dr

    Fr= r dq

    Fq= rsinqdf

    Ff

    cylindrical

    spherical

    1-67

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    68/141

    P1.26 (b)xax yay zaz(Position vector)

    dx

    x= dy

    y= dz

    z

    lnx = lny lnC1 = lnz lnC2lnx = lnC1y = lnC2z

    x = C1y = C2z

    1-681-68

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    69/141

    Direction lines are straight lines emanating

    radially from the origin. For the line passingthrough (1, 2, 3),

    1= C1(2) = C2(3)C1 = 1

    2,C2 = 1

    3

    x = y2= z

    3

    or, 6 3 2= =x y z

    1-69

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    70/141

    Review Questions

    1.21. Discuss briefly your concept of a scalar field andillustrate with an example.

    1.22. Discuss briefly your concept of a vector field and

    illustrate with an example.

    1.23. How do you depict pictorially the gravitational field of

    the earth?1.24. Discuss the procedure for obtaining the equations for

    the direction lines of a vector field.

    1-70

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    71/141

    Problem S1.5. Finding the equation for direction line of a

    vector field, specified in spherical coordinates

    1-71

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    72/141

    1.5 Sinusoidally

    Time-Varying Fields

    (EEE, Sec. 3.6; FEME, Sec. 1.4)

    1-72

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    73/141

    Sinusoidal function of time

    1-73

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    74/141

    Polarizationis the characteristic which

    describes how the position of the tip of the

    vector varies with time.

    Linear Polarization:

    Tip of the vectordescribes a line.

    Circular Polarization:

    Tip of the vectordescribes a circle.

    1-74

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    75/141

    Elliptical Polarization:

    Tip of the vectordescribes an ellipse.

    (i) Linear Polarization

    Linearly polarized in thexdirection.

    F1 = F1 cos (t f)axDirection remains

    along thexaxis

    Magnitude variessinusoidally with time

    1-75

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    76/141

    Linear polarization

    1-76

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    77/141

    F2 = F2 cos (t q)ayDirection remains

    along the yaxisMagnitude variessinusoidally with time

    Linearly polarized in the ydirection.

    If two (or more) component linearly polarized

    vectors are in phase, (or in phase opposition), then

    their sum

    vector is also linearly polarized.

    Ex: 1 2cos cosx y f f = + + +( ) ( )F t F tF a a

    1-771-77

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    78/141

    Sum of two linearly polarized vectors in phase

    (or in phase opposition) is a linearly polarizedvector

    1-78

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    79/141

    (ii) Circular Polarization

    If two component linearly polarized vectors are

    (a) equal in amplitude

    (b) differ in direction by 90(c) differ in phase by 90,

    then their sum vector is circularly polarized.

    a= tan1F2 cos (t f)F

    1

    cos (t f)= tan1F2

    F1

    = constant

    y

    xaF1

    F2 F

    1-79

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    80/141

    Circular Polarization

    1-80

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    81/141

    Example:

    1 1

    2 2

    1 1

    1

    1 1

    1

    1

    cos sin

    cos sin

    , constant

    sintan

    cos

    tan tan

    x yF t F t

    F t F t

    F

    F t

    F t

    t t

    a

    = +

    = +

    =

    =

    = =

    F a a

    F

    1F

    2F

    F

    x

    y

    a

    1-81

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    82/141

    (iii) Elliptical Polarization

    In the general case in which either (i) or (ii) is not

    satisfied, then the sum of the two component

    linearly polarized vectors is an elliptically polarized

    vector.

    Example:F = F1 costax F2 sintay

    1F

    2FF

    x

    y

    1-821-82

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    83/141

    Example: 0 0cos cos 4x yF t F t p= + +F a a

    xF0

    F0

    F0

    F0F1

    F2 F

    y

    4p

    1-831-83

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    84/141

    D3.17

    F1and F2are equal in amplitude (=F0) and differ in

    direction by 90. The phase difference (say f) depends

    onzin the manner2pz(3pz) = pz.

    (a) At (3, 4, 0), f= p (0) = 0.

    (b) At (3,2, 0.5), f= p (0.5) = 0.5 p.

    8

    1 0

    8

    2 0

    cos 2 10 2

    cos 2 10 3

    x

    y

    F t z

    F t z

    p p

    p p

    =

    =

    F a

    F a

    1 2 is linearly polarized.

