emmc steps daac lesson3(rev3)

Upload: cs11

Post on 02-Jun-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    1/42

    ARBITRARY REFERENCE FRAME

    DYNAMIC ANALYSIS AND CONTROL

    OF AC MACHINES

    ERASMUS MUNDUS MASTER COURSE on

    SUSTAINABLE TRANSPORTATION AND

    ELECTRIC POWER SYSTEMS

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    2/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 2

    2

    ARBITRARY REFERENCE FRAME

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    d

    q

    0

    +=t

    dt0

    )0()()(

    ==

    =

    c

    b

    a

    abcd

    q

    qd

    f

    f

    f

    f

    f

    f

    KfKf

    0

    0

    ( )

    ( )

    =hhh

    k 3

    4

    sin3

    2

    sinsin

    3

    4cos

    3

    2coscos

    K

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    3/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 3

    3

    CHOICE OF THE ARBITRARY CONSTANTS

    ( ) ( )

    =

    13

    4sin

    3

    4cos

    13

    2

    sin3

    2

    cos

    1sincos

    1

    K

    ( )

    ( )

    =

    2

    1

    2

    1

    2

    13

    4

    sin3

    2

    sinsin

    3

    4cos

    3

    2coscos

    3

    2

    K

    CONSTANT AMPLITUDE TRANSFORMATION

    == 2

    1;3

    2hk

    This transformation is conservative with respect to

    the amplitude.

    The 0component always represents the

    homopolar component

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    4/42

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    5/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 5

    5

    CHOICE OF THE ARBITRARY CONSTANTS

    T

    KK =1

    ( )

    ( )

    =

    2

    1

    2

    1

    2

    13

    4

    sin3

    2

    sinsin

    3

    4cos

    3

    2coscos

    3

    2

    K

    CONSTANT POWER TRANSFORMATION

    == 2

    1;3

    2hk

    This transformation is orthogonal, but is NOT

    conservative with respect to the amplitude.

    The 0component always represents the

    homopolar component

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    6/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 6

    6

    CHOICE OF THE ARBITRARY CONSTANTSCONSTANT POWER TRANSFORMATION

    This transformation is intrinsically conservative

    with respect to the power.

    ccbbaaabc ivivivtp ++=)(

    )()( 0 tptp qdabc =

    000 )( ivivivtp ddqqqd ++=

    Instantaneous power in the

    abcreference frame

    Instantaneous power in the

    qd0reference frame

    == 2

    1;3

    2hk

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    7/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 7

    7

    TRANSFORMATION OF A RESISTIVE CIRCUIT

    The transformation does not modify the structure

    of the equation

    =

    =

    R

    R

    R

    abc

    abcabcabc

    00

    00

    00

    R

    iRv abcabcabcqd iRKvKv ==0

    01

    qdabc iKRK =

    00 qdqd iR =

    ==

    R

    R

    R

    abcqd

    00

    00

    00

    0 RR

    000 qdqdqd iRv =

    abc qd0

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    8/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 8

    ( ) 000000

    001

    010

    qdqdqddt

    dv

    +=

    8

    TRANSFORMATION OF AN INDUCTIVE CIRCUIT

    But:

    ( )

    abcabcabc

    abcabcdtd

    iL

    v

    =

    = ( )abcabcqd dtd KvKv ==0

    abc qd0

    ( )01 qddt

    dKK =

    ( ) ( ) 0101 qdqddt

    d

    dt

    dKKKK +=

    ( ) ( )dt

    d

    d

    d

    dt

    d

    = 11 KKKK

    ( )

    =

    000001

    0101

    KK dt

    d

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    9/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 9

    9

    TRANSFORMATION OF AN INDUCTIVE CIRCUIT

    ( )

    abcabcabc

    abcabcdtd

    iL

    v

    =

    =

    abc qd0

    =LMMMLM

    MML

    abcL

    abcabcabcqd iLKK ==0

    01

    qdabc iKLK =

    00 qdqd iL =

    +

    =

    =

    ML

    ML

    ML

    qd

    abcqd

    200

    00

    00

    0

    1

    0

    L

    KLKL

    =

    0

    q

    d

    dq

    ( ) dqqdqddt

    dv += 00

    000 qdqdqd iL =

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    10/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 10

    10

    TRANSFORMATION BETWEEN REFERENCE FRAMES

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    x

    dx

    qx x

    0

    dy

    q

    y

    y

    y

    xqd

    yx

    yqd 00 fKf =

    abcxx

    qd fKf =0

    abcyy

    qd fKf =0

    abcx

    y

    x

    y

    qd

    fKKf =0

    xyxy KKK =

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    11/42

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    12/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 12

    12

    ROTATING VECTOR (OR SPACE VECTOR)

    )(3

    23

    4

    3

    2 j

    c

    j

    ba efeff ++=f

    The rotating vector is defined as:

    The rotating vector describes a complete 3-phase system

    (is not a phasor). A symmetrical 3-phase system withpulsation

    e, generates a space vector of constant

    amplitude which rotates at angular speede.

