emerging contaminants

25
Emerging Contaminants

Upload: suzuki

Post on 10-Feb-2016

82 views

Category:

Documents


1 download

DESCRIPTION

Emerging Contaminants. Water Framework Directive. Taking Water Policy into the 21st Century Coordination of all measures drinking urbannitratesIPPC & biocide s landfills water wasteotherpesticides bathing water industry water discharges. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Emerging Contaminants

Emerging Contaminants

Page 2: Emerging Contaminants

Taking Water Policy into the 21st CenturyCoordination of all measures

drinking urban nitrates IPPC & biocides landfillswater waste other pesticidesbathing water industrywater discharges

Water Framework DirectiveWater Framework Directive

Page 3: Emerging Contaminants

Contaminants in the Water Cycle: soils as source and sink (filter, retention and transformation capacity)

Integrated soil-water management

Page 4: Emerging Contaminants

Inter-Compartment/Media Transport and Fate of

Pollutants in the Water Cycle

Litho- sphere

Pedosphere Atmosphere

Accumulation Deposition

Migration Degradation

Transport

Water Rain,

Groundwater Surface Water

Air incl. Soil Air

Soils Waste

materials

Analytics incl. Sensors for Air/Water/Solids,

(Eco)Tox.-Tests

Pollution Prevention, Monitoring, Risk Asses.

Remediation

Integrated Management (economic, environ. and

spatial planning policies)

Compounds: Persistent Organic Pollutants (POP) and Heavy Metals

Hydrosphere

Compartments Processes Media Tools/Procedures

Page 5: Emerging Contaminants

Emerging ContaminantsEmerging Contaminants

Definition: Previously unknown or unrecognized (mystery) pollutants. (Ignored Environmental Contaminants)

Detective work called Environmental Forensics

“ As any analytical chemist knows, what you see depends on what you look for “ (Lynn Roberts, Johns Hopkins University)

Emerging contaminants are generally not included in the legislation ( Non-priority Pollutants)

Emerging Contaminants= Emerging Chemical Risks

Emerging Issues and Short -Circuiting Risks

Page 6: Emerging Contaminants

Emerging Contaminants: Emerging Contaminants: Continuum of RiskContinuum of Risk

Long-established widely recognized risks, as POPs or PBT(persistent bioaccumulative toxicants)

Unexpectedly growing/developing risks ( due to increasing consumption, as MTBE)

Hidden, latent risks (previously unrecognized risk existing for some time, now recognized, as PPCPs)

Future risks, currently not-existing risks (new generation of chemicals/drugs subjected to approval)

(Adapted from C.G. Daughton, US EPA, Las Vegas)

Page 7: Emerging Contaminants

Emerging Contaminants, US EPAEmerging Contaminants, US EPAS. Richardson, 2001S. Richardson, 2001

Contaminant Candidate List (CCL) Analytes

Pharmaceuticals

Endocrine Disrupting Chemicals (EDCs)

Polybrominated diphenyl ethers

Algal toxins

Cryptosporidium & Giardia

Organotins

MTBE (methyl-tert-butyl ether)

DBPs (including NDMA)

Perchlorate

Arsenic

Page 8: Emerging Contaminants

Emerging Contaminants (EU): Emerging Contaminants (EU): Water Framework Directive and the Water Framework Directive and the Precautionary PrinciplePrecautionary Principle

Polybrominated Diphenyl Ethers (PBDEs)- Endocrine Disrupting Compounds-Alkylphenols-

detergents, Phthalates Upcoming Priorities (Future Candidates for

Monitoring) : PPCPs (Pharmaceuticals and Personal Care

Products) Diclofenac,Ibuprofen, EDCs Veterinary pharmaceuticals for animal feeding MTBE and related compounds

Page 9: Emerging Contaminants

EU adopted Strategy for Endocrine Disrupting Compounds (March 30, 2000) (5257/00)

URGENT NEED to establish monitoring programs and to assess hazards and risks of EDC

