enabling science using neutrons at the european spallation … · 2017. 11. 1. · nmx miracles...

32
Enabling Science using Neutrons at the European Spallation Source ERIC Arno Hiess Scientific Activities Division European Spallation Source ERIC, Lund, Sweden www.europeanspallationsource.se

Upload: others

Post on 11-Sep-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

EnablingScienceusingNeutrons

attheEuropeanSpallationSourceERIC

ArnoHiess

ScientificActivitiesDivision

EuropeanSpallationSourceERIC,Lund,Swedenwww.europeanspallationsource.se

Page 2: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

EuropeanSpallationSource- Vision

Neutron

Methods

User

Access

Science,

Research

idea

byuser

proposal,

sample,labs

experiment,

sampleenv.

data,

modeling

publication

byuser

“Buildandoperatetheworld’s

mostpowerfulneutronsource,

enabling scientificbreakthroughs

inresearchrelatedtomaterials,

energy,healthandthe

environment,andaddressing

someofthemostimportant

societalchallengesofourtime.”

Page 3: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Journeytodelivertheworld’sleadingfacilityfor

researchusingneutrons

3

2014

ConstructionStartson

GreenFieldSite

2009

DecisiontoSiteESS

inLund

2025

ESSConstruction

PhaseComplete

2003

EuropeanDesignofESS

Completed

2012

ESSDesignUpdatePhase

Complete

2019

StartofInitial

OperationsPhase

2023

ESSStarts

UserProgram

Journeytodelivertheworld’sleadingfacility

forresearchusingneutrons

Page 4: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

4

Financingincludescashanddeliverables

Host Countries Sweden and Denmark

Construction 47.5% Cash Investment ~ 97%Operations 15% TBC

Non Host Member Countries

Construction 52.5% In-kind Deliverables ~ 70%Operations 85% TBC

Page 5: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Constructionisongoing…

July2014

Aug2017

Page 6: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

NeutronsourcesJamesChadwick- 1932

Use Polonium as alpha emitter on Beryllium

���)���-�%'���*##�'����%%"� ��)����&)�#��'����� ��*)'%$��%*'��(� ������'" "�� ��

����� (�%+�'.�%��)�����*)'%$�����, �!�����

&�$�*)'%$(�

$�*)'%$( �������

�%����� ��'."" *#�

����"�()�$�*)'%$� (�,��!".��%*$��

������� �������������$�����������

���)���-�%'���*##�'����%%"� ��)����&)�#��'����� ��*)'%$��%*'��(� ������'" "�� ��

����� (�%+�'.�%��)�����*)'%$�����, �!�����

Page 7: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Productionofneutrons

2-3neutronsperprocess

30+neutronsperprocess

���#���'��!���$���!�������� ��#���� #����!����� ��$#!�����$!��"� ������!����� ���

� �#�������$#!��"� �!� !�#��� !��$����

���#��"�� ����#�����

� ����#����

���#���'��!���$���!�������� ��#���� #����!����� ��$#!�����$!��"� ������!����� ���

����!�)"��(��%��&���� � ���"��#�&�"��$��#

S. Margherita di Pula: Sept. 22, 2008 9

Neutron production by fission Bullet:

slow neutron

Target:

235U

Nuclear reaction product

236U (unstable)

Fission products:

• 2 light nuclei

• 2-3 fast neutrons

���%���(�!#���&���#����!!�� ��%����"%����#������ ��&%#! ��!&#��$� � ��#����� ���

����*�%���'!#��+$������ �� �&%#! �������%)�

���%���(�!#���&���#����!!�� ��%����"%����#������ ��&%#! ��!&#��$� � ��#����� ���

������&(�$������� $%#&�� %$�

�"�#�%�! ����%�������$� ���$&���#������

�������& ���

Fissionofuranium

innuclearreactor

Spallationontarget

usingprotonaccelerator

Page 8: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

EvolutionofNeutronSources

Berkeley37-inchcyclotron

350mCi Ra-Besource

Chadwick

1930 1970 1980 1990 2000 2010 2020

105

1010

1015

1020

1

ISIS

Particledrivenpulsed

ZING-P

ZING-P’

KENS

WNR

IPNSILL

X-10

CP-2

Fissionreactors

HFBR

HFIR

NRU

MTR

NRX

CP-1

1940 1950 1960

Effectivetherm

alneutronfluxn/cm

2-s

(UpdatedfromNeutronScattering,K.Skold andD.L.Price,eds.,AcademicPress,1986)

FRM-IISINQ

SNS

J-PARC

LANSCE

OPAL

PIK

2030

CARR

CSNS

Dhruva

IBR-II

NIST

RSGLVR JRR-3

Particledrivensteadystate

Pulsedreactor

HANAROHIFAR

SAFARI-1

SALAM

ETERR-2

MARIA

HORJEEPII

ORPHEE

ReactorSources SpallationSources

Year

ESSLightbulb

1000lm

Page 9: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

TheEuropeanSpallationSource

HighPower

Acceleratormeans

moreneutrons

AnInnovativeTargetStationthat

canhost>30instruments

Flatmoderatordeliveringsmallerand

brighterneutronbeams

Highbrightnessandtuneableresolution

makesnewmeasurementspossible

9

Page 10: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

4

Long-pulse performance

10time (ms)

Brig

htne

ss (n

/cm

2 /s/s

r/Å)

x1013

ISIS TS1128 kW

ISIS TS232 kW

SNS1-2 MW

JPARC0.3-1 MW

ILL 57 MW

ESS 5 MW2015 design

0 1 2 3

15

5

10λ = 5 Å

ESS 5 MW2013 design (TDR)

Possibilities of pulse shaping

ESS 2 MW2015 design

Page 11: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ESSInstrumentLayout(September2017)

ESSLeadPartnersfor

instrumentconstruction

+NuclearPhysics

Institute

+

ODIN

DREAM

NMX

MIRACLES

BEER

C-SPEC

T-REX

MAGIC

BIFROST

HEIMDAL

FREIA

LoKI

SKADI

VESPA

ESTIA

+

D07

11

ESSNeutronInstruments1-15+testbeamline

ESSIn-KindPartnersalsocollaborate

onsampleenvironment,data

managementsystemsetc.

