emc

68
Everything you always should know about high frequency Stefan Fassbinder Deutsches Kupferinstitut Am Bonneshof 5 D-40474 Düsseldorf Tel.: +49 211 4796-323 Fax: +49 211 4796-310 [email protected] www.kupferinstitut.de

Upload: dki-deutsches-kupferinstitut

Post on 25-May-2015

569 views

Category:

Technology


7 download

DESCRIPTION

Tutorial on electric, magnetic and electro-magnetic fields and possible technical disturbances hereby caused

TRANSCRIPT

Page 1: EMC

Everything you always should know about high frequency

Stefan FassbinderDeutsches KupferinstitutAm Bonneshof 5D-40474 DüsseldorfTel.: +49 211 4796-323Fax: +49 211 [email protected]

Page 2: EMC

The German Copper Institute, DKI, is the central information and advisory service dealing with all uses of copper and copper alloys. We offer our services to:

Commercial companies The skilled trades Industry R & D institutes Universities Artists and craftsmen Students Private individuals

We can be contacted by: post phone fax e-mail internet online database, or personally

Page 3: EMC

Complementary elements:Inductances and capacitances

i

tuL

2

2iL

W 2

2u

CW

u

tiC

fLX L 2fC

XC 21

dt

diLuL

dt

duCiC

L

udtiL

C

idtuC

Page 4: EMC

The fieldstrength bet-ween any twoelectrodesat a spacing of d = 1 m,between whicha voltage of U = 1 Vis applied

What really is that,E = 1 V/m?

Page 5: EMC

What really is that,H = 1 A/m?

I = 1 A

mmm

r 1572

1

A field line with a length of 1m around a conductor through which a 1A current is passing

At a distance of

there is a field strength of 1A/m

Page 6: EMC

What really is a magnetic flux density of B = 1 T = 1 Vs/m² ?

HHB R 0

Iron length: E. g. 300 mm mean,µR = 300

Air gap: E. g. 1 mm, µR = 1

Am

Vs60 10*1,26

Corresponds to 600 mm iron altogether or2 mm air

Field strengthwithin the core:

within the gap:

within the entire field, whereas: 0300

BH

0B

H

Page 7: EMC

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/û

-150%

-100%

-50%

0%

50%

100%

150%

i/î

SinusspannungL-Strom bei SinusspannungC-Strom bei Sinusspannung

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/û

-150%

-100%

-50%

0%

50%

100%

150%

i/î

Sine voltageL current with sine voltageC current with sine voltage

t)sin(*û)( tu t)cos(*î)( tiL

t)cos(*î)( tiC

Complementary elements: Inductances and capacitances

Page 8: EMC

Complementary elements

Inductance:

Current leads voltage by 90°

or

voltage lags behind current

by 90°, respectively

Capacitance:

Current leads voltage by 90°

or

voltage lags by 90° behind

current, respectively

UIC

IL

U

UC

UL

I

I

Page 9: EMC

Complementary elements

Result:

180° Phase shift between voltages across or currents in L and C, respectively, so: Inductive und capacitive Reactances subtract linearly!

Vectoral:

Linear:

XC R XL RXC+ XL

Z

22 RXXZ CL

RXXZ CL

R

XX CLarctan

Page 10: EMC

Let us clarify some terms

1. Resonance

LCf

21

0

XC R XL

CL XX

fCfL

2

12

Page 11: EMC

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/U

; i/I

u / U

i / I

How to imagine this?

i

Page 12: EMC

How to imagine this?

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/U

; i/I

u / U

i / I

iiiiii

Page 13: EMC

How to imagine this?

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/U

; i/I

u / U

i / I

iiiiii

Page 14: EMC

How to imagine this?

-150%

-100%

-50%

0%

50%

100%

150%

0ms 5ms 10ms 15ms 20ms

t

u/U

; i/I

u / U

i / I

iiiiii

Page 15: EMC

Serial resonant filters (acceptor circuits)

U

UC

UL

UR

let the resonance frequency f0 pass without any reactance

vectoral descriptionCLR UUUU

R

L

C

Page 16: EMC

Attention: From outside you don't seewhat's going on inside!

U

UC

UL

UR

Say: L and C do not limit the current!

