emerging and novel photovoltaic technologies

Upload: vahidss

Post on 14-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    1/13

    WorkingpaperNo3(2007)

    DigitalTimestamping

    EmergingandNovelPhotovoltaicTechnolo ies

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    2/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies1

    Contents

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    3/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies2

    Introduction

    Energy consumption in Europe is expected to grow by 20% between now and 2020, leading to a 14%

    increaseincarbondioxide(CO2)emissions.Renewableenergy(hydroelectricity,solar,wind,bioenergyand

    geothermalpower)hasan importantroletoplay inreducingemissionsofgreenhousegases(suchasCO2)and also canmake important contributions to improving the security of energy supplies in the EU by

    reducingtheCommunity'sgrowingdependenceonimportedenergysources.Renewableenergysourcesare

    expected tobeeconomicallycompetitivewithconventionalenergy sources in themedium to long term.

    Increasingtheshareofrenewableenergyintheenergybalancealsoenhancessustainability.

    EUlegislationsandcommitmentstaken1,2,3,4setsacleargoaltoattain,by2010,aminimumpenetrationof

    12%(from6%)ofrenewableenergysourcesintheEUalsoaddressingtheKyotoProtocol5requirementsfor

    reduction of 8% of greenhouse gas emissions. Lithuania also committed to achieve the 12% share of

    renewableenergy in the totalenergybalanceuntil theyear20106and toachieve that7%of consumed

    electricitywouldbegeneratedfromrenewablesources

    7

    .

    Many initiatives and industry led efforts have already started across the EU to assess the bestmix of

    research and market development supports for acceleration of photovoltaic8 (PV) development. That

    predictsthatwithareasonablesetof incentivesthephotovoltaicmarket intheEUcouldgrowmorethan

    30%peryearoverthenext20years,from344MWofinstalledcapacityto9600MW.

    Although, a number of scientific/technical, institutional and market barriers still stand in the way of

    reachingthepreferredgoalsinPVindustryandthelevelofenergymarketpenetration.

    Despite of large PVmarket expansion andmany research achievementsmade over the last couple of

    decades, theircostsarepresently still themainobstacle foraworldwide increasedutilisationofelectric

    powerprovidedbythiscleanandrenewabletechnology.ThepriceofPVsystemsisstilltoohigh,compared

    withcompetingelectricitygenerationanddistributionmethods.

    Inorder tobecomecompetitivewith theconventionalenergy sources,new improved solarcellconcepts

    andcosteffectiveformsofapplicationsand installationsofPVmoduleshavetobedevelopedtofacilitate

    furthergrowthofthesector.Theindustryislookingtodrivemodulepricesdownfrom5.75/Wp9,to3/Wp

    in2010and1.51/Wpin2030.

    1Energyforthefuture:renewablessourcesofenergy(WhitePaper),CommissionoftheEuropeanCommunities,1997.2ProposalforaDirectiveoftheEuropeanParliamentandoftheCouncilonthepromotionoftheuseofenergyfromrenewablesources.23.01.2008

    COM(2008)final3Energyforthefuture:renewablesourcesofenergy WhitePaperforaCommunityStrategyandActionPlan,EuropeanCommission,19974AEuropeanstrategicenergytechnologyplan(SETPLAN):'Towardsalowcarbonfuture'.Communicationfromthecommissiontothecouncil,the

    EuropeanParliament,TheEuropeanEconomicandSocialCommitteeandtheCommitteeoftheregions.{SEC(2007)1508},{SEC(2007)1509},

    {SEC(2007)1510},{SEC(2007)1511}.22.11.2007COM(2007)723final5KyotoProtocoltotheUNFrameworkConventiononClimateChange.1997,3rdConferenceofthePartiestotheUNFCCC.6LietuvosRespublikosSeimo2002m.spalio10d.nutarimasNr.IX1130,,Dlnacionalinsenergetikosstrategijospatvirtinimo.7LietuvosRespublikosSeimo2006m.gegus11d.nutarimasNr.443,,DlNacionalinsenergijosvartojimoefektyvumodidinimo20062010met

    programospatvirtinimo.8Photovoltaiccomprisesthetechnologytoconvertsunlightdirectlyintoelectricity.Thetermphotomeanslightandvoltaic,electricity.A

    photovoltaiccell,alsoknownassolarcell,isasemiconductordevicethatgenerateselectricitywhenlightfallsonit.9Wp,orWattpeak,isthecommontermforwhataPVsystemiscapableofproducingunderidealcircumstances.