100m 150m

Test BeamLine

Page 12: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ESSInstrumentLayout(September2017)

ODIN

DREAM

NMX

MIRACLES

BEER

C-SPEC

T-REX

MAGIC

BIFROST

HEIMDAL

FREIA

SKADI

VESPA

ESTIA

Hall1

D071× LifeScience,

1× Coldroom

D081× Chemistry,

1xRadioactiveMat.L.

D07

D08

D07deferred

toearlyInitial

Operations

12

Hall3

E031× Engineering

E041× LifeScience,

1× Coldroom

1× Instrumentroom

1× Chemistry,

1× Characterization

Hall2

D041× LifeScience,

1× Coldroom

2× Instrumentroom

D04

E04

E03

ESSNeutronInstruments1-15

andSupportInfrastructure

100m 150m

LoKI

Test BeamLine

SampleEnvironmentWorkshops

Page 13: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

InstrumentSuiteandCollaboration

13

MAGIC

T-REX

VESPA

FREIAESTIA

ODIN

BEER

CSPEC BIFROST

MIRACLES

SANS LOKI,SKADI

Reflectometry ESTIA,FREIA

PowderDiffraction DREAM,HEIMDAL

Single-CrystalDiffraction MAGIC,NMX

Imaging&Engineering ODIN,BEER

Direct-GeometrySpectroscopy CSPEC,T-REX

Indirect-GeometrySpectroscopy BIFROST,MIRACLES,VESPA

LoKI

DREAM

NMX

SKADI

HEIMDAL

Page 14: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

15Instrumentsselectedsofar

8tobeinuseroperationby2023

ODINimaging

SKADIGP-SANS

LOKIBroadbandSANS

SurfaceScattering

FREIAHor.Refl.

ESTIAVer.Refl.

HEIMDALPow.Diffr.

DREAMPow.Diffr.

Monochromatic Powder

Diffractometer

BEEREng.Diffr.

ExtremeConditions

Diffractometer

MAGICMagn.Diffr.

NMXMacromol.Diffr.

CSPECColdChopSp

VORBroadbandSp

T-REXThChopSpec

BIFROST Xana Spec

VESPA Vibr.Spec.

MIRACLES BckScatt

High-ResolutionSpin-Echo

Wide-AngleSpin-Echo

ParticlePhysics

Larg

e-Sc

ale

Stru

ctur

esD

iffra

ctio

n

Spec

trosc

opy

lifesciences magnetism&

superconductivity

softcondensedmatter engineering& geo-sciences

chemistryofmaterials archeology&heritage

conservation

energyresearch particlephysics

Page 15: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

TentativeInstrumentRamp-up

Instrument 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

LOKI

ODIN

NMX

ESTIA

CSPEC

DREAM

SKADI

BEER

BIFROST

MAGIC

T-REX

HEIMDAL

MIRACLES

VESPA

FREIA

Instrument16

Instrument17

Instrument18

Instrument19

Instrument20

Instrument21

Instrument22

Hot CommissioningConstruction Project User Programme5075100%

basedonInstrumentConstructionWorkingScheduleV3.4,15/9/2017

1MW

2MW

3MW

4MW

5MW

Page 16: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

16

PartnerDayBelgium

February2014

Neutronsarespecial

• charge neutral: deeply pene-trating ... except for some isotopes

• nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.

• spin S = 1/2: probing magnetism

• unstable n → p + e + νe with life time τ ~ 900s , I = I0 e- t/τ

• mass: n ~p; thermal energies result in non-relativistic velocities. E = 293 K = 25 meV, v = 2196 m/s , λ = 1.8 Å

Partner(Day(Belgium

February(2014

Neutrons(are(special

4

• charge neutral: deeply pene-trating ... except for some isotopes

• nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.

• spin S = 1/2: probing magnetism

• unstable n → p + e + νe with life time τ ~ 900s , I  =  I0  e- t/τ

• mass: n ~p; thermal energies result in non-relativistic velocities. E = 293 K = 25 meV, v = 2196 m/s , λ = 1.8 Å

!  Catalyzes the reduction of glucose to sorbitol, the first step in the alternative ‘polyol pathway’ of glucose metabolism

!  Highest resolution X-ray structure for a medium-sized protein (36kDa) !  Overall more than half (54%) the H-atoms were seen, while in the active-site 77%

of H-atoms were visible !  Some of the key H-atoms were not seen due to their mobility (high B-factors) hence

the protonation states of key active-site residues were unknown

Tertiary structure of hAR

Active-site region of hAR

Plot of %visibility of H-atoms in hAR vs B-factor of bonded atom

Blakeley et al

E. Ressouche - Ecole Neutrons et magnétisme – JDN 20 (18 - 22 mai 2012)

EXEMPLE : TPV FREE RADICAL • TPV : free radical made of C (green), N (blue) and H (yellow). Carries a spin !

Where is the spin ?

MAGNETISMSCIENTIFIC HIGHLIGHTS

Coexistence of long-ranged magnetic orderand superconductivity in the pnictidesuperconductor SmFeAsO1− xFx (x = 0, 0.15)

6000 barns, nearly 2.5 times that of cadmium) yields a 1/e thickness for SmFeAsO of about 80 mg/cm2, precluding the use of conventional sample holders.

We used a recently developed large-area single-crystal flat-plate sample holder [4] to place about 1.6 g of material in the neutron beam. The scattering measurements were carried out at a wavelength of 2.417 Å on the D20 thermal powder diffractometer at the ILL. For each sample, data sets were obtained at 1.6 K and 10.0 K with counting times of 10 hours (SmFeAsO) and 15 hours (SmFeAsO0.85F0.15 ) for each temperature. The purely nuclear patterns at 10 K (figure 1a) were fitted to establish scale factors, lattice parameters and the instrument profile function. These were then fixed while the difference patterns (1.6 K−10 K) were fitted to obtain the magnetic structure. All refinements of the neutron diffraction patterns employed the FullProf suite [5, 6].