I

RIUR *

LL XIU *

CC XIU *

22 )( CLR UUUU

CLCL UUXX

RUU

R

UI

R

L

C

Page 17: EMC

I≈0

R≈0

LC

Parallel resonant filters (rejection circuits)

block currents of the resonant frequency f0

(vectoral description)

CL III

U

Page 18: EMC

LC

I≈0

R≈0

Attention: From outside you don't seewhat's going on inside!

There is practically no current flowing through the resonant circuit, but possibly a lot within the resonant circuit!

U

Page 19: EMC

There are many LC pairs yielding the same resonant frequency, LF or HF…

R Cu = 10 W

L = 160 µHC = 7 nF

50Ω

100Ω

150Ω

200Ω

250Ω

300Ω

350Ω

400Ω

450Ω

500Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

Reaktanz DrosselReaktanz KondensatorImpedanz ReihenschaltungPhasenwinkel

Reactor reactanceCapacitor reactanceSerial impedancePhase angle

Page 20: EMC

50Ω

100Ω

150Ω

200Ω

250Ω

300Ω

350Ω

400Ω

450Ω

500Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

Reaktanz DrosselReaktanz KondensatorImpedanz ReihenschaltungPhasenwinkel

…but L by C defines the behaviourin the rest of the frequency range!

R Cu = 10 W

L = 16 µHC = 70 nF

Reactor reactanceCapacitor reactanceSerial impedancePhase angle

Page 21: EMC

10Ω

15Ω

20Ω

25Ω

30Ω

35Ω

40Ω

45Ω

50Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

Reaktanz DrosselReaktanz KondensatorImpedanz ReihenschaltungPhasenwinkel

…but L by C defines the behaviourin the rest of the frequency range!

R Cu = 1 W

L = 16 µHC = 70 nF

Reactor reactanceCapacitor reactanceSerial impedancePhase angle

Page 22: EMC

0%

25%

50%

75%

100%

125%

150%

175%

200%

0ms 5ms 10ms 15ms 20ms

t

W Energie im Kondensator

Energie in der SpuleGesamt-Energie

0%

25%

50%

75%

100%

125%

150%

175%

200%

0ms 5ms 10ms 15ms 20ms

t

W Capacitor energy content

Reactor energy contentTotal energy content

The total energy stored within the resonant circuit remains the same

consttiL

tuC

tW )(2

)(2

)( 22

Page 23: EMC

is calculated from the specific line dimensions:

Longitundinal inductance L‘ and transversal capacitance C‘ per unit of length.

Model of an electric transmission line:

2. Characteristic impedance

'

'

C

LZW

Page 24: EMC

Line with great

characteristic impedance:

Line with low characteristic impedance:

'

'

C

LZW

Page 25: EMC

Line with small charac-teristic impedance '

'

C

LZW

Speed of propagation:

299.792,5 km/s0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0ns 1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns 10ns

u/û

t

Page 26: EMC

Line with great charac-teristic impedance '

'

C

LZW

Speed of propagation:

299.792,5 km/s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0ns 1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns 9ns 10ns

u/û

t

Page 27: EMC

By the way, how fast does current really flow?1 copper atom has 29 electrons. One of them is mobile.

1 mole of copper (63.546 g equalling 7.108 cm³) contains 6.02*1022 atoms (Avogadro's Constant).

1 g of copper thereby contains 9.47345*1021 electrons.

So per gram 3.26671*1020 of them are mobile, this is 3.654*1019 per cubic centimetre.

A current of 1 A means that at any point of the conductor 6.25*1018 electrons come flowing by (for each electron carries a charge of e = 1.9*10-19 As with it).

With 16 A flowing in a 1.5 mm² residential installation cable this yields 0.8 mm/s.

In case of short circuit it may be up to 50 mm/s!

Page 28: EMC

Vital for assessing im-pulse waves reflections, e. g. at the interfaces between overhead and underground lines

0%

10%

20%30%

40%

50%

60%

70%

80%90%

100%

110%

0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs 10µs

t

u/û

0%

10%

20%30%

40%

50%

60%

70%

80%90%

100%

110%

0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs 10µs

t

u/û

Page 29: EMC

Important in order to avoid reflections:

Terminating resistor, e. g. inside an antenna socket designed as a pass-through outlet but then used as a terminating outlet.