    The projections of the space vector fon the q- and d- axes

    gives the same results as applying the coordinatetransformation matrix K.

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    13/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 13

    13

    ROTATING VECTOR (OR SPACE VECTOR)

    dqqdo jff =f

    The rotating vector in qd0 coordinates can be expressed

    as a complex number:

    Alternatively, it can be expressed as the projection of the

    vector on the q- and d- axes. jqdo ej

    == fff ))sin()(cos(

    which yields:

    ))sin()(cos(32 3

    4

    3

    2

    jefeffj

    c

    j

    baqdo

    ++=f

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    14/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 14

    14

    TRANSFORMATION EXAMPLE

    0 0.02 0.04 0.06 0.08 0.1-400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    Va

    Vd

    Vq

    0 0.01 0.02 0.03 0.04 0.05-400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    Iq

    Ia

    Ib

    Ic

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    15/42

    PM MACHINES

    DYNAMIC ANALYSIS AND CONTROL

    OF AC MACHINES

    ERASMUS MUNDUS MASTER COURSE on

    SUSTAINABLE TRANSPORTATION AND

    ELECTRIC POWER SYSTEMS

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    16/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 16

    16

    OUTLINE

    Classification

    PM Machines modelling

    Vector control of PM Machines

    Flux weakening

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    17/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 17

    17

    CLASSIFICATION (BY OPERATION)

    PM motors

    Inverter fedLine start

    Cage rotor Cageless rotor

    Rectangular fedSinusoidal fed

    SensorlessWith position

    sensors

    AC BRUSHLESS

    DC BRUSHLESS

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    18/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 18

    18

    CLASSIFICATION (BY MACHINE TYPE)

    Surface PM (SPM)

    Interior PM (IPM)

    Inset PM

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    19/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 19

    19

    Surface PM machines (SPM)

    Magnets are mounted on rotor surface Mechanical stress at high speeds

    The machine is magnetically

    ISOTROPIC (magnetair)

    No inductance variation with rotor position

    Relatively low inductance (high airgap)

    Low demagnetization risk

    Trapezoidal back-emf (DC BRUSHLESS)

    Can have Sinusoidal back-emf (AC BRUSHLESS) with

    proper stator winding arrangement

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    20/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 20

    20

    Interior PM machines (IPM)

    Magnets are mounted inside rotor Mechanically resistent at high speeds

    The machine is magnetically

    ANISOTROPIC (magnetiron)

    Reluctance and cogging torque

    Inductance variation with rotor position

    Relatively high inductance (low airgap)

    High demagnetization risk

    Sinusoidal back-emf (AC BRUSHLESS)

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    21/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 21

    21

    Inset PM machines

    Magnets are placed inside hollows on rotor surface Mechanically resistent at high speeds

    The machine is magnetically

    ANISOTROPIC (magnetiron)

    Reluctance and cogging torque

    Inductance variation with rotor position

    Sinusoidal back-emf (AC BRUSHLESS)

    In between SPM and IPM

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    22/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 22

    22

    AC brushless modelling

    Modelling hypotheses:

    Sinusoidal flux distribution along the airgap;

    Saturation phenomena neglected;

    Hysteresis and eddy current losses neglected;

    Temperature effects neglected;

    No rotor cage.

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    23/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 23

    23

    AC brushless equations in phase coordinates

    abcabcabcdt

    diRv +=

    abcabcPMabc iL +=

    =

    )34sin(

    )32sin(

    )sin(

    e

    e

    e

    PMPM

    =

    )()()(

    )()()(

    )()()(

    )(

    rccrcbrca

    rbcrbbrba

    racrabraa

    rabc

    LLL

    LLL

    LLL

    L

    =

    R

    R

    R

    00

    00

    00

    R

    T

    abc

    e

    abcPT i

    =

    dtdJTT rL =

    re P =

    re P =

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    R

    r

    PM

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    24/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 24

    24

    Inductance matrix in phase coordinates (IPM)

    abc

    [ ]

    [ ]