The samarium moments were found to order antiferromagnetically along the c−axis in a G-mode which has a + − + − moment sequence. This structure corresponds to the Cm'm'a' group. Figure 2a shows a representation of the derived magnetic structure of SmFeAsO at 1.6 K. Fitting the section of the diffraction pattern shown in figure 1b yields a samarium moment of 0.60(3) µB for SmFeAsO at 1.6 K.

A similar analysis of the SmFeAsO0.85 F0.15 data shown in figure 1d yields a closely related magnetic structure (Shubnikov magnetic space group: P4/n'm'm') and a Sm moment of 0.53(3) µB.

The most significant aspect of the pattern shown in figure 1d is not that SmFeAsO and SmFeAsO0.85F0.15 adopt closely related magnetic structures, but rather, that the samarium moments are magnetically ordered in a superconducting sample (this sample exhibits a Tc of 53.5 K) and that the samarium moments are essentially the same in both compounds. This provides direct confirmation that antiferromagnetic order and superconductivity co-exist in the SmFeAsO/F system [7].

We will be extending this project to the GdFeAsO system which should be easier to work with as while gadolinium has a much higher absorption cross-section it also has a larger moment, making the magnetic signal much easier to see.

High-intensity two-axis diffractometer D20

[1][2][3]

[4][5][6][7]

M.D. Lumsden and A.D. Christianson, J. Phys. Condens. Matter 22 (2010) 203203L. Ding, C. He, J.K. Dong, T. Wu, R.H. Liu, X.H. Chen, and S.Y. Li, Phys. Rev. B 77 (2008) 180510(R)

A.J. Drew, F.L. Pratt, T. Lancaster, S.J. Blundell, P.J. Baker, R.H. Liu, G. Wu, X.H. Chen, I. Watanabe, V.K. Malik,et al., Phys. Rev. Lett. 101 (2008) 097010

D.H. Ryan and L.M.D. Cranswick, J. Appl. Cryst. 41 (2008) 198J. Rodríguez-Carvajal, Physica B 192 (1993) 55

T. Roisnel and J. Rodríguez-Carvajal, Mater. Sci. Forum 378-81 (2001) 118D.H. Ryan, J.M. Cadogan, C. Ritter, F. Canepa, A. Palenzona and M. Putti, Phys. Rev. B80 (2009) 220503(R)

REFERENCES

ILL ANNUAL REPORT 2010 017

Figure 2: (a) The samarium magnetic structure of SmFeAsO at 1.6 K.The layered nature of both the chemical and magnetic structuresis emphasised by showing two unit cells in the b direction. (b) A projection of the magnetic structure onto the basal plane shows the relationship between the magnetic structures of SmFeAsOand SmFeAsO0.85 F0.15 at 1.6 K. The black discs mark the samarium atoms on the z = 0.137 plane that have their moments pointing “up”,while the green discs denote samarium atoms on the z plane that have their moments pointing “down”. Four unit cells of the smaller (tetragonal, P4/n'm'm') form of SmFeAsO0.85 F0.15 each containing two samarium atoms (one each of black and green) are shown by the magenta lines, while the relationship to the larger (orthorhombic, Cm'm'a') cell of SmFeAsO that contains four samarium atoms is shown by the grey lines.Note: The orthorhombic basal lattice parameters differ by only0.7 % and cannot be distinguished here.

b

c

FeAs

Sm

a

Sm'(z=0.137)

Sm'(z=10.137)a

b

b

a

O

Saturday, April 26, 14

Partner(Day(Belgium

February(2014

Neutrons(are(special

4

• charge neutral: deeply pene-trating ... except for some isotopes

• nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.

• spin S = 1/2: probing magnetism

• unstable n → p + e + νe with life time τ ~ 900s , I  =  I0  e- t/τ

• mass: n ~p; thermal energies result in non-relativistic velocities. E = 293 K = 25 meV, v = 2196 m/s , λ = 1.8 Å

!  Catalyzes the reduction of glucose to sorbitol, the first step in the alternative ‘polyol pathway’ of glucose metabolism

!  Highest resolution X-ray structure for a medium-sized protein (36kDa) !  Overall more than half (54%) the H-atoms were seen, while in the active-site 77%

of H-atoms were visible !  Some of the key H-atoms were not seen due to their mobility (high B-factors) hence

the protonation states of key active-site residues were unknown

Tertiary structure of hAR

Active-site region of hAR

Plot of %visibility of H-atoms in hAR vs B-factor of bonded atom

Blakeley et al

E. Ressouche - Ecole Neutrons et magnétisme – JDN 20 (18 - 22 mai 2012)

EXEMPLE : TPV FREE RADICAL • TPV : free radical made of C (green), N (blue) and H (yellow). Carries a spin !

Where is the spin ?

MAGNETISMSCIENTIFIC HIGHLIGHTS

Coexistence of long-ranged magnetic orderand superconductivity in the pnictidesuperconductor SmFeAsO1− xFx (x = 0, 0.15)

6000 barns, nearly 2.5 times that of cadmium) yields a 1/e thickness for SmFeAsO of about 80 mg/cm2, precluding the use of conventional sample holders.

We used a recently developed large-area single-crystal flat-plate sample holder [4] to place about 1.6 g of material in the neutron beam. The scattering measurements were carried out at a wavelength of 2.417 Å on the D20 thermal powder diffractometer at the ILL. For each sample, data sets were obtained at 1.6 K and 10.0 K with counting times of 10 hours (SmFeAsO) and 15 hours (SmFeAsO0.85F0.15 ) for each temperature. The purely nuclear patterns at 10 K (figure 1a) were fitted to establish scale factors, lattice parameters and the instrument profile function. These were then fixed while the difference patterns (1.6 K−10 K) were fitted to obtain the magnetic structure. All refinements of the neutron diffraction patterns employed the FullProf suite [5, 6].

The samarium moments were found to order antiferromagnetically along the c−axis in a G-mode which has a + − + − moment sequence. This structure corresponds to the Cm'm'a' group. Figure 2a shows a representation of the derived magnetic structure of SmFeAsO at 1.6 K. Fitting the section of the diffraction pattern shown in figure 1b yields a samarium moment of 0.60(3) µB for SmFeAsO at 1.6 K.

A similar analysis of the SmFeAsO0.85 F0.15 data shown in figure 1d yields a closely related magnetic structure (Shubnikov magnetic space group: P4/n'm'm') and a Sm moment of 0.53(3) µB.