Establishment of PRIORITY LIST of substances, i.e., EU 32 priority substances within Water Framework Directive include EDC: Octylphenols, Nonylphenols and Di(2-ethylhexyl)phthalate (DEHP)

In the medium-long-term, EU Directives for EDC and identification of substitutes

The whole approach is to be based on PRECAUTIONARY PRINCIPLE

Page 10: Emerging Contaminants

PHARMACEUTICAL COMPOUNDS FOR HUMAN AND VETERINARY MEDICINE

France, Italy, Spain ,(Germany) 300 (>600) T/year Antibiotics Germany, Ibuprofen, Aspirin more than 100 T/year

VETERINARY DRUGS (1999) 1645 Tons of Antibiotics at the EU (European

Federation of Animal Health) 275 Tons mixed with feed as growth promotors (in 1997, 1600 Tons)

January 2006, EU ban Antibiotics as growth promotors 70-80% of Drugs in fish farms, end up in the environment EU level, 115 million pigs (208 million Tons manure) Pigs in Spain, from 16-21.4 millions (2010).

Catalonia=8 million

Pharmaceutical Compounds

Page 11: Emerging Contaminants

PharmaceuticalsPharmaceuticalsConsidered as possible future CCL Drinking

Water Contaminants (U.S. EPA): Estrogen Diclofenac (antirheumatic) Carbamazepine (antiepileptic) Chloramphenicol (antibiotic)

Concern about introduction of these compounds into drinking water

Possible estrogenic effects

Research at U.S. EPA and EU on fate & effect

Page 12: Emerging Contaminants
Page 13: Emerging Contaminants
Page 14: Emerging Contaminants

Wastewater treatment plant

Drinking waterproduction

Man

Sediment

Sewage sludge

Ground water

Soil

Surface water

Estuarine water

Sediment

Oceanwater

Sediment

Biota

Biota

Surfactant usage(10 M.tons)

Page 15: Emerging Contaminants

Directive 91/271/EEC ( 98/15/EEC )Directive 91/271/EEC ( 98/15/EEC )Urban Waste Water TreatmentUrban Waste Water Treatment

Till year 2000, urban centres >15.000 inhabitants and till year 2005 urban centres >2000 inhabitants should have treatment of wastewaters

Construction of 40.000 treatment plants in EU (till year 2005) N & West Europe, 80-90 % of wastewater treated, S & East Europe, only

40-50 % More treatment plants higher production of sludge (increase from 5.5

to 8.3 millions tons from1992 to 2005) It is necessary to increase the capacity of collection systems and

treatment 22% and 69%, respectively (from 1992 to 2005) 37 cities of more than 150.000 inhabitants do not have treatment of

wastewaters (Brighton, Portsmouth, Brussels, Milan, Toronto, Coruña, Cadiz, Oporto, Costa Estoril)

Page 16: Emerging Contaminants
Page 17: Emerging Contaminants

Name Abbrev. R Phthalic Acid PhA -H

Dimethyl phthalate DMP -CH3

Diethyl phthalate DEP -CH2CH3

Diisobutyl phthalate DisoBP -CH2CH(CH3)2

Dibutyl phthalate DBP -CH2(CH2)2CH3

Butylbenzyl pththalate BBzP -CH2(CH2)2CH3

-CH2C6H5 Dicyclohexyl phthalate DcyHP -C6H11

Diethylhexyl phthalate DEHP -CH2CH(C2H5)(CH2)3CH3

Monomethyl phthalate MMP -CH3

Monoethyl phthalate MEP -CH2CH3

Monobutyl phthalate MBP -CH2(CH2)2CH3

Monoethylhexyl phthalate MEHP -CH2CH(C2H5)(CH2)3CH3

Analytes

PHTHALATE

Page 18: Emerging Contaminants

PROPIEDADES DE LOS FTALATOS LOS DIÉSTERES DE LOS ÁCIDOS FTÁLICOS CONSTITUYEN UNA CLASE DE COMPUESTOS ORGÁNICOS INDUSTRIALES INMENSAMENTE IMPORTANTES CUYAS PROPIEDADES DE BAJA VOLATILIDAD GRAN LIPOFICIDAD ESTABILIDAD QUÍMICA COLOR BAJO LOS HACEN MUY ÚTILES PARA OBTENER MATERIALES PLÁSTICOS FLEXIBLES.