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    4/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies3

    There are twomain driving forces proposed by industry10 for decreasing themanufacturing costs: by

    productionvolumeandbyinnovations(Figure1).

    Figure1:Manufacturingcostsdrivenbyproductionvolumeandinnovations

    Thevolume isneeded to stimulatemarketpartners to lowercostand to takeadvantageofeconomyof

    scale.Consistentwiththetimeneededforanymajorchangeintheenergyinfrastructure,another20to30

    yearsofsustainedandaggressivegrowthwillberequiredforphotovoltaicstosubstituteasignificantshare

    of theconventionalenergysources.Thisgrowthwillbeonlypossible iftheprice is reducedconsiderably

    (Figure2).

    103rdPVIndustryForumNewStrategiesfortheBoomingPVMarket,2006

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    5/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies4

    Figure2:Projectedcostdevelopmentuntil2040PVcompetitiveness

    Though themodule price decreased throughout the last decade, the price reductionwas slower than

    expected.Certainlyinthelastyearsthedemandwasveryhighandtheconstructionofmanynewfacilities,

    whichwill leadtoabettereconomyofscale infuture, isnotreflectedina lowerpriceyet.Inadditionthe

    introductionofnewtechnologiesisnecessarytoreallyfulfilthepromiseoflowcostsolarenergyaswellas

    sound fundamental research and improvements of the process and manufacturing technologies. New

    developments with respect to material use, device design and new concepts to increase the overall

    efficiencyareneeded.Themodulepriceisthekeyelementinthetotalpriceofaninstalledsolarsystemas

    itcostrepresentsaround5060%ofthetotalinstalledcostofaPVsystem.

    Therefore,thecompetitivenessofPVsystemscouldbeachievedby:

    Eitherincreasingtheefficiencyofthesolarcells(i.e.increasingtheWp/m2ofcells);

    Orbydecreasingthemanufacturingcost(i.e.reducingthe/Wp).

    Obviously, the increase of solar cell efficiency is an important factor for the decrease of cell costs (per

    generatedWp), because it reduces the costs for feedstock, crystallization andwafering by reducing the

    material consumption. Although, the increment of the efficiency of the solar cells requires new

    technologicalapproachesandinputfromresearch.

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    6/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies5

    GenerationsofPVCells

    Firstgenerationphotovoltaics

    First generation photovoltaic modules are based oncrystal silicon solar cells and demonstrate efficiencies

    from 13 to 16 % (in production), with theoretical

    maximum30%.Waferbasedcrystalline(monocrystalline

    or polycrystalline) silicon is the dominant technology11

    (Figure 3) because of wide availability and proven

    reliability. This technology is well understood as it is

    founded on the knowledge and technology originally

    developedfortheelectronicsindustry.Yetmanufacturing

    isenergy intensive,needsnumerousprocessingsteps (=

    highmanufacturing costs) and highmaterials costs (for

    mSi).

    Secondgenerationphotovoltaics

    Inanefforttoreducemanufacturingcosts,photovoltaiccellsbasedonthinfilmtechnologycalledsecond

    generation solar cellswere developed. Thinfilmmodules aremade by coating and patterning entire

    sheets of substrate with micronthin layers of conducting and semiconductor materials followed by

    encapsulation.This leads toaprocessthatcanbehighlyefficient inmaterialsutilisation,whilethestable

    efficienciesofthesemodulesareintherangeof5to15%.Themajortechnicalobstacleshamperingmarket

    penetration by this technology on largescale are as follows: (i) growing of large area thin films of

    homogeneousparametersatlowcostsand(ii)poorstability.

    For solar cellsofbothgenerationseffortsaremademainly in improvingperformancemostnotably in

    efficiency inordertoreducemodulemanufacturingcostsperWp,whichwill leadto lowersystemcosts.Thefirstgenerationproductisnearingitsoptimumprice/efficiencyincostperdeliveredWhr.However,the

    predictedmoduleefficiency increment(uptothe3050%range)after2030 it isexpectedtobearesultof

    successfulimplementationofthesocalledthirdornextgenerationconcepts,allowingveryefficientuseof

    availablearea.