    +F F

    1 2 is circularly polarized.+F F

    1-841-84

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    85/141

    (c) At (2, 1, 1), f= p (1) = p.

    (d) At (1,3, 0.2) = f= p (0.2) = 0.2p.

    1 2 is linearly polarized.+F F

    1 2 is elliptically polarized.+F F

    1-85

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    86/141

    Review Questions

    1.25. A sinusoidally time-varying vector is expressed interms of its components along thex-,y-, andz- axes.What is the polarization of each of the components?

    1.26. What are the conditions for the sum of two linearlypolarized sinusoidally time-varying vectors to be

    circularly polarized?1.27. What is the polarization for the general case of the sumof two sinusoidally time-varying linearly polarizedvectors having arbitrary amplitudes, phase angles, anddirections?

    1.28. Considering the seconds hand on your analog watchto be a vector, state its polarization. What is thefrequency?

    1-86

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    87/141

    Problem S1.6. Finding the polarization of the sum of two

    sinusoidally time-varying vector fields

    1-87

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    88/141

    1.6 The Electric Field

    (EEE, Sec. 1.5; FEME, Sec. 1.5)

    1-88

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    89/141

    The Electric Field

    is a force field acting on charges by virtue of theproperty of charge.

    Coulombs Law

    R

    F1 a21Q1

    Q2

    a12

    F2 F1 = Q1Q2

    4p0R

    2a21

    F2 = Q2Q14p0R

    2a12

    0 =permittivity of free space 109

    36pF / m

    1-89

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    90/141

    Q

    Q Q

    aQ

    2a

    D1.13(b)

    From the construction, it is evident that the resultant

    force is directed away from the center of the square.The magnitude of this resultant force is given by

    Q2/4p0(2a2)

    Q2/4p0(4a2)

    Q2/4p0(2a2)

    Q = 4p0

    1-901-90

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    91/141

    2 2

    2 2

    0 0

    22

    2

    2 cos 454 2 4 4

    1 1

    42

    0.957N

    Q Q

    a a

    aa

    a

    p p +

    = +

    =

    1-91

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    92/141

    Electric Field Intensity, E

    is defined as the force per unit charge experienced by

    a small test charge when placed in the region of thefield.

    Thus

    Units:

    E = Limq0

    F

    q

    Fe = qE

    qE

    q

    E

    q

    qE

    Sources: Charges;Time-varyingmagnetic field

    N N m V

    C C m m

    = =

    1-92

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    93/141

    2

    0

    2

    0

    4

    4

    due to

    R

    R

    Qq

    R

    QqR

    q Q

    p

    p

    =

    =

    =

    F a

    a

    E

    aR

    q

    R

    Q

    2

    0

    due to4

    RQQ

    Rp =E a

    Electric Field of a Point Charge

    (Coulombs Law)

    1-93

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    94/141

    Constant magnitude surfaces

    are spheres centered at Q.Direction lines are radial lines

    emanating from Q.

    E due to charge distributions(a) Collection of point charges

    Qn

    Q3

    Q2

    Q1 R1

    R2

    R3Rn

    aRnaR3aR2aR1

    E = Qj4p0Rj

    2aRj

    j =1n

    E

    Q

    aRR

    1-94

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    95/141

    E1.2

    Q (> 0) d

    x

    e

    d Q (> 0)

    y

    z

    d2+ x2 d2+ x2a

    Electron (charge eand mass m) is displaced from the

    origin by D(

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    96/141

    For any displacementx,

    is directed toward the origin,

    and x D d. F Q e x

    2p0d3ax

    2 2

    0

    3 22 2

    0

    2 cos4

    2

    x

    x

    Q e

    d x

    Q e x

    d x

    ap

    p

    = +

    =

    +

    F a

    a

    1-961-96

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    97/141

    The differential equation for the motion of the

    electron is

    Solution is given by

    md2x

    dt2= Qe x

    2p0d3

    d2xdt2

    Qe2pm0d

    3x = 0

    30

    cos2p

    = +Q e

    x A t Bm d

    30

    sin2p

    Q e t

    m d

    1-97

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    98/141

    Using initial conditions and at t= 0,

    we obtain

    which represents simple harmonic motion about the

    origin with period

    x = D dxdt

    = 0

    x = D cos Qe2pm0d

    3t

    30

    22

    Q e

    m dp

    p

    1-981-98

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    99/141

    (b) Line Charges

    Line chargedensity,rL(C/m)