Page 19: Emerging Contaminants

PRESENCIA AMBIENTAL LOS FTALATOS ESTÁN EN TODAS PARTES, INCLUYENDO AIRE, AGUA, SEDIMENTOS Y ORGANISMOS. EL ORIGEN PRINCIPAL DE ESTOS COMPUESTOS ESTÁ EN LA ACTIVIDAD HUMANA. HAY ALGUNA EVIDENCIA DE PRODUCCIÓN NATURAL DE FTALATOS POR TRANSFORMACIÓN DE LOS COMPUESTOS ORGÁNICOS EN SUELOS.

Page 20: Emerging Contaminants

CONTAMINANTES PRIORITARIOS

FTALATOS

FTALATO DE BIS(2-ETILHEXILO) FTALATO DE BUTILBENCILO

FTALATO DE DI-N-BUTILO FTALATO DE DIETILO

FTALATO DE DIMETILO FTALATO DE DI-N-OCTILO

Page 21: Emerging Contaminants

TRANSPORTE EN EL MEDIO AMBIENTE A PESAR DE SU BAJA SOLUBILIDAD Y VOLATILIDAD, LOS FTALATOS SE DESPRENDEN LENTAMENTE AL MEDIO AMBIENTE. EL TRANSPORTE DE ESTOS MATERIALES ES GLOBAL Y LOS MAS PESADOS COMO EL FTALATO DE BIS(2-ETILHEXILO) SON PERSISTENTES EN MESES EN AGUAS E INCLUSO MÁS EN SEDIMENTOS. LOS SEDIMENTOS MUESTRAN UN AUMENTO DE CONCENTRACIONES DE FTALATOS QUE ES PARALELA A SU PRODUCCIÓN A LO LARGO DEL SIGLO PASADO

Page 22: Emerging Contaminants

DEGRADACIÓN EL MECANISMO PRINCIPAL PARA LA DESAPARICIÓN DE LOS FTALATOS ES LA BIODEGRADACIÓN POR PARTE DE MICROORGANISMOS Y TAMBIÉN POR PARTE DE ORGANISMOS SUPERIORES. LAS VELOCIDADES DE LAS REACCIONES DE DEGRADACIÓN (FOTODEGRADACIÓN, HIDRÓLISIS ABIÓTICA, OXIDACIÓN) SON LENTAS EN SISTEMAS NATURALES, AUNQUE SE PUEDEN ACELERAR MEDIANTE LA OZONIZACIÓN O FOTÓLISIS ULTRAVIOLETA EN PLANTAS DE TRATAMIENTO. PRÁCTICAMENTE TODOS LOS ORGANISMOS SON CAPACES DE ACELERAR LA HIDRÓLISIS DE LOS DIÉSTERES DE LOS FTALATOS A MONOÉSTERES E INCLUSO ÁCIDO FTÁLICO. ADEMÁS, ALGUNOS MICROORGANISMOS SON CAPACES DE METABOLIZAR LA PARTE AROMÁTICA DE LA MOLÉCULA. LOS MAMÍFEROS (Y PROBABLEMENTE OTROS ORGANISMOS) PUEDEN OXIDAR EL GRUPO HIDROXILO DEL MONOESTER.