The most significant aspect of the pattern shown in figure 1d is not that SmFeAsO and SmFeAsO0.85F0.15 adopt closely related magnetic structures, but rather, that the samarium moments are magnetically ordered in a superconducting sample (this sample exhibits a Tc of 53.5 K) and that the samarium moments are essentially the same in both compounds. This provides direct confirmation that antiferromagnetic order and superconductivity co-exist in the SmFeAsO/F system [7].

We will be extending this project to the GdFeAsO system which should be easier to work with as while gadolinium has a much higher absorption cross-section it also has a larger moment, making the magnetic signal much easier to see.

High-intensity two-axis diffractometer D20

[1][2][3]

[4][5][6][7]

M.D. Lumsden and A.D. Christianson, J. Phys. Condens. Matter 22 (2010) 203203L. Ding, C. He, J.K. Dong, T. Wu, R.H. Liu, X.H. Chen, and S.Y. Li, Phys. Rev. B 77 (2008) 180510(R)

A.J. Drew, F.L. Pratt, T. Lancaster, S.J. Blundell, P.J. Baker, R.H. Liu, G. Wu, X.H. Chen, I. Watanabe, V.K. Malik,et al., Phys. Rev. Lett. 101 (2008) 097010

D.H. Ryan and L.M.D. Cranswick, J. Appl. Cryst. 41 (2008) 198J. Rodríguez-Carvajal, Physica B 192 (1993) 55

T. Roisnel and J. Rodríguez-Carvajal, Mater. Sci. Forum 378-81 (2001) 118D.H. Ryan, J.M. Cadogan, C. Ritter, F. Canepa, A. Palenzona and M. Putti, Phys. Rev. B80 (2009) 220503(R)

REFERENCES

ILL ANNUAL REPORT 2010 017

Figure 2: (a) The samarium magnetic structure of SmFeAsO at 1.6 K.The layered nature of both the chemical and magnetic structuresis emphasised by showing two unit cells in the b direction. (b) A projection of the magnetic structure onto the basal plane shows the relationship between the magnetic structures of SmFeAsOand SmFeAsO0.85 F0.15 at 1.6 K. The black discs mark the samarium atoms on the z = 0.137 plane that have their moments pointing “up”,while the green discs denote samarium atoms on the z plane that have their moments pointing “down”. Four unit cells of the smaller (tetragonal, P4/n'm'm') form of SmFeAsO0.85 F0.15 each containing two samarium atoms (one each of black and green) are shown by the magenta lines, while the relationship to the larger (orthorhombic, Cm'm'a') cell of SmFeAsO that contains four samarium atoms is shown by the grey lines.Note: The orthorhombic basal lattice parameters differ by only0.7 % and cannot be distinguished here.

b

c

FeAs

Sm

a

Sm'(z=0.137)

Sm'(z=10.137)a

b

b

a

O

Saturday, April 26, 14

Partner(Day(Belgium

February(2014

Neutrons(are(special

4

• charge neutral: deeply pene-trating ... except for some isotopes

• nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.

• spin S = 1/2: probing magnetism

• unstable n → p + e + νe with life time τ ~ 900s , I  =  I0  e- t/τ

• mass: n ~p; thermal energies result in non-relativistic velocities. E = 293 K = 25 meV, v = 2196 m/s , λ = 1.8 Å

!  Catalyzes the reduction of glucose to sorbitol, the first step in the alternative ‘polyol pathway’ of glucose metabolism

!  Highest resolution X-ray structure for a medium-sized protein (36kDa) !  Overall more than half (54%) the H-atoms were seen, while in the active-site 77%

of H-atoms were visible !  Some of the key H-atoms were not seen due to their mobility (high B-factors) hence

the protonation states of key active-site residues were unknown

Tertiary structure of hAR

Active-site region of hAR

Plot of %visibility of H-atoms in hAR vs B-factor of bonded atom

Blakeley et al

E. Ressouche - Ecole Neutrons et magnétisme – JDN 20 (18 - 22 mai 2012)

EXEMPLE : TPV FREE RADICAL • TPV : free radical made of C (green), N (blue) and H (yellow). Carries a spin !

Where is the spin ?

MAGNETISMSCIENTIFIC HIGHLIGHTS

Coexistence of long-ranged magnetic orderand superconductivity in the pnictidesuperconductor SmFeAsO1− xFx (x = 0, 0.15)

6000 barns, nearly 2.5 times that of cadmium) yields a 1/e thickness for SmFeAsO of about 80 mg/cm2, precluding the use of conventional sample holders.

We used a recently developed large-area single-crystal flat-plate sample holder [4] to place about 1.6 g of material in the neutron beam. The scattering measurements were carried out at a wavelength of 2.417 Å on the D20 thermal powder diffractometer at the ILL. For each sample, data sets were obtained at 1.6 K and 10.0 K with counting times of 10 hours (SmFeAsO) and 15 hours (SmFeAsO0.85F0.15 ) for each temperature. The purely nuclear patterns at 10 K (figure 1a) were fitted to establish scale factors, lattice parameters and the instrument profile function. These were then fixed while the difference patterns (1.6 K−10 K) were fitted to obtain the magnetic structure. All refinements of the neutron diffraction patterns employed the FullProf suite [5, 6].

The samarium moments were found to order antiferromagnetically along the c−axis in a G-mode which has a + − + − moment sequence. This structure corresponds to the Cm'm'a' group. Figure 2a shows a representation of the derived magnetic structure of SmFeAsO at 1.6 K. Fitting the section of the diffraction pattern shown in figure 1b yields a samarium moment of 0.60(3) µB for SmFeAsO at 1.6 K.

A similar analysis of the SmFeAsO0.85 F0.15 data shown in figure 1d yields a closely related magnetic structure (Shubnikov magnetic space group: P4/n'm'm') and a Sm moment of 0.53(3) µB.

The most significant aspect of the pattern shown in figure 1d is not that SmFeAsO and SmFeAsO0.85F0.15 adopt closely related magnetic structures, but rather, that the samarium moments are magnetically ordered in a superconducting sample (this sample exhibits a Tc of 53.5 K) and that the samarium moments are essentially the same in both compounds. This provides direct confirmation that antiferromagnetic order and superconductivity co-exist in the SmFeAsO/F system [7].