    (c) Surface Charges

    Surface chargedensity,rS(C/m

    2)

    (d) Volume Charges

    Volume charge

    density,r(C/m3)

    P

    dl

    dS

    dv

    1-991-99

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    100/141

    E1.3 Finitely-Long Line Charge

    x

    za

    dz

    a

    ar

    y

    z +z2r2

    Erf

    a

    04 C mr r p= =L L0

    1-1001-1001-100

    2 Ldz

    dr

    E

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    101/141

    2 202 cos

    4

    Lrd

    r z

    ra

    p=

    +E a

    0

    0

    ,2

    For r

    p E aL ra r

    0

    3 20 2 20

    0

    2 2 20 0

    0

    2 2 2 2

    0

    2

    4

    2

    2

    2

    E a

    a

    a a

    aL

    rz

    a

    Lr

    z

    L

    r r

    r dz

    r z

    r z

    r r z

    a a

    r r a r r a

    r

    p

    rp

    r

    p

    =

    =

    =+

    = +

    = =+ +

    1-1011-101

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    102/141

    Infinite Plane Sheet of Charge

    of Uniform Surface Charge Density

    z

    z

    y

    dyx

    y

    +z2

    y2

    a

    0Sr

    1-1021-102

    r dy

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    103/141

    0

    2 2

    0

    0

    2 20

    2 cos2

    ra

    p

    r

    p

    =+

    =+

    S

    z

    S

    dydE

    y z

    z dy

    y z

    0

    2 200

    20

    00

    0

    0

    1

    2

    Sz

    y

    S

    S

    z dyEy z

    zd

    z

    p

    a

    rp

    ra

    pr

    =

    =

    =+

    =

    =

    1-1031-103

    r

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    104/141

    0

    0

    0

    0

    0

    0

    for 02

    2

    2

    zr

    r

    r

    =

    =

    E a

    a

    a

    S

    z

    S

    n

    S

    z

    +

    +

    +

    +

    +

    z< 0

    z= 0 z

    z> 0

    0rS

    0

    02

    r

    aS

    z

    0

    02

    r

    aS z

    1-1041-104

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    105/141

    D1.16

    Given

    (3,5,1) 0 V m(1, 2,3) 6 V m

    (3,4,5) 4 V m

    ==

    =z

    z

    EE a

    E a

    z= 0 z= 2 z= 4

    1Sr 2Sr 3Sr

    1-105

    1

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    106/141

    21 04 C mSr =

    1 2 3

    0

    1 2 3

    0

    1 2 3

    0

    10

    2

    16

    2

    1

    42

    S S S

    S S S

    S S S

    r r r

    r r r

    r r r

    =

    + =

    + + =

    22 06 C mSr =

    Solving, we obtain

    2

    3 02 C mSr = 2,1, 6 4 V mz = E a(d)

    (a)

    (c)

    (b)

    1-106

    Review Questions

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    107/141

    Review Questions

    1.29. State Coulombs law. To what law in mechanics is

    Coulombs law analogous?1.30. What is the value of the permittivity of free space?

    What are its units?1.31. What is the definition of electric field intensity?

    What are its units?1.32. Describe the electric field due to a point charge.1.33. Discuss the different types of charge distributions.

    How do you determine the electric field due to a chargedistribution?

    1.34. Describe the electric field due to an infinitely long linecharge of uniform density.1.35. Describe the electric field due to an infinite plane sheet

    of uniform surface charge density.

    1-107

    Problem S1 7 Determination of conditions for three point

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    108/141

    Problem S1.7. Determination of conditions for three point

    charges on a circle to be in equilibrium

    1-108

    Problem S1.8. Finding the electric field due to an infinite

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    109/141

    Problem S1.8. Finding the electric field due to an infinite

    plane slab charge of specified charge density

    1-109

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    110/141

    1.7 The Magnetic Field

    (EEE, Sec. 1.6; FEME, Sec. 1.6)

    1-1101-110

    The Magnetic Field

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    111/141

    dFm

    B

    I dl

    The Magnetic Field

    acts to exert force on charge when it is in motion.

    B= Magnetic flux density vectorAlternatively, since charge in motion constitutes

    current, magnetic field exerts forces on current

    elements.