    +++++

    ++

    ++

    ++

    +

    ++

    +++

    =

    )3

    2(2cos)(2cos

    2

    1)

    3(2cos

    2

    1

    )(2cos2

    1)

    3

    2(2cos)

    3(2cos

    2

    1

    )3

    (2cos2

    1)

    3(2cos

    2

    1)2cos(

    )(

    rBAlrBArBA

    rBArBAlrBA

    rBArBArBAl

    rabc

    LLLLLLL

    LLLLLLL

    LLLLLLL

    L

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    R

    r

    PM

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    25/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 25

    25

    Torque equation in phase coordinates

    abcabcPMabc iL +=

    abc

    T

    abcabc

    T

    abcabc

    T

    abc dt

    diiRivi

    +=

    ( ) ( ) ( )dt

    d

    tdt

    d eabc

    e

    T

    abcabc

    T

    abcabc

    T

    abc

    +

    = iii

    ( )dt

    d

    PTT eabc

    e

    T

    abce

    r

    == i

    ( )abc

    e

    T

    abcPT i

    =

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    26/42

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    27/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 27

    27

    Synchronous reference frame

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    R

    e

    PM

    d

    qe

    0

    The synchronous referenceframe is obtained from the

    arbitrary reference frame,

    when:

    )()( tt e =

    and the d-axis is aligned

    with the PM flux rotating

    vector:

    0,

    ,

    =

    =

    qPM

    PMdPM

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    28/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 28

    28

    AC brushless equations in synchr. reference frame

    dqeqdqdqddt

    diRv ++= 000

    000,0 qdqdqdPMqd iL +=

    =

    0

    0

    0, PMqdPM

    =

    0

    0

    00

    00

    00

    L

    L

    L

    d

    q

    qdL

    =

    R

    R

    R

    00

    00

    00

    R

    )(2

    3dqqd iiPT =

    dtdJTT rL =

    re P =

    re P =

    =

    0

    q

    d

    dq

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    R

    e

    PM

    d

    qe

    0

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    29/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 29

    29

    Matrix inductance in synchr. reference frame

    qd0

    =

    =

    0

    0

    10

    0000

    00

    LL

    L

    d

    q

    qd

    abcqd

    L

    KLKL

    l

    BAld

    BAlq

    LL

    LLLL

    LLLL

    =

    +=

    ++=

    0

    23

    2

    3

    [ ]

    [ ]

    +++++

    ++

    ++

    ++

    +

    ++

    +++

    =

    )

    3

    2(2cos)(2cos

    2

    1)

    3

    (2cos

    2

    1

    )(2cos2

    1)

    3

    2(2cos)

    3(2cos

    2

    1

    )3

    (2cos2

    1)

    3(2cos

    2

    1)2cos(

    )(

    rBAlrBArBA

    rBArBAlrBA

    rBArBArBAl

    rabc

    LLLLLLL

    LLLLLLL

    LLLLLLL

    L

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    30/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 30

    30

    Torque equation in synchr. reference frame

    000,0 qdqdqdPMqd iL +=

    ( ) dqe

    T

    qdqd

    T

    qdqd

    T

    qdqd

    T

    qd dt

    diiiRivi ++=

    0000000 2

    3

    2

    3

    2

    3

    2

    3

    ( ) 000 =

    dt

    d eqd

    e

    T

    qd

    i

    dqe

    T

    qde

    rP

    TT i ==

    02

    3

    dq

    T

    qdPT i = 02

    3

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    31/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 31

    31

    Torque equation

    ))((2

    3qdqdqPM iiLLiPT +=

    )(2

    3

    dqqd

    iiPT = ddPMd iL +=

    qqq iL =

    qPM iPT = 2

    3

    The torque equation shows a first term which is

    proportional to PM flux (synchronous torque) and a

    second term which is proportional to the anisotropy

    (reluctance torque).

    For an IPM machine, since Ld

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    32/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 32

    32

    Maximum Torque per Ampere (MTPA)

    ))((2

    3qdqdqPM iiLLiPT +=

    MTPA is a control strategy that seeks to maximize thetorque for a given amount of current.

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    e

    i

    d

    q

    e

    0

    e

    )cos(=Iiq

    )sin(= Iid

    [ ])sin()cos()()cos(2

    3 2 = ILLIPT qdPM

    MTPA looks for the angle

    that satisfies:

    0=

    I

    T

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    33/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 33

    33

    Vector control

    To achieve vectorcontrol for PM machines means to

    determine the amplitudeI and angle(and frequency,of course) of the current rotating vector, such that the

    desired torque is obtained with the minimum current

    amplitude (MTPA).