We will be extending this project to the GdFeAsO system which should be easier to work with as while gadolinium has a much higher absorption cross-section it also has a larger moment, making the magnetic signal much easier to see.

High-intensity two-axis diffractometer D20

[1][2][3]

[4][5][6][7]

M.D. Lumsden and A.D. Christianson, J. Phys. Condens. Matter 22 (2010) 203203L. Ding, C. He, J.K. Dong, T. Wu, R.H. Liu, X.H. Chen, and S.Y. Li, Phys. Rev. B 77 (2008) 180510(R)

A.J. Drew, F.L. Pratt, T. Lancaster, S.J. Blundell, P.J. Baker, R.H. Liu, G. Wu, X.H. Chen, I. Watanabe, V.K. Malik,et al., Phys. Rev. Lett. 101 (2008) 097010

D.H. Ryan and L.M.D. Cranswick, J. Appl. Cryst. 41 (2008) 198J. Rodríguez-Carvajal, Physica B 192 (1993) 55

T. Roisnel and J. Rodríguez-Carvajal, Mater. Sci. Forum 378-81 (2001) 118D.H. Ryan, J.M. Cadogan, C. Ritter, F. Canepa, A. Palenzona and M. Putti, Phys. Rev. B80 (2009) 220503(R)

REFERENCES

ILL ANNUAL REPORT 2010 017

Figure 2: (a) The samarium magnetic structure of SmFeAsO at 1.6 K.The layered nature of both the chemical and magnetic structuresis emphasised by showing two unit cells in the b direction. (b) A projection of the magnetic structure onto the basal plane shows the relationship between the magnetic structures of SmFeAsOand SmFeAsO0.85 F0.15 at 1.6 K. The black discs mark the samarium atoms on the z = 0.137 plane that have their moments pointing “up”,while the green discs denote samarium atoms on the z plane that have their moments pointing “down”. Four unit cells of the smaller (tetragonal, P4/n'm'm') form of SmFeAsO0.85 F0.15 each containing two samarium atoms (one each of black and green) are shown by the magenta lines, while the relationship to the larger (orthorhombic, Cm'm'a') cell of SmFeAsO that contains four samarium atoms is shown by the grey lines.Note: The orthorhombic basal lattice parameters differ by only0.7 % and cannot be distinguished here.

b

c

FeAs

Sm

a

Sm'(z=0.137)

Sm'(z=10.137)a

b

b

a

O

Saturday, April 26, 14

WHEREARETHEATOMS

ANDWHATDOTHEYDO?

Page 17: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

LengthandEnergyScales

Partner(Day(Belgium

February(2014

Length(and(Energy(Scales

5

4

Figure 2.1: Using neutrons and complementary techniques to explore di↵erent length and time scales. Thehorizontal axes indicate real and reciprocal length scales, while the vertical axes refer to time and energyscales. Scientific areas falling within di↵erent length and time scales are indicated along the edges.Theexperimentally accessible areas of the various neutron-based techniques available at ESS are shown aspolygons in strong colours. Those techniques that are sensitive to both time and length scales are rep-resented above the main horizontal axis; those that measure only length-scales below. In addition to theneutron-based techniques covered by ESS, the analogous areas for a selection of complementary experi-mental techniques are shown in grey. Areas labelled “Hot Neutrons” refer to neutron-based techniqueswhich will not be available at ESS.

dynamics in parallel, and in the purely structural methods found below the horizontal axis.

Techniques are often complementary rather than competitive when their temporal and spatial scalesoverlap, because spatial and temporal needs are not the sole determinants of usefulness. Di↵erent probesaccess di↵erent kinds of information, so the methods of Figure 2.1 are often used in combination, unleashingpowerful synergies. The particular strengths of neutrons include sensitivity to light elements such ashydrogen, the ability to distinguish between di↵erent elements, the non-destructiveness of the beam interms of sample integrity, the power to probe magnetic structure, and the capability to penetrate manymaterials, making possible the investigation of samples in a wide range of relevant sample environmentset-ups that would stop other forms of radiation. These strengths are discussed further in Section 2.2.A combination of di↵erent approaches and techniques is necessary to answer many scientific questions.Moreover, the continuously evolving landscape of available tools drives the continuing need to try andtest new combinations of experimental techniques. Multi-probe experiments that combine di↵erent probetechniques on the same site are becoming increasingly possible – for example, using both Raman andneutron scattering. There are many examples of combined studies.

Studies of polymer relaxation processes that exploit neutron spin-echo methods, light scattering,

Saturday, April 26, 14

Page 18: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

France

GermanyUnited

Kingdom

IT

CH

ES

PL+CZ+A

T

SE+DK

NL+BE other

UserCommunitybasedonpublications

18

North

America

Australia

Asia

Europe

Russia

EuropeanCommunity

5000- 6000researchers

2000publicationsperyear

data:ESFRI,KFN

Page 19: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Facility-basedSurveyonNeutronUsers

1

NeutronUsersinEurope:Facility-BasedInsightsandScientificTrends

11

Takingintoconsiderationthesizeoftheiruserbase,aswellasthenumberofinstrumentsandmethodsavailable,theneutronsourcesparticipatingintheBrightnESSsurveyweredividedintothreeCategories:

• CategoryA:Big-sizedfacilities:NeutronsourcesinthisCategoryhavealargeuserbasecomprisingof450–1600uniqueusers.PrincipalinvestigatorswhocarryoutresearchatthesefacilitiesareaffiliatedwithinstitutesbasedinavarietyofcountriesinandoutsideEurope.Thefacilitieshavebetween 20-37 instruments deployable over 8-10 different experimental methods. NeutronsourcesinCategoryAincludeISIS,ILL,MLZ-FRMII,LLB,andSINQ.

• CategoryB:Medium-sizedfacilities:NeutronsourcesinthisCategoryhaveamedium-sizeduserbasecomprisingof50–350uniqueusers.Principalinvestigatorswhocarryoutresearchatthesefacilitiesareaffiliatedwithinstitutesbasedinavarietyofcountries inandoutsideEurope.Thefacilitieshavebetween8-15 instrumentsdeployableover7-9differentexperimentalmethods.NeutronsourcesinCategoryBincludeBERII,BNC,andNPL.