    FmB

    vq

    Fm = qv B

    I=F l Bmd d

    1-111

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    112/141

    Units of B:

    Sources: Currents;

    Time-varying electric field

    2

    2

    N Nm

    =A m A m

    Wb= = T

    m

    1-112

    A L f F

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    113/141

    Ampres Law of Force

    Ra12

    a21

    dl1

    dl2

    I1 I2

    0 2 2 211 1 1 2

    1 1 2

    0 1 1 122 2 2 2

    2 2 1

    4

    4

    I dd I dR

    I d

    I dd I dR

    I d

    p

    p

    =

    =

    =

    =

    l aF l

    l B

    l aF l

    l B

    1-1131-113

    Magnetic field due to a current element

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    114/141

    I dlaR

    R P B

    Magnetic field due to a current element

    (Biot-Savart Law)

    B = 04p

    I dl aRR2

    B right-circular to the axis of the current element0

    7

    Permeability of free space

    = 4 10 H m

    p

    =

    a

    2

    sin1

    R

    a

    B

    B

    Note

    1-114

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    115/141

    E1.4

    0 0

    2 34 4

    since

    2 1 1 2 3 2

    R

    R

    x y z

    x y z

    I d I d

    R R

    R

    p p= =

    =

    + + +

    = + +

    l a l R B

    Ra

    R = a a a

    a a a

    A situated at 1, 2, 2 .

    Find at 2, 1, 3 .

    l a a

    B

    x yI d I dx= +

    1-115

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    116/141

    0

    12 3 x y

    I dx

    p= a a

    0

    3=

    4 3

    x y x y zI dx

    p

    + + + a a a a a

    B

    1-116

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    117/141

    JS

    w

    Current Distributions

    (a)Filamentary CurrentI (A)

    (b) Surface Current

    Surface current density, JS(A/m)

    JS = Iw max

    1-117

    ( ) V l C

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    118/141

    areaA

    J

    (c)Volume Current

    Density, J(A/m2)

    J = IA max

    1-118

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    119/141

    P1.44

    x a1

    r

    y

    rI

    zz

    z

    a2

    dz

    z

    aR

    a1

    a

    a2

    P(r, f,z)

    0

    22

    0

    22

    4

    sin

    4

    z Rdzdr z z

    I dz

    r z z

    f

    p

    a

    p

    =

    +

    = +

    a aB

    a

    1-1191-119

    az z z=

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    120/141

    2

    2

    1

    2

    1

    2

    1

    0

    2 2

    2

    02

    0

    01 2

    cot

    sin

    4 1

    cosec sin4 cosec

    cos4

    cos cos4

    1

    a

    aB B

    a

    a

    a

    a

    z

    z

    z zd

    r

    d zI

    r z z r

    I dr

    I

    r

    I

    r

    af

    a a

    a

    fa a

    a

    a a f

    f

    a

    a

    p

    a a ap a

    a

    p

    a a

    p

    =

    =

    =

    =

    =

    = =

    =+

    =

    =

    =

    1-120

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    121/141

    For infinitely long wire,

    a1 ,a2 ,a1 0 , a2 p

    B 0I2pr af

    1-121

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    122/141

    Magnetic Field Due to an Infinite Plane Sheet of

    Uniform Surface Current Density

    This can be found by dividing the sheet into

    infinitely long strips parallel to the current density

    and using superposition, as in the case of finding the

    electric field due to an infinite plane sheet of uniform

    surface charge density. Instead of going through this

    procedure, let us use analogy. To do this, we firstnote the following:

    1-1221-122

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    123/141

    Point Charge Current Element(a)

    0

    24

    RI dR

    p

    = l aB204

    RQ

    Rp=E a

    1-1231-123

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    124/141

    z

    r= 0

    P

    arB

    r

    I

    (b) Line Charge Line Current

    0

    02

    r

    p=E a

    L

    rr

    0

    0

    2

    2

    f

    p

    p

    =

    =

    B a

    a az r

    I

    rI

    r

    z

    r= 0

    P

    ar Er0L

    r

    1-1241-124

    Then,

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    125/141

    JS

    P

    B

    an

    ,

    (c) Sheet Charge Sheet Current

    0

    02

    r

    =E aS n

    0

    2

    =B J aS n

    P

    an E

    0Sr

    1-125

    Review Questions

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    126/141

    Q

    1.36. How is magnetic flux density defined in terms of force

    on a moving charge? Compare the magnetic force on a

    moving charge with electric force on a charge.

    1.37. How is magnetic flux density defined in terms of force

    on a current element?

