emulsion polymerization reactor

28
Members: Ryan Foringer John Miller Curtis Williamson Stephen Heisler Emulsion Polymerization Reactor Group (13622)

Upload: others

Post on 06-Oct-2021

17 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Emulsion Polymerization Reactor

Members: Ryan Foringer

John Miller Curtis Williamson Stephen Heisler

Emulsion Polymerization Reactor Group (13622)

Page 2: Emulsion Polymerization Reactor

Agenda   LabVIEW analysis   Updated Customer needs/P&ID/PFD   Test Plan   System Architecture   Updated Engineering Specifications   BOM and Gant Chart   Risk Assessment

Page 3: Emulsion Polymerization Reactor

Changes To Customer Needs

  Changed  Two Inlets no longer required  Control of the inlet flow rates is only open close  Automated process no longer required  Automated overflow protection no longer required

  New  Tank must feed downstream coater at 200 g/min   60 min batch time with 5 min CIP  Cost per batch is less than $10   Particle Size must be visible via optical microscope for product

evaluation

Page 4: Emulsion Polymerization Reactor

Updated Block Diagram

Page 5: Emulsion Polymerization Reactor

Updated PFD

Page 6: Emulsion Polymerization Reactor

P&IDs

Page 7: Emulsion Polymerization Reactor

Test Plan

Page 8: Emulsion Polymerization Reactor

Test Plan Example Format

Page 9: Emulsion Polymerization Reactor

Test Plan Example Testing Steps

Page 10: Emulsion Polymerization Reactor

Feasibility Analysis - Vessel

Glass Vs Stainless Steel •  Cost •  Heat Loss •  Durability •  Reaction Visibility •  Use in Lab setting

Page 11: Emulsion Polymerization Reactor

Feasibility Analysis – Mixing Blade   Cowles Mixer vs Propeller Blade type mixers

  Emulsification ability   Propeller blade testing   Expert Opinion

 Availability

Page 12: Emulsion Polymerization Reactor

Feasibility Analysis- Particle Size

S

O

SO

t

t

MMRatiio

RV

V

RRP

xnVn

=

=

−+=

+=

+=−

30

33max

3max

34

)(34

10)9.264.27(

)1265.154(.

π

π

CMC Calculations and Equations

Symbol   Value   Units  n   12  atoms  R   25000  nm  Lmax   1.672  nm  Vt   0.3502  nm3  P   3.75E+10  Par@cles  Mols  (SDS)   6.23E-­‐14  mol  Mass  (SDS)   1.8E-­‐11  g  Volume  (Oil)   6.54E-­‐08  cm3  Mass  (Oil)   6.02E-­‐08  g  Ra@o  (O/S)   3353.089      

R

Page 13: Emulsion Polymerization Reactor

Feasibility Analysis- Particle Size Inputs  

Par@cle  Diameter   50  microns  Volume  of    DI  Water   18  L  

Outputs  Volume  of  Canola  Oil   2  L  

Mass  Ra@o  of  Oil  to  SDS   3353.089   O/S  Mass  of  SDS   0.548748  g  Batch  Cost   4.688747  $  

Inputs  Par@cle  Diameter   50  microns  

Volume  of    DI  Water   10  L  Outputs  

Volume  of  Canola  Oil   10  L  Mass  Ra@o  of  Oil  to  SDS   3353.089   O/S  

Mass  of  SDS   2.743739  g  Batch  Cost   23.44373  $  

Condition 90% DI-Water 10% Oil

Condition 50% DI-Water 50% Oil

Inputs  Par@cle  Diameter   50  microns  

Volume  of    DI  Water   15.73447  L  Outputs  

Volume  of  Canola  Oil   4.265533  L  Mass  Ra@o  of  Oil  to  SDS   3353.089   O/S  