    In the 3-phase stationary reference frame abc:

    In the synchronous reference frame qd0:

    +=

    +=

    +=

    )34cos()(

    )32cos()(

    )cos()(

    ***

    ***

    ***

    *

    **

    tIti

    tIti

    tItiI

    T

    ec

    eb

    ea

    =

    =

    )sin(

    )cos(

    ***

    ***

    *

    **

    Ii

    IiIT

    d

    q

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    34/42

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    35/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 35

    35

    Vector control for SPM machines (cont.)

    For SPM machines, vectorcontrol means to control the

    current such that its vector

    is aligned with the q-axis.

    In other words, it means tocontrol the current so that it

    is in phase with the back-

    emf.

    (E=ePMis on the q-axis)

    A+

    B-

    B+

    C-

    C+

    a

    b

    c

    S

    A-

    N

    i*

    e

    PM

    d

    qe

    0

    E

    NOTE: id=0 must be forced by the controller: idwill not stay

    at zero naturally.

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    36/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 36

    36

    General control scheme for PM machines

    PM MOTOR EPI, PI,i

    Current

    feedback

    *

    +

    +

    T* i*

    i

    Speed

    feedback

    v*

    Speed Regulator Current Regulator =

    Torque Regulator

    INVERTER

    Vdc

    ~

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    37/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 37

    37

    Current control in 3-ph. reference frame

    PM MOTOR EReference

    generator

    PI,i+

    T*

    ia

    va*

    INVERTER

    Vdc

    ~

    PI,i+

    vb*

    PI,i+

    vc*

    ib

    ic

    MTPA

    I*

    *

    P

    W

    M

    ia*

    ib*

    ic*

    Requires three current regulators

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    38/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 38

    38

    Current control in synchr. reference frame

    Requires two current regulators

    Requires two coordinate transformations Computationally more intense

    Higher performances (current bandwidth not affected by

    speed)

    PM MOTOR EK-1

    PI,i+

    T*

    ia

    va*

    INVERTER

    Vdc

    ~

    PI,i+

    vb*

    vc*

    ib

    ic

    MTPA

    P

    W

    M

    iq*

    id*

    e

    K

    iq id

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    39/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 39

    39

    Flux weakening

    As the speed increases, also the back-emf increases. At

    some point (generally at nominal speed) the voltagerequired to balance the back-emf reaches the nominal

    voltage of the machine or the voltage limit of the inverter.

    )(ddPMeqqq

    iLdt

    d+++= iRv

    qqq

    iL =

    qqeddd iLdt

    d+= iRvddPMd iL +=

    Above this speed, since the PM flux is constant, the only

    possible thing is to weaken the linked flux on the d-axis

    through an injecton of negative d-axis current (flux

    weakening), so that the total induced voltage on the q-

    axis remains constant.

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    40/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 40

    40

    Flux weakening for SPM machines

    PMbde E === 0const.

    PMbPMedde EiL ==+ 0*

    beup /.. =

    PMbPMupbddupb iL =+

    ..

    *

    ..

    dup

    upPM

    dL

    i

    =

    ..

    ..*)1(

    de

    up

    dL

    Ei

    =

    )1( ..0*

    Let bbe the base speed.

    Below base speed MTPA requires id=0.

    Above base speed the total induced voltage on the q-

    axis is imposed to be constant:

    If then

    or

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    41/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 41

    41

    Flux weakening for SPM machines (cont.)

    de

    up

    dL

    Ei

    =

    )1( ..0*

    2*2max

    *max, dq iIi =

    )23/( **

    PMq PTi =

    >

    =

    >

    =

    b

    de

    up

    b

    d

    bqq

    bq

    q

    L

    E

    i

    ii

    ii

    )1(

    0

    ),min(

    ..0*

    *

    max,

    *

    *

    *

    Given id

    *, respect of the maximum current amplitude Imax

    must be enforced.

    EQ 1

    EQ 2

  • 8/10/2019 Emmc Steps Daac Lesson3(Rev3)

    42/42

    Dynamic Analysis and Control of AC Machines - Lesson 3 Pagina 42

    Flux weakening for SPM machines (cont.)

    PM MOTOR EKPI,i

    +

    T*

    ia

    va*

    INVERTER

    Vdc

    ~

    PI,i+

    vb*

    vc*

    ib

    ic

    EQ. 2

    PW

    M

    iq*

    id*

    e

    K-1

    iq id

    PI,* +

    EQ. 1id

    *

    Speedobserver