The amplitude of the terminating resistor has to equal the characteristic impedance, in this case e. g. 75 Ω:

Page 30: EMC

Only applicable in information technology, of course! Or…

Specific values of a 380 kV overhead line:

Values of a 380 kV underground cable:

VPE

Oilkm

mHL 8,0'

km

nFC 14' W 239

'

'

C

LZW

km

mHL 7,0'

km

nFC 280' W 50

'

'

C

LZW

km

mHL 49,0'

km

nFC 204' W 49

'

'

C

LZW

Page 31: EMC

This would result in a »natural power« of…

For heaven's sake!

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

20kV 110kV 380kV

Over-head

Under-ground

Over-head

Under-ground

Over-head

VPE cable

Oil cable

Conductor material Al/St Al Al/St Cu Al/St Cu Cu

Cross section mm² 120/20 240 265/35 630 4*265/35 2000 2000

S N MVA 14.00 14.00 130.00 124.00 1800.00 900.00 900.00

R ' (20°C) mΩ/km 240.00 125.00 109.00 29.00 28.00 10.00 10.00

L ' mH/km 1.14 0.31 1.21 0.41 0.80 0.70 0.49

C ' nF/km 10.00 290.00 9.50 180.00 14.00 280.00 204.00

Z W Ω 337.64 32.70 356.89 47.73 239.05 50.00 49.01

P nat=P RA MW 1.18 12.23 33.90 253.53 604.07 2888.00 2946.35

Page 32: EMC

3. Limit frequencies,4. Bandwidth and hence5. the quality

of a reactor,

of a capacitor,

a resonant circuit

Page 33: EMC

10Ω

20Ω

30Ω

40Ω

50Ω

60Ω

70Ω

80Ω

90Ω

100Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

Reaktanz DrosselReaktanz KondensatorImpedanz ReihenschaltungPhasenwinkel

3. Limit frequencies f1 and f2

4. Bandwidth B

f1

f0

f2

R Cu = 10 W

L = 16 µHC = 70 nF

B

12 ffB

Reactor reactanceCapacitor reactanceSerial impedancePhase angle

Page 34: EMC

3. Limit frequencies f1 and f2

4. Bandwidth B

f1 è

f0 è

f2

R Cu = 1 W

L = 16 µHC = 70 nF

B

12 ffB

10Ω

20Ω

30Ω

40Ω

50Ω

60Ω

70Ω

80Ω

90Ω

100Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

Reaktanz DrosselReaktanz KondensatorImpedanz ReihenschaltungPhasenwinkel

Reactor reactanceCapacitor reactanceSerial impedancePhase angle

Page 35: EMC

25Ω

50Ω

75Ω

100Ω

125Ω

150Ω

175Ω

200Ω

225Ω

0kHz 100kHz 200kHz 300kHz 400kHz 500kHz 600kHz

f

Z

-90°-75°-60°-45°-30°-15°0°15°30°45°60°75°90°

φ

ReaktanzDrosselReaktanzKondensatorImpedanzParallelschaltungPhasenwinkel

R Cu = 1 W

L = 16 µHC = 70 nF

Rejection circuits

Reactor reactanceCapacitor reactanceSerialimpedancePhase angle

Page 36: EMC

5. Quality is an issue,described by thequality factor Q

What matters is the ratio of the reactive by the active share of the impedance, for active load means active power, and active power means

12

00

ff

f

B

fQ

•power loss•attenuation

Page 37: EMC

Between line and high frequency: Sound frequency

Which one is the right cable

to carry the sound to the speaker?

Page 38: EMC

6. Interference

-280%

-210%

-140%

-70%

0%

70%

140%

210%

280%

0ms 100ms 200ms 300ms 400ms 500ms 600ms 700ms

t

u/U

, i/

I, p

/P

u1/Uu2/U(u1+u2)/U

Adding twovoltages of

50 Hz and 51 Hzand equal peak values

Page 39: EMC

High frequency (above ≈30 kHz):Electro-magnetic fields

Direct voltage; low frequency:

Electrical fields

Direct current; low frequency:

Magnetic fields

Page 40: EMC

How to imagine this?

Page 41: EMC

How to imagine this?

LCf

21

0

Page 42: EMC

How to imagine this?

LCf

21

0

Page 43: EMC

How to imagine this?

LCf

21

0

Page 44: EMC

How to imagine this?

LCf

21

0

Page 45: EMC

How to imagine this?

LCf

21

0

Page 46: EMC

How to imagine this?