Mass  of  SDS   1.170351  g  Batch  Cost   10   $  

Condition Converged Volume to meet Customer Need 11

Inputs  Par@cle  Diameter   5  microns  

Volume  of    DI  Water   16  L  Outputs  

Volume  of  Canola  Oil   4  L  Mass  Ra@o  of  Oil  to  SDS   335.1071   O/S  

Mass  of  SDS   10.98156  g  Batch  Cost   20.74417  $  

Condition 90% DI-Water 10% Oil

Inputs  Par@cle  Diameter   5  microns  

Volume  of    DI  Water   10  L  Outputs  

Volume  of  Canola  Oil   10  L  Mass  Ra@o  of  Oil  to  SDS   335.1071   O/S  

Mass  of  SDS   27.45391  g  Batch  Cost   51.86043  $  

Condition 50% DI-Water 50% Oil

Inputs  Par@cle  Diameter   5  microns  

Volume  of    DI  Water   18.07175  L  Outputs  

Volume  of  Canola  Oil   1.928252  L  Mass  Ra@o  of  Oil  to  SDS   335.1071   O/S  

Mass  of  SDS   5.293806  g  Batch  Cost   9.999999  $  

Condition Converged Volume to meet Customer Need 11

Page 14: Emulsion Polymerization Reactor

Feasibility Analysis- Particle Size   Assumptions

  The cost of DI Water is negligible   The CMC theory equations are applied

  Desired Parameters   Batch Cost is $10.00   Oil to DI Water ratio varies from 10% to 50%   Vessel Size needs to meet a 200g/min continuous flow rate to the

coater

  All Three conditions cannot be simultaneously met   Optimum parameter to be changed: Coater Flow Rate

  All three parameters could be achieved simultaneously   Overall cost of reactor will decrease

Page 15: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

h0 h2

h3

h1

P2

Tank 1

P1

Tank 2

P1 =!oilgh1

P2 =!oilg h2 " h0( )+!h2ogh0

#V2#t

= A2#h2#t

=m

#V1#t

= A1#h1#t

= "m

m =$D4!128µL

P1!oil

+gh3%

&''

(

)**"

P2!oil

+

,--

.

/00

Page 16: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

  Flow Rate Analysis Assumptions   Incompressible liquid   Fully developed flow   Laminar flow  Discharge is to bottom of tank (h=0)

  Optimized Dimensions  Oil vessel height above reactor vessel   Pipe Diameter  Oil Vessel Diameter

Page 17: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

  Oil vessel height above reactor vessel   Higher h3, more constant flow rate

  Slight decrease in discharge time

  h3>1m is unrealistic for apparatus dimensions

  Diameter of pipe

Pipe  Dia   Approx.  Flow  rate   Tank  1  emp6es?  

in   ml/s   Worst  Case  (50%  oil)  

0.25   6.08   N  

0.5   97.29   Y  

0.75   492.5   Y  

Page 18: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

  Percentage Oil to Aqueous Analysis

Oil  %   Discharge  Time   Start  Flow  Rate   Final  Flow  Rate  

    s   m3/s   m3/s  

10   181   0.0126   0.0081  

20   302   0.0172   0.0082  

30   392   0.0219   0.0084  

40   464   0.0264   0.0085  

50   523   0.0311   0.0087  

Page 19: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

Flow

Rat

e (m

l/s)

Percentage Oil

Discharge Time vs. Oil Percentages

Page 20: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Flow

Rat

e (m

l/s)

Percentage Oil

Flow Rates vs Oil Percentage

Starting Flow Rate

Final Flow Rate

Page 21: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

  10% Oil, 2in Dia

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60 70 H

eigh

t In

Tank

1 (m

)

Time (s)

Height In Tank 1 vs Time

0.00003

0.000032

0.000034

0.000036

0.000038

0.00004

0.000042

0.000044

0.000046

0 10 20 30 40 50 60 70

Volu

met

ric

Flow

Rat

e (m

3/s)

Time (s)

Volumetric Flow Rate vs Time

Page 22: Emulsion Polymerization Reactor

Feasibility Analysis- Sub-Feed Flow Calculations

  50% Oil, ½ in Dia

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250

Hei

ght I

n Ta

nk 1

(m)

Time (s)

Height In Tank 1 vs Time

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0 50 100 150 200 250

Volu

met

ric

Flow

Rat

e (m

3/s)