Page 23: Emerging Contaminants

COCOOH

Anaerobic

ATP + CoA ADP

CoA

CO

CO

OHCO

CO

CO

CoA

CoA

CoA

CoACoA

3 Acetate + 3H2+ CO2

COCOOH

Anaerobic

ATP + CoA ADP

CoACOCOOH

Anaerobic

ATP + CoA ADP

CoA

CO

CO

OHCO

CO

CO

CoA

CoA

CoA

CoACoA

3 Acetate + 3H2+ CO2

CO

CO

OHCO

CO

CO

CoA

CoA

CoA

CoACoA

3 Acetate + 3H2+ CO2

Acetate +Co2+ Succinate

COOHCOOH

OHHO

COOHCOOH

OHOH

COOH

OHOH

CHO

COOH

COOH

COOH

COOHCOOH

AerobicO2

2 Pyruvate+Co2

Acetate +Co2+ Succinate

COOHCOOH

OHHO

COOHCOOH

OHOH

COOH

OHOH

CHO

COOH

COOH

COOH

COOHCOOH

AerobicO2

2 Pyruvate+Co2

COOHCOOH

OHHO

COOHCOOH

OHOH

COOH

OHOH

CHO

COOH

COOH

COOH

COOHCOOH

AerobicO2

2 Pyruvate+Co2

O

O

OHOR

H20ROH

Phthalate monoesters

O

O

OHOR

H20ROHH20ROH

Phthalate monoesters

O

O

OHOH

H20ROH

Phthalic acid

O

O

OHOH

H20ROHH20ROH

Phthalic acid

O

O

OROR

Phthalate diesters

GENERAL BIODEGRADATION PATHWAY FOR PHTHALATE ESTERS

Page 24: Emerging Contaminants

TOXICIDAD LA TOXICIDAD AGUDA DE LOS FTALATOS ES BAJA, SOLO LAS DIETAS QUE CONTIENEN GRANDES CANTIDADES DE FTALATOS SUPONEN UN RIESGO SIGNIFICATIVO. CUANDO SE SUMINISTRA FTALATO DE BIS(2-ETILHEXILO) EN GRANDES CANTIDADES A ROEDORES SE OBSERVAN EFECTOS CANCERÍGENOS AUNQUE ESTE COMPUESTO NO MUESTRA PROPIEDADES CARCINOGÉNICAS SIGNIFICATIVAS EN EXPERIMENTOS IN VITRO. LAS PRINCIPALES DIFERENCIAS ENTRE ROEDORES Y HUMANOS SON LAS SIGUIENTES: 1.- SE EXPONEN LOS ROEDORES A DOSIS ALTAS DE FTALATO DE BIS(2-ETILHEXILO) SIN METABOLIZAR, POR LO QUE ES IMPOSIBLE EXTRAPOLAR LOS RESULTADOS A DOSIS BAJAS DE ESTE COMPUESTO. 2.- HAY DIFERENCIAS MUY IMPORTANTES ENTRE LOS METABOLITOS OBSERVADOS EN HUMANOS Y EN ROEDORES. 3.- LA CARCINOGÉNESIS OBSERVADA EN ROEDORES ESTÁ RELACIONADA CON EL ESTÍMULO DE SISTEMA PEROXISOMAL DEL HÍGADO POR EL FTALATO DE BIS(2-ETILHEXILO) PERO ESTE SISTEMA NO SE ESTIMULA POR LA ACCIÓN DE ESTE COMPUESTO EN HUMANOS. DE TODOS MODOS LAS DUDAS SOBRE LA POSIBLE CARCINOGENICIDAD DE ESTOS COMPUESTOS TODAVÍA QUEDAN ABIERTAS.

Page 25: Emerging Contaminants

CONCLUSIÓN LOS ÉSTERES DE FTALATOS CONSTITUYEN UN GRUPO DE CONTAMINANTES AMBIENTALES MUY IMPORTANTE CUYA PRODUCCIÓN Y NECESIDAD DE CONTROL CONTINUARÁ POR DÉCADAS. AUNQUE HAY DUDAS ACERCA DE LA ESTABILIDAD A LARGO PLAZO DE ESTOS COMPUESTOS, NO SE HAN PRODUCIDO INCIDENTES SIGNIFICATIVOS QUE CUESTIONEN LA UTILIDAD Y SEGURIDAD DE ESTOS COMPUESTOS