    Emerginggenerationphotovoltaics

    EmerginggenerationphotovoltaicsavarietyofotherPV technologiesandconversion conceptsare the

    subjectof research in Europe andworldwide. They are all aimed at amodulepriceof 0.5/Wp, resp.

    systempriceof1/Wp in2030,atsuperhighefficiencies(efficienciesabove25%under1sunhavetobe

    demonstratedonlablevelbefore2015)atsuperhighefficienciesoratnewapplicationpossibilities.

    Thisrequiresfundamentalresearch,becausereachingthetargetsrequiresathoroughunderstandingofthe

    underlyingchemistry,physics,andmaterialsproperties.Hence,thenewtechnologiesareatvariousstages

    ofdevelopment: fromproofofprinciple topilotproduction.Akey factor in thedecreaseof the costsof

    modules isrelatedwiththemanufacturingprocessesused.Inthiscontextthere isconsiderable interest in

    11 A Vision for PV Technology for 2030 and Beyond. Preliminary Report. Photovoltaic Technology Research Advisory Council (PV-TRAC). 2004

    Figure3:

    Production

    by

    technologies

    in

    2003

    20

    40

    60

    80

    mono c-Si multi c-Si thin film other

    Marketshare(%)

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    7/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies6

    replacingsinglecrystallineorpolycrystallinesemiconductor layersbynanostructured layers,onthesame

    time searching for methods and experience in different research sectors to find cheap technological

    solutions.Emerginggenerationcellswillbebasedonavarietyofnewconversionconceptsandprinciples,

    andcurrentlycanbeconsideredtobeatthefundamentalresearchstage(Table1).Table1:Thecharacteristicsofemerginggenerationsolarcells

    Parameters

    TypeofSolarCell DescriptionandmaintechnicallimitationsEfficiencyin

    production(%)

    Lifetime

    (Years)

    Bandgap

    (eV)

    Multi

    junction

    Higherefficienciescouldbeachievedbyusingstacksof

    semiconductorswithdifferentbandgaps(forinstance

    GaAs,InP,GaInP2/GaAs,GaAs(Sisubstrate),

    GaInP2/GaAs, InGaP/InGaAs/Ge).Thesearereferredtoas"multijunction"cells(alsocalled"cascade"or

    "tandem"cells).Thistechnologymakesbetteruseofthe

    incominglightwherebytheconversionefficiencyis

    improved.Itisthemostpromising(highefficiencies

    couldbeachieved)andthemostexpensivetechnology.

    Figure4:Amultijunctiondeviceisastackofindividual

    singlejunctioncellsindescendingorderofbandgap(Eg).

    Thetopcellcapturesthehighenergyphotonsandpasses

    therestofthephotonsontobeabsorbedbylower

    bandgapcells

    2136 0.73.4

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    8/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies7

    Dye

    sensitised

    photochemic

    alsolarcells

    (DSC)12.

    Themainmaterialforsolarcellusedislowcost

    nanocrystallinetitaniumdioxidewithalargeeffective

    areaandorganicdyesimmersedinanelectrolyte.The

    advantageofdyecellsisthattheycanbeproducedfrom

    potentiallyinexpensivematerialsandbysimple

    productiontechnology.Themajorchallengeistodevelop

    cellsandmodulesforpowerapplications,asthatposes

    forthistypeofcellsseveretemperatureconditions.

    Thoughthestabilityincreasedsignificantly,itstilldoes

    notmeetthestandardsofothersolarmodules.

    Figure5:Dyesensitizedorganicinorganicsolarcell13

    11(0.25cm2)

    and8onreal

    devices

    Low

    Variable

    (depends

    onmaterial

    used)

    Conductive

    organic

    polymercells

    Thesedevicesarebasedonthepropertyofsomeorganic

    materialstobeconductive:conjugatedpolymers.

    Amongtheconductivepolymersinvestigated,themost

    promisingonesarethestructurescontainingfullerene

    (C60)astheacceptormaterial.Evidentadvantagesof

    thistechnologyaretheexpectedlowcostmanufacturing

    andthepossibilitytomakesolarcellsbytailoringthe

    requiredpropertiesbymodificationsoftheorganic

    molecules.Challengesaretoincreasesmallareacell

    efficienciesandstabilityunderoutdoorconditions.