    1.38. What are the units of magnetic flux density?1.39. State Amperes force law as applied to current elements.

    Why is it not necessary for Newtons third law to hold

    for current elements?

    1.40. Describe the magnetic field due to a current element.1.41. What is the value of the permeability of free space?

    What are its units?

    1-126

    Review Questions (continued)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    127/141

    Q ( )

    1.42. Discuss the different types of current distributions.

    How do you determine the magnetic flux density due to

    a current distribution?

    1.43. Describe the magnetic field due to an infinitely long,

    straight, wire of current.

    1.44. Discuss the analogies between the electric field due tocharge distributions and the magnetic field due to

    current distributions.

    1-127

    Problem S1.9. Finding parameters of an infinitesimal

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    128/141

    current element that produces a specified magnetic field

    1-128

    Problem S1.10. Finding the magnetic field due to a

    ifi d t di t ib ti ithi i fi it l l b

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    129/141

    specified current distribution within an infinite plane slab

    1-129

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    130/141

    1.8 Lorentz Force Equation

    (EEE, Sec. 1.7; FEME, Sec. 1.6)

    1-130

    Lorentz Force Equation

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    131/141

    For a given B, to find E,

    E = Fq v B One force is sufficient.

    Fm

    q

    B

    E

    v

    Fe

    e

    m

    e m

    q

    q

    q

    =

    =

    +

    F E

    F v B

    F = F F

    F = E + v B

    1-131

    D1.21

    0 2 2B

    B

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    132/141

    0 2 23

    x y z= + B a a a

    0q= + =

    F E v B

    E = v B

    Find E for which acceleration experienced by qis

    zero, for a given v.

    (a)

    0

    0 0

    0 0

    2 23

    x y z

    x y z x y z

    y z

    v

    v B

    v B

    +

    + + = +

    v = a a a

    E = a a a a a a

    a a

    1-1321-1321-132

    (b)

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    133/141

    0

    0 0

    0 0

    2 2

    2 2 2 23

    2 2

    x y z

    x y z x y z

    x y z

    v

    v B

    v B

    + +

    = + + +

    =

    v = a a a

    E a a a a a a

    a a a

    (b)

    (c)

    0

    0

    0 0

    along 2

    2 23

    2 2 2 23

    0

    v =

    a a a

    E a a a a a a

    x y z

    x y z x y z

    v y z x

    v

    v B

    = =

    = +

    = + + +

    =

    1-133

    For a given E, to find B,

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    134/141

    For a given E, to find B,

    One force not sufficient. Two forces are needed.

    v B =F

    q E

    v1 B = F1q

    E = C1v2 B = F2

    qE = C2

    1 2 1 2

    1 2 1 2

    1 2

    ==

    C C v B v Bv B B v v B v B

    = C v B

    1-1341-134

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    135/141

    B = C2 C1C1 v2

    provided , which means v2and v1

    should not be collinear.1 2 0 C v

    1-135

    P1.54 For v= v1 or v= v2, test charge moves with

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    136/141

    constant velocity equal to the initial value. It is to be

    shown that for

    the same holds.

    (1)

    (2)

    (3)

    1

    2

    1 3

    2 3

    v v B = 0

    v v B = 0

    1 2 , where + 0,+

    = +

    m nm n

    m n

    v vv

    1+ =q qE v B 0

    2+ =q qE v B 0

    + =q qE v B 0

    1-1361-136

    Both and are collinear tov v v v B

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    137/141

    Alternatively,

    1 2

    1 2

    Both and are collinear to .

    k

    =

    v v v v B

    v v v v

    (1) (2)+ + +m n

    m n m n

    1 2

    1 2

    1

    for =

    =

    += +

    v vv

    v v

    k

    k

    m n nkm n m

    1-137

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    138/141

    1 2 0 +

    + = +

    m nq q

    m n

    v vE B

    1 2+ =+

    m n

    m n

    v vv

    1-138

    Review Questions

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    139/141

    1.45. State Lorentz force equation.

    1.46. If it is assumed that there is no electric field, the

    magnetic field at a point can be found from the

    knowledge of forces exerted on a moving test charge

    for two noncollinear velocities. Explain.

    1.47. Discuss the determination of Eand Bat a point from theknowledge of forces experienced by a test charge at that

    point for several velocities. What is the minimum

    number of required forces? Explain.

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    140/141

    1-140

  • 8/12/2019 EM Course Module 1 for 2009 India Programs

    141/141

    The End