• Category C: Small-sized facilities: Neutron sources in this Category have a small user basecomprisingofupto50uniqueusers.ThegroupofprincipalinvestigatorswhocarryoutresearchatthesefacilitiesislessinternationalthanthatoffacilitiesinCategoryAandB.TheinstitutestheyareaffiliatedwitharebasedinalimitednumberofmostlyEuropeancountries.Thefacilitieshavebetween1-9instrumentsdeployableover1-5differentexperimentalmethods.NeutronsourcesinCategoryCincludeTRIGAJGU,JEEPII,TRIGAJSI,RPI,ATI,MARIA,andRID.

Facility Numberof

uniqueusers

Numberofinstruments*

Numberofexperiments/year

Power

Thermalneutronflux

at1,5Å(neutron/cm2s)

Operationaldays/year

Big-Sized

Facilities

ISIS 1580 31/31 850 200kW 4.5x1015(peak) 150

ILL 1433 32/37 848 58.3MW 1.5x1015 200

MLZFRMII 965 26/26 832 20MW 8x1014 240

LLB 637 20/23 403 14MW 3x1014 120

SINQ 477 13/20 485 1MW 4.1x1014 195

Medium-Sized

Facilities

BERII 302 13/17*** 201 10MW 2x1014 200

BNC 145 15/15 127 10MW 2.1x1014 120

NPL 54 8/8 30 10MW 1x1014 189

Small-Sized

Facilities

TRIGAJGU 44 4/4 9 100kW 1x1012 200

JEEPII 43 5/6 65 2MW 3x1013 200

TRIGAJSI 41 8/8 ** 250kW 5x1012 150

RPI 28 0/1 10 1MW 1x1013 150

ATI 15 5/5 6 250kW 5x1012 200

MARIA 13 4/6 46 30MW 1x1014 180

RID**** 0 9/9 ** 2MW 3x1012 200

*Numberofinstrumentsavailabletoexternalusers/totalnumberofinstruments.**Facilitycarriesoutexperimentsusingnon-scatteringmethodsonly.***From2016onwards:10instrumentsinuserservice.****RIDisnotauserfacilityanddoesnotrunanyuserprogram.

Page 20: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Facility-basedSurveyonNeutronUsers

19

NumberofPrincipalInvestigatorsPerCountryFacilities participating in the surveywere asked to provide the number of principal investigators (firstproposer) fromcountries inEuropewhohave submittedproposalsorperformedexperimentsat theirrespective facility, and also to indicate how many principal investigators come from non-Europeancountries.Thenationalityofprincipal investigators isdeterminedbythehomecountryof the institutetheyareaffiliatedwith.TheBrightnESS surveydidnot inquireaboutthenationalityofallusersduetotechnicalliminations.AccordingtodatacollectedintheBrightnESSsurvey,thetotalnumberofPIswhocarriedoutresearchatEuropeanneutronsourcesinasinglecalendaryearis3559.Thisnumberisapproximately1,6timessmallerthanthenumberofusers(5777).Outofthese,3152conductedresearchatfacilitiesinCategoryA.Thisrepresents89%ofallactivePIs inEurope.Therewere332PIsat facilities inCategoryB,and75PIsatfacilitiesinCategoryC.ThedistributionofPIsacrossthethreedifferentCategoriesofneutronsourcesisdisplayedinfigures2.13and2.14.Europeancountries,whicharenotdisplayedinthesetwofigures,haveless than 10 PIs and includeBelgium, Slovakia,Greece, Finland, Ireland, Estonia, Luxembourg, Turkey,Croatia,Latvia,MoldovaandSerbia.TherespectivenumberofPIsforeachofthesecountriesispresentedinfigure2.12.ThenationaldistributionofPIsatneutronsourcesinCategoryAiscomparabletotheoveralldistributionofPIsattheEuropeanlevel.ThehighestnumberofPIsatfacilitiesinCategoryAcomesfromGermany(939),theUnitedKingdom(688),andFrance(510).ThesethreecountrieshavethelargestnumberofPIsinEurope.ThefacilitiesinCategoryAhostasignificantnumber(350)ofnon-EuropeanPIs.Thisrepresents90%ofallnon-EuropeanPIswhoconducttheirresearchatneutronsourcesinEurope.ThenationaldistributionofPIsatneutronsourcesinCategoryBisalsobroad.ThehighestnumberofPIsin this group comes fromGermany (101), theCzechRepublic (40), andRussia (28).Mid-sizedneutronsourcesalsohost36PIsfromnon-Europeancountries.CategoryChasalessinternationaldistributionofPIs.ThehighestnumberofPIsinthisgroupcomesfromGermany(15),Norway(12),Poland(10),andPortugal(10).Fig2.12Europe:Totalnumberofprincipalinvestigatorspercountry

1055

705

524

179118 91 74 60 58 53 44 30 25 23 21 19 17 14 10 9 9 6 5 5 4 4 3 2 1 1 1

389

0

200

400

600

800

1000

1200

Germ

any

Unite

dKingdo

mFrance

Switzerland

Italy

Swed

enSpain

CzechRe

public

Denm

ark

Russia

Poland

Hungary

Portugal

Nethe

rland

sAu

stria

Norway

Romania

Bulgaria

Sloven

iaBe

lgium

Slovakia

Greece

Finland

Ireland

Estonia

Luxembo

urg

Turkey

Croatia

Latvia

Moldo

vaSerbia

Non

-Europ

ean

Total:3559

1

NeutronUsersinEurope:Facility-BasedInsightsandScientificTrends

Page 21: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Facility-basedSurveyonNeutronUsers