Time (s)

Volumetric Flow Rate vs Time

Page 23: Emulsion Polymerization Reactor

Engineering Specifications Specifica6on  Number   Importance   Customer  

Needs   Descrip6on  1           Emulsion  Characteris6cs  1.1   1   2   The  emulsion  shall  have  a  10%  standard  devia@on  par@cle  size  distribu@on.  1.2   1       The  emulsion  shall  have  a  par@cle  growth  no  more  than  5%  the  original  size  per  hour.  1.3   2   2,7   The  emulsion  shall  have  a  transmission  above  .8.  1.4   1       The  emulsion  must  have  par@cle  sizes  that  are  easily  observale  by  means  of  op@cal  imaging.  2           Emulsion  Process  2.1   1   10   The  emulsion  batch  dura@on  shall  be  within  60  minutes  to  perform  desired  specifica@ons.  2.2   1   11   The  emulsion  process  shall  have  a  chemical  cost  under  10$  per  batch.  2.3   2   10   The  emsulsion  process  shall  end  with  a  5  minute  CIP  as  part  of  the  process  dura@on.  2.4   1   9   The  emulsion  batch  size  shall  be  large  enough  to  compensate  for  a  coater  feed  rate  of  200g/min  3           Motor  Proper6es  3.1   2   6   The  motor  shall  have  a  rmp  ramp  rate  of  100rpm/s.  3.2   3   5,6   The  motor  shall  have  max  rmp  of  6000rpm.  3.3   1   7   The  motor  shall  have  a  rpm  that  corresponds  to  a  shear  rate.  4           Flowing  Fluids  4.1   2   2   The  solvent/surfactant  flow  rate  shall  be  500mL/s  into  the  vessel.  4.2   2       The  emulsion  fluid  shall  drain  out  of  the  vessel  at  a  rate  of  250mL/s.  4.3   2       The  oil  feed  shall  be  sub-­‐fed  at  a  rate  of  25mL/s  

Page 24: Emulsion Polymerization Reactor

Bill of Materials

Page 25: Emulsion Polymerization Reactor

Risk Assessment ID   Risk  Item   Effect   Cause   Likelihood   Severity   Importance   Ac6on  to  Minimize  Risk   Owner  

    Describe  the  risk  briefly  

What  is  the  effect  on  any  or  all  of  the  project  deliverables  if  the  cause  actually  happens  

What  are  the  possible  causes  of  this  risk           L*S  

What  ac=on(s)  will  you  take  (and  by  when)  to  prevent,  reduce  the  impact  of,  or  transfer  the  risk  of  this  occurring    

Who  is  responsible  for  following  through  on  mi=ga=on?  

1  Customer  Needs  Requires    For  Expensive  Vessel  

Budget  Surpassed,  Customer  Need  1  not  met  

Ideal  reactor  vessel  material  is  Stainless  Steel  and  calls  for  jacked  vessel  both  of  which  are  expensive.  

3   3   9  

Sacrifice  energy  savings,  and  use  less  conduc@ve  glass  vessel.  If  jacket  is  too  expensive  to  implement,  disregard  need  *approved  by  customer*  

Ryan  

2  Subfeeding  doesn’t  complete  emptying  of  the  oil  vessel  

Process  fails,  Emulsion  not  created.  Customer  Need  2  not  met.  

Assump@ons  on  flow  rate  feasability  analysis  were  too  lenient.   3   3   9  

If  subfeeding  fails  and  cannot  be  fixed,  we  will  revert  to  a  top  feeding  system.  

Ryan  

3   Flow  from  Oil  Tank  exceeds  Predic@ons  

Unrealis@c  flow  rate,  improper  emulsifica@on   Flow  Calula@ons  inaccurate   3   2   6  

If  flow  rate  is  too  high,  poten@al  correc@on  with  valve  opening,  change  of  pipe  size  possible  

John  

4   Par@cle  is  not  visible  by  op@cal  means  

Customer  Need  12  is  not  met  and  analysis  of  par@cle  cannot  be  determined  

Mixng  @me  and  rate  may  not  be  at  op@mum  values   2   3   6  

If  aher  chemical  tes@ng  op@miza@on,  desired  par@cles  are  not  achieved,  poten@ally  a  new  surfactant  or  oil  could  be  used.  