    >5 Low

    Variable

    (depends

    onmaterial

    used)

    12PVNET,EuropeanRoadmapforPVR&D,2004.

    13http://www.oechemicals.com/dictionaryMZ.html

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    9/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies8

    Figure6:Anorganicsolarcellmadeupofseveral

    layers

    Quantum

    solarcells

    Thesecellsusequantumconfinementtomodifythe

    electronicstructureinordertodecouplecurrentand

    voltageandthusincreasingefficiency.Theeffectis

    demonstratedusingIII/Vsolarcellshavinglayerswithathicknessinthenanoscalerange.Thechallengeistofind

    lowcostsystemsthatcanusethesameprinciple.

    Figure7:

    Electron

    transport

    through

    astructure

    of

    nanoparticles(left)andmoreorderednanotubes

    (center)isshown.Atright,differentwavelengthsof

    lightcanbeabsorbedbydifferentsizedquantumdots

    layeredinarainbowsolarcell.Imagecredit:

    Kongkanand,etal.2008ACS

    >5%

    Variable

    (depends

    onmaterial

    used)

    Nonanomaterialsarepresentlycommerciallyusedintheapplicationfieldofphotovoltaics.14Thematerials

    arestillinafundamentalresearch,proofofprincipleandtestphases.Themainchallengesforthe

    applicationofnanomaterialsintheenergysectoraretheimprovementofefficiencyandreductionofcosts

    aswellasreliability,safetyandlifetime.Obviously,theincreaseofsolarcellefficiencyisanimportantfactor

    forthedecreaseofcellcosts(pergeneratedWp),becauseitreducesthecostsforfeedstockand

    manufacturingbyreducingthematerialconsumption.Theincrementoftheefficiencyofthesolarcells

    14SWOTAnalysisConcerningtheUseofNanomaterialsintheEnergySector.PreparedunderFP6SSAprojectNanoroadSME:Developmentof

    AdvancedTechnologyRoadmapsinNanomaterialSciencesandIndustrialAdaptationtoSmallandMediumsizedEnterprises(ContractnoNMP4CT

    2004505857)

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    10/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies9

    requiresnewtechnologicalapproachesandtheinputfromresearch(basedonprinciplesofdevicephysics,

    efficienciesashighas5060%arepredicted15,16).

    Newtechnologiescanbecategorisedas:17

    Optionsprimarilyaimedatverylowcost(whileoptimisingefficiency):

    - Advancedinorganicthinfilmtechnologies(e.g.polysiliconthinfilm,spheralCISapproaches);

    - Organicsolarcells(e.g.Graetzelcell,bulkdonoracceptorheterojunctionsolarcells);

    - Thermophotovoltaicsolarthermalconcentrationsystemsorcogenerationsystems.

    Optionsprimarilyaimedatveryhighefficiency(whileoptimisingcost):

    - Tailoring the solar spectrum with the active semiconductor layer relying on up and down

    conversion layers and plasmonic effects. Surface plasmons generated upon interaction between

    lightandmetallicnanoparticleshavebeenproposedasamean to increase thephotoconversion

    efficiencyinsolarcellsbyshiftingenergyintheincomingspectrumtowardsthewavelengthregion

    wherethecollectionefficiency ismaximalorby increasingtheabsorbancebyenhancingthe local

    fieldintensity.Theapplicationofsucheffectsinphotovoltaicsisdefinitelystillinaveryearlystage.

    - Novelactivelayerswithreduceddimensionality(quantumwellsquantumwiresquantumdots).

    Byintroducingquantumwellsorquantumdotsconsistingofalowbandgapsemiconductorwithina

    hostsemiconductorwithwiderbandgap, thecurrentmightbe increasedwhile retaining (partof)

    the higheroutput voltageof thehost semiconductor. Thisapproach aims atusing the quantum

    confinementeffecttoobtainamaterialwithahigherbandgap.

    - The collectionofexcited carriersbefore they thermalize to thebottomof the concernedenergy

    band (e.g.hot carrier cells).The reduceddimensionalityof theQDmaterial tends to reduce the

    allowable phonon modes by which this thermalization process takes place and increases the

    probabilityofharvestingthefullenergyoftheexcitedcarrier.For most of emerging approaches the present emphasis is on basic material development, advanced

    morphological and optoelectrical characterization and modelling as to predict the behaviour and

    performanceunderillumination.