21

1

NeutronUsersinEurope:Facility-BasedInsightsandScientificTrends

32

ScienceFieldsandExperimentsFigure 3.16 showswhat percentage of experiments is dedicated to each science field.The graphwascreated by correlating data from figure 3.15 (science fields per method expressed as percentage ofexperiments) with figure 3.5 (number of experiments carried out per year with each method). It isimportanttonotethatparticlephysicsisincludedinthephysicscategoryinfigure3.16.Datainthepiechartbelowconfirmsignificantdominanceofexperimentsrelatedtophysics(38%)andmaterials(19%),whicharecloselyfollowedbychemistry(15%).Asimilarpercentageofexperimentsisdedicatedtosoftcondensedmatter (9%), life science (8%), andearthandgeo sciencesandheritage conservation (7%).Engineeringexperimentsrepresent3%ofallexperimentscarriedoutatneutronsourcesinEurope.Fig3.16Europe:Sciencefieldsexpressedaspercentageofexperiments

UseofMethodsFigure 3.17 shows percentual distribution of beam days across methods and is based on data fromfigure3.5.(22526beamdaysintotal).Thenumberofbeamdaysusedfornon-scatteringmethods(1872)isnotincluded.Thedistributionshowsthatsmallangleneutronscatteringandpowder/liquiddiffractioneach occupy 16% of beam days. Looking at instrument classes, the chart shows that diffraction(powder/liquiddiffraction,singlecrystaldiffractionandengineeringdiffraction)usesapproximatelyonethirdofbeamdays(32%).Large-scalestructure(smallangleneutronscatteringandreflectometry)followscloselybehindwith28%.Spectroscopy(high-resolutionspectroscopy,cold/termaltripleaxisspectroscopy,cold/thermaltime-of-flightspectroscopy,andvibrationalspectroscopy)uses24%ofbeamdays.Imaginguses8%andnuclearandparticlephysicsuses7%ofbeamdaysatneutronsourcesinEurope.Fig3.17Europe:Useofmethodsexpressedaspercentageofbeamdays

38%

19%

15%

9%

8%

3%7%

1%

PhysicsMaterialsChemistrySoftcondensedmatterLifescienceEngineeringEarthandgeosciences,heritageconservationOther

16%

12%

16%

10%6%

8%

6%

11%

7%

1% 7% SmallAngleNeutronScatteringReflectometryPowder/LiquidDiffractionSingleCrystalDiffractionEngineeringDiffractionImagingHigh-ResolutionSpectroscopyCold/ThermalTripleAxisSpectroscopyCold/ThermalTime-of-FlightSpectroscopyVibrationalSpectroscopyNuclearandParticlePhysics

32

ScienceFieldsandExperimentsFigure 3.16 showswhat percentage of experiments is dedicated to each science field.The graphwascreated by correlating data from figure 3.15 (science fields per method expressed as percentage ofexperiments) with figure 3.5 (number of experiments carried out per year with each method). It isimportanttonotethatparticlephysicsisincludedinthephysicscategoryinfigure3.16.Datainthepiechartbelowconfirmsignificantdominanceofexperimentsrelatedtophysics(38%)andmaterials(19%),whicharecloselyfollowedbychemistry(15%).Asimilarpercentageofexperimentsisdedicatedtosoftcondensedmatter (9%), life science (8%), andearthandgeo sciencesandheritage conservation (7%).Engineeringexperimentsrepresent3%ofallexperimentscarriedoutatneutronsourcesinEurope.Fig3.16Europe:Sciencefieldsexpressedaspercentageofexperiments

UseofMethodsFigure 3.17 shows percentual distribution of beam days across methods and is based on data fromfigure3.5.(22526beamdaysintotal).Thenumberofbeamdaysusedfornon-scatteringmethods(1872)isnotincluded.Thedistributionshowsthatsmallangleneutronscatteringandpowder/liquiddiffractioneach occupy 16% of beam days. Looking at instrument classes, the chart shows that diffraction(powder/liquiddiffraction,singlecrystaldiffractionandengineeringdiffraction)usesapproximatelyonethirdofbeamdays(32%).Large-scalestructure(smallangleneutronscatteringandreflectometry)followscloselybehindwith28%.Spectroscopy(high-resolutionspectroscopy,cold/termaltripleaxisspectroscopy,cold/thermaltime-of-flightspectroscopy,andvibrationalspectroscopy)uses24%ofbeamdays.Imaginguses8%andnuclearandparticlephysicsuses7%ofbeamdaysatneutronsourcesinEurope.Fig3.17Europe:Useofmethodsexpressedaspercentageofbeamdays

38%

19%

15%

9%

8%

3%7%

1%

PhysicsMaterialsChemistrySoftcondensedmatterLifescienceEngineeringEarthandgeosciences,heritageconservationOther

16%

12%

16%

10%6%

8%

6%

11%

7%

1% 7% SmallAngleNeutronScatteringReflectometryPowder/LiquidDiffractionSingleCrystalDiffractionEngineeringDiffractionImagingHigh-ResolutionSpectroscopyCold/ThermalTripleAxisSpectroscopyCold/ThermalTime-of-FlightSpectroscopyVibrationalSpectroscopyNuclearandParticlePhysics

Page 22: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Neutronusepersciencetopic

22

structure+

chemistry

materials

magnetism

Liquids+glasses

softmatter

LifeScience

nuclear

physics

applied+

instrumental

theory

data:ILL

Page 23: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Facility-basedSurveyonNeutronUsers

23

1

NeutronUsersinEurope:Facility-BasedInsightsandScientificTrends

32

ScienceFieldsandExperimentsFigure 3.16 showswhat percentage of experiments is dedicated to each science field.The graphwascreated by correlating data from figure 3.15 (science fields per method expressed as percentage ofexperiments) with figure 3.5 (number of experiments carried out per year with each method). It isimportanttonotethatparticlephysicsisincludedinthephysicscategoryinfigure3.16.Datainthepiechartbelowconfirmsignificantdominanceofexperimentsrelatedtophysics(38%)andmaterials(19%),whicharecloselyfollowedbychemistry(15%).Asimilarpercentageofexperimentsisdedicatedtosoftcondensedmatter (9%), life science (8%), andearthandgeo sciencesandheritage conservation (7%).Engineeringexperimentsrepresent3%ofallexperimentscarriedoutatneutronsourcesinEurope.Fig3.16Europe:Sciencefieldsexpressedaspercentageofexperiments