Cur@s  

5  Unable  to  achieve  stable,  repeatable  par@cle  size.  

Customer  Need  2  not  met   Theore@cal  CMC  calcula@ons  were  inacurate.   2   3   6  

If  aher  chemical  tes@ng  op@miza@on,  desired  par@cles  are  not  achieved,  poten@ally  we  could  add  thickening  agent  or  mixed  surfactants.  

Cur@s  

6   Tes@ng  Facili@es  Not  available  

Cannot  test  chemical  combina@ons,  process  configura@ons  

closed,  booked   2   2   4  Prevent;  schedule  tes@ng  ahead  of  @me  to  ensure  availability   Cur@s  

7   Chemicals  Not  Available   Tes@ng  is  delayed   Backordered,  delayed  in  shipment   1   3   3  Prevent:  Order  chemicals  in  advance,  

check  availibility   John  

8   Defec@ve  Equipment   Delayed  project  comple@on,  budget  exceeded  

improper  construc@on,  structural  integrity  comprimised   1   3   3  Purchase  equipment  in  advance.   Stephen  

9   Insufficient  mixing  of  the  oil  water  solu@on  

Target  par@cles  not  achieved/  batched  lost.   Motor  failure   1   3   3  

Ensure  motor  is  func@onal  prior  to  batch  run,  and  ensure  motor  is  in  spec.  

John  

10   Blade  doesn’t  provide  proper  shear  mixing  

Target  par@cles  not  achieved  within  max  batch  @me  

Current  blade  is  not  appropriate  dispite  expert  guidance.   1   3   3  Back  up  informa@on  from  experts  

with  blade  company  website  info.   Stephen  

11   Valve  Fails   Loss  of  batch   Poor  Manufacture   1   1   1  Inspect  valve  before  purchase,  if  fails,  purchase  new  valve.   John  

Page 26: Emulsion Polymerization Reactor

Satisfaction of Customer Needs Customer  Need  #   Process  used  to  sa@sfy  specific  customer  need  

1   The  vessel  that  will  be  purchased  for  this  emulsion  will  be  a  jacketed  glass  wall  vessel  with  an  inlet  and  outlet  port  for  temperature  controlling  flow.  

2   This  need  will  be  sa@sfied  through  the  par@cle  size  tes@ng  plan.  

3   The  vessel  that  will  be  purchased  for  this  emulsion  will  be  a  glass  walled  vessel,  so  every  part  of  the  emulsion  will  be  visible  to  the  viewer.  

4   The  exit  of  the  vessel  will  be  made  of  glass,  so  the  outlet  port  will  have  a  visible  fluid  flow.  

5   The  motor  that  will  be  used  to  make  the  emulsion  and  do  par@cle  tes@ng  will  have  a  variable  RPM  control.  

6   The  motor  that  will  be  used  to  make  the  emulsion  and  do  par@cle  tes@ng  will  have  a  variable  RPM  control.  

7   This  need  will  be  sa@sfied  through  the  par@cle  size  tes@ng  plan  and  the  motor  tes@ng  plan.  

8   The  vessel  that  will  be  purchased  for  this  emulsion  will  be  a  jacketed  glass  wall  vessel  with  an  inlet  and  outlet  port  for  temperature  controlling  flow.  

9   The  size  of  the  vessel  will  be  large  enoguh  to  compensate  a  con@nuous  flow  rate  of  200g/min.  

10   This  need  will  be  sa@sfied  through  the  par@cle  size  tes@ng  plan.  

11   This  need  has  been  sa@sfied  by  use  of  the  CMC  calcula@ons.  

12   This  need  will  be  sa@sfied  through  the  par@cle  size  tes@ng  plan.  

Page 27: Emulsion Polymerization Reactor
Page 28: Emulsion Polymerization Reactor

QUESTIONS & IDEAS