    Nanomaterials with potential for exploitation in active layers with reduced dimensionality are

    nanocomposites, consisting either of: (i) a nonnanocrystallinematrix of onematerial filledwith either

    nanoparticlesornanofibersofanothermaterial;or(ii)nanonanocompositeswiththesizeofallconstituent

    materials grains in thenanometer range (e.g.quantumdots, core shellnanoparticles, carbonnanotube

    polymer nanonanocomposites, metalceramic nanonanocomposites, oth.). Synthesis and assembly

    strategiesofnanomaterialsaccommodateprecursors from liquid,solid,orgasphase.18

    Theyemploybothchemical and physical deposition approaches and similarly rely on either chemical reactivity or physical

    15M.C.Beard,K.P.Knutsen,P.Yu,J.M.Luther,Q.Song,W.K.Metzger,R.J.Ellingson,A.J.Nozik.MultipleExcitonGenerationinColloidalSilicon

    Nanocrystals.NANOLETTERS.ReceivedJune22,2007.16NCPVandSolarProgramReviewMeetingProceedings,2003,USA

    17AStrategicResearchAgendaforPhotovoltaicSolarEnergyTechnologyResearchanddevelopmentinsupportofrealizingtheVisionfor

    PhotovoltaicTechnology.PreparedbyWorkingGroup3Science,TechnologyandApplicationsoftheEUPVTechnologyPlatform.March200718JiaGraceLu,PaichunChang,ZhiyongFan.QuasionedimensionalmetaloxidematerialsSynthesis,propertiesandapplications.Availableonline

    23May2006

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    11/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies10

    compaction to integrate nanostructure building blockswithin the finalmaterial structure. Themethods

    employed to produce nanostructured materials are numerous (main production processes in use are

    Chemical Synthesis (solgel, thermaldecomposition areused,oth.),Coating techniques (PhysicalVapour

    DepositionorChemicalVapourDeposition),andPatterning(ElectronBeamLithography;XrayLithography,

    ScanningProbeMicroscopy),witheachmethodhavingadvantagesanddisadvantagesdependingon the

    desired properties or application.The product quality and application characteristics of nanostructured

    materialsdependstronglyon thesizedistribution,morphologyandstateofaggregation, i.e. thesizeand

    number of primary particles defining the degree of aggregation. Fundamental research by process

    simulation is needed to provide the understanding of the particle and nanostructure formation

    mechanisms. Combinedwith detailed analysis of particle size andmorphology and their impact on the

    function at hand, it is possible to customise nanostructured products, providing distinct performance

    advantagesforspecificapplications.

    StrategicR&DtopicsforemergingPVtechnologies

    ThemainissuesforemergingPVtechnologiesare:17

    Poorstabilitynotmeetingthestandardsofothersolarmodules;

    Thepresent35%(exceptmultijunctions)isonlyasteppingstoneformuchhigherefficiencies;

    Poorunderstandingof the separationofgeneratedchargedcarriers, transportprocessesand the

    relation between structure and function. This requires better processes andmaterials based on

    fundamentalchemicalandphysicalknowledgeandnewdesigns;

    Thetolerancetoimpuritiesisnotknownyet(thecostrisesexponentiallywithpurityrequirements),

    therefore,onecannotasureifsuchsolarcellbemadeinastandardenvironment.

    Insummaryitcanbestatedthatwithintheperiod20072013,fortheemergingPVtechnologies19(Table2),

    issues like efficiency improvement, stability and encapsulation and the development of firstgeneration

    modulemanufacturingtechnologywillbedominant.Forthenoveltechnologies20(Table3)theemphasisin

    the coming yearswill be rather on nanotechnologyrelated items (nanoparticles, growth and synthesis

    methods)andthefirstdemonstrationofconceptsbasedontheuseofsuchmaterialswithinfunctionalsolar

    cells.IthastobeemphasizedthatforpartoftheemergingaswellasforallthenovelPVtechnologiesthese

    developmentsrequiretheoreticalandexperimentaltoolsallowingtheunderstanding,themanufactureand

    thecharacterizationofthemorphologicalandoptoelectricalpropertiesonnanoscale.Forthesubsequent

    timeperiods20142020andbeyond2020themostpromisingconceptsaretobeselectedandimplemented

    19ThecategoryEmergingisusedforthosetechnologieswhichhavepassedtheproofofconceptphaseorcanbeconsideredaslongerterm

    optionsforthetwoestablishedsolarcelltechnologiescrystallineSiandthinfilmsolarcellsforwhichclearlydefineddisruptivedevelopmentsare

    stilltobemade.20ThetermNovelisusedfordevelopmentsandideaswhichcanleadtopotentiallydisruptivetechnologies,butwherethereisnotyetclarityon

    practicallyachievableconversionefficienciesorcoststructure.