LCf

21

0

Page 47: EMC

How to imagine this?

LCf

21

0

Page 48: EMC

How to imagine this?

LCf

21

0

Page 49: EMC

How to imagine this?

LCf

21

0

Page 50: EMC

How to imagine this?

LCf

21

0

Page 51: EMC

This is how to imagine this!

These fields radiate andmay beused for transmittinginformation

over shortand long

distances

Page 52: EMC

…or they may disturb said transmissions!

Well, if you don't apply any filters…

Page 53: EMC

displayed the room temperature fairly well until……the light had been switched a few times – then the display suddenly turned kryptic!

This battery operated thermometer located ≈30 cm off a fluorescent lamp did its job fairly well until

Page 54: EMC

NF NF

HF

There are three types of coupling mechanisms

Galvanic:Electrically conductive connection

êElectrons flow

»personally« from source to sink.

Sort of disturbance:

PEN conductor, TN-C system

Inductive:current

êmagnetic field

êinduction

Capacitive:voltage

êelectrical field

êinfluence

Electro-magnetic fields,radiation / susceptibility (HF)

Page 55: EMC

What does this gentleman want to show you here?

The leading example of galvanic coupling:

Multiple connections between N and PE, i. e. between energy and information technique (operational earth)

1. Galvanic coupling

Page 56: EMC

With operating currents: di/dt ≈ 50 A/msWith short-circuit currents: di/dt ≈ 1 kA/msWith switching transients: di/dt ≈ 10 kA/msIn inverter drives: di/dt ≈ 50 kA/msWith lightning currents: di/dt ≈ 50 kA/µs!

Signal level Cat. 3 data lines: 1 V

Signal level Cat. 5 data lines: 500 mV

Signal level 10Gbit/s beginning: 130 mV

Signal level 10Gbit/s end: 600 µV!

2. Inductive coupling

I

dt

di

d

lctu )(~

d

l

U

Page 57: EMC

3. Capacitive coupling

UI

I

Page 58: EMC

3. Capacitive coupling

UI

Page 59: EMC

I

3. Capacitive coupling

UI

Page 60: EMC

There are three of all evils: Coupling mechanisms in practice

Only here it

shall be

Galvanic coupling:

»Second CEP«

Inductive coupling:

N against PE

Capacitive coupling:MV against PE?

è

Page 61: EMC

Therefore:Mind the coupling mechanisms!

• Galvanic coupling:Once and only once (CEP)

• Capacitive coupling:A very thin electricallyconductive layer suffices – if earthed!

• Inductive coupling:Thick magneticallyconductive layers required!

Page 62: EMC

• Z. B. IEC 60364-4-44

• (DIN EN 50174-2 / VDE 0800-174-2)

And: Mind the references to cable ducts in the standards!

Page 63: EMC

• Z. B. IEC 60364-4-44

• (DIN EN 50174-2 / VDE 0800-174-2)

And: Note the references re-garding the cable positioning!

Page 64: EMC

Do not confuse:Analogue and digital cables

Analogue cables have a screen.

Digital cables have some-thing that looks like a screen.

Page 65: EMC

How to deal with coupling mechanisms?

By just dodging them!

Common mode:

Saves copper

Differential mode:

Saves trouble

Page 66: EMC

Spicing things up with a pinch of HF: A piece of cake when using an electronic transformer

Page 67: EMC

Any sort of radiation:Decorative HF reactors

Page 68: EMC

has been providing a total of three million Euros over athree year period to enable experts from across Europeto co-operate in the development of the definitive internet site covering all aspects of power quality!

To follow the latest developments visit

www.leonardo-energy.org

and take a look at the growing body of information that has been made available by the Leonardo Power Quality and the Leonardo Energy Initiatives.

Our aim is to develop and disseminate teaching materials in 13 languages dealing with the detection, mitigation and management of EMC problems.

Target groups include electrical technicians, engineers, those in the skilled trades, building system engineers, architects, planners as well as apprentice technicians and students and their teachers.

At present the Power Quality Initiative has 165 members from commercial companies, institutions, universities and trade associations.

We openly encourage other industrial and academic partners to participate in this project and welcome contributions at any time.

Just log on!

The European Union

Awarded three projects out of about 4000 in December 2004 – one of them being the

Leonardo Power Quality Initiative