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    12/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies11

    withanincreasedemphasisonaspectslikecost,upscaling,manufacturingandsustainabilitywhenmoving

    toverylarge>10GWp/yearproductionscenarios.

    Table2:

    R&D

    issues

    for

    emerging

    technologies

    Basiccategory Technology Aspects 20072013 2014202020202030and

    beyond

    Material Deposition

    technology

    Device Parallel

    interconnection

    Performance 14%

    SpheralCIS

    solarcell

    Cost N/A

    Industrial

    implementation

    >12%on

    industriallevel

    =0.50.8/Wp

    Material ImprovingpolySi

    electronicquality,

    depositionup

    scalingPerformance 14%/monolithic

    moduleprocess

    Advancedinorganic

    thinfilmtechnologies

    Thinfilm

    polycrystalline

    Sisolarcells

    Cost N/A

    Industrial

    implementation

    >1214%on

    industriallevel=0.50.8/Wp

    Implementation

    ofadvanced

    conceptsofsolar

    spectrum

    tailoringinultra

    thinsolarcellsto

    reach

    15years

    Performance 15%

    Dyesolarcells

    Cost N/A

    Industrial

    implementation

    >10%on

    industriallevel=

    0.50.8/Wp

    Material Improvedandstablepolymers,

    stabilizationof

    nanomorphology

    for5years

    Lowcostencapsulation

    materialsto

    guarantee

    stability>15

    years

    Device Printing

    technology

    Organic

    multijunctions

    Organic

    multijunctions

    Performance 15% >10%on

    industriallevel

    Organicsolarcells

    Bulkheterojunction

    Cost N/A =0.50.8/Wp

    Implementation

    ofadvanced

    conceptsofsolar

    spectrum

    tailoringtoreach

    8%

    Electrical

    efficiency>8%

    Thermophotovoltaics

    Cost N/A

  • 7/30/2019 Emerging and Novel Photovoltaic Technologies

    13/13

    WorkingPaperNo3(2007) EmergingandNovelPhotovoltaicTechnologies

    2007TheAppliedResearchInstituteforProspectiveTechnologies12

    Table3:R&Dissuesfornoveltechnologies

    Basiccategory Technology Aspects 20072013 20142020 20202030and

    beyond

    Material Deposition

    technology

    Nanoparticle

    synthesis

    Metallic

    intermediate

    bandbulk

    materials

    Morphological

    and

    optoelectronic

    characterization

    Idem

    Device Firstfunctional

    cellsunder1sun

    orconcentration

    Labtypecell

    Selection

    Performance N/A >30%

    Novelactivelayers Quantumwells

    Quantumwires

    Quantumdots

    Nanoparticle

    inclusionin

    host

    semiconductor

    Cost N/A N/A

    Upscalingof

    mostpromising

    approaches

    requiringlow

    costapproaches

    fordeposition

    technology,

    synthesis,cell

    andmodule

    technology

    compatiblewith

    modulecosts10%

    improvementrelativeto

    baseline

    Updown

    converters

    Cost N/A N/A

    Material Metallic

    nanoparticle

    synthesiswith

    controloversize,

    geometryand

    functionalization

    Stabilityof

    boostinglayer

    materials

    Device First

    demonstrationon

    existingsolarcell

    typesunder1sun

    orconcentration

    Labtypecell

    Selectionof

    mostpromising

    approaches

    Performance N/A >10%

    improvement

    relativeto

    baseline

    Boostingstructuresat

    theperipheryofthe

    devise

    Exploitationof

    plasmonic

    effects

    Cost N/A N/A

    Upscalingof

    mostpromising

    approaches

    requiringlow

    costapproaches

    forsynthesisof

    required

    materials.

    Depositionor

    applicationtechnologyof

    peripherallayers

    withmodule

    costs