UseofMethodsFigure 3.17 shows percentual distribution of beam days across methods and is based on data fromfigure3.5.(22526beamdaysintotal).Thenumberofbeamdaysusedfornon-scatteringmethods(1872)isnotincluded.Thedistributionshowsthatsmallangleneutronscatteringandpowder/liquiddiffractioneach occupy 16% of beam days. Looking at instrument classes, the chart shows that diffraction(powder/liquiddiffraction,singlecrystaldiffractionandengineeringdiffraction)usesapproximatelyonethirdofbeamdays(32%).Large-scalestructure(smallangleneutronscatteringandreflectometry)followscloselybehindwith28%.Spectroscopy(high-resolutionspectroscopy,cold/termaltripleaxisspectroscopy,cold/thermaltime-of-flightspectroscopy,andvibrationalspectroscopy)uses24%ofbeamdays.Imaginguses8%andnuclearandparticlephysicsuses7%ofbeamdaysatneutronsourcesinEurope.Fig3.17Europe:Useofmethodsexpressedaspercentageofbeamdays

38%

19%

15%

9%

8%

3%7%

1%

PhysicsMaterialsChemistrySoftcondensedmatterLifescienceEngineeringEarthandgeosciences,heritageconservationOther

16%

12%

16%

10%6%

8%

6%

11%

7%

1% 7% SmallAngleNeutronScatteringReflectometryPowder/LiquidDiffractionSingleCrystalDiffractionEngineeringDiffractionImagingHigh-ResolutionSpectroscopyCold/ThermalTripleAxisSpectroscopyCold/ThermalTime-of-FlightSpectroscopyVibrationalSpectroscopyNuclearandParticlePhysics

32

ScienceFieldsandExperimentsFigure 3.16 showswhat percentage of experiments is dedicated to each science field.The graphwascreated by correlating data from figure 3.15 (science fields per method expressed as percentage ofexperiments) with figure 3.5 (number of experiments carried out per year with each method). It isimportanttonotethatparticlephysicsisincludedinthephysicscategoryinfigure3.16.Datainthepiechartbelowconfirmsignificantdominanceofexperimentsrelatedtophysics(38%)andmaterials(19%),whicharecloselyfollowedbychemistry(15%).Asimilarpercentageofexperimentsisdedicatedtosoftcondensedmatter (9%), life science (8%), andearthandgeo sciencesandheritage conservation (7%).Engineeringexperimentsrepresent3%ofallexperimentscarriedoutatneutronsourcesinEurope.Fig3.16Europe:Sciencefieldsexpressedaspercentageofexperiments

UseofMethodsFigure 3.17 shows percentual distribution of beam days across methods and is based on data fromfigure3.5.(22526beamdaysintotal).Thenumberofbeamdaysusedfornon-scatteringmethods(1872)isnotincluded.Thedistributionshowsthatsmallangleneutronscatteringandpowder/liquiddiffractioneach occupy 16% of beam days. Looking at instrument classes, the chart shows that diffraction(powder/liquiddiffraction,singlecrystaldiffractionandengineeringdiffraction)usesapproximatelyonethirdofbeamdays(32%).Large-scalestructure(smallangleneutronscatteringandreflectometry)followscloselybehindwith28%.Spectroscopy(high-resolutionspectroscopy,cold/termaltripleaxisspectroscopy,cold/thermaltime-of-flightspectroscopy,andvibrationalspectroscopy)uses24%ofbeamdays.Imaginguses8%andnuclearandparticlephysicsuses7%ofbeamdaysatneutronsourcesinEurope.Fig3.17Europe:Useofmethodsexpressedaspercentageofbeamdays

38%

19%

15%

9%

8%

3%7%

1%

PhysicsMaterialsChemistrySoftcondensedmatterLifescienceEngineeringEarthandgeosciences,heritageconservationOther

16%

12%

16%

10%6%

8%

6%

11%

7%

1% 7% SmallAngleNeutronScatteringReflectometryPowder/LiquidDiffractionSingleCrystalDiffractionEngineeringDiffractionImagingHigh-ResolutionSpectroscopyCold/ThermalTripleAxisSpectroscopyCold/ThermalTime-of-FlightSpectroscopyVibrationalSpectroscopyNuclearandParticlePhysics

Page 24: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Neutronscience:Fundamentalscience

withapplications

Page 25: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ERICstatutesandaccesspolicy

2510/24/17

Datapolicyinplace– nowworkingonaccesspolicy

Page 26: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

Earlyscienceandstartingtheuserprogram

2020Firstneutrons

2021Instrumenthotcommissioning:

Instrumentteamstodemonstratetheprowessofinstrumentsby

performingearlyexperiments.

1. Criticalperformanceverification.

2. Demonstratescientificperformance.

2023UserProgramopens:

• reliabilityiskeytodeliverscience.

• Theentireorganizationneedtofocusonthis.

26

Page 27: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

UserProgrammeandSampleManagement

• AverageExperimentDuration:3 days

• Users:~60non-local,~30local,~30longterm

• UserOfficeinterfaceswithESHonusertraining,

dosimetry,accesstosupervisedareas.

• Travel/accommodationreimbursementupto2

non-localusersperexperiment;duration+1day.

27User Programme ArnoHiess,November2016ESSOperationsCost Review10/24/17

ReferencefacilityILL ESS

guesthouse 30€ 70€

lunch/dinner 15€ 20€

travel(split overduration+1d) 25€(150€over6days) 60€(240€over4days)

non-localuserson experiment 1.5x 1.8x

TOTALperday 100€/day 270€/day

0

2000

4000

6000

8000

10000Non-local

userdays

Page 28: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ScientificCoordination&UserOffice–

Scope,RequirementsandFunction

RequirementsandFunctions:

• Enableuseraccessbasedonscientificmeritandothersincl.industrialaccess• Ensurecommunityinteractionand‘industryasuser’support• Providetrainingactivitiesandcollaborativeindustryactions.• Internalandcollaborativescientificactivities;supportyoungresearchers

Scope,FeaturesandQualityObjectives:

• Userprogramincl.proposals,feasibility,scheduling,uservisits,reporting• Schedulingminimizinglosses;highavailability• Usermeetings,sciencesymposia,trainingactivities• Organizingaccessforandoutreachtoindustry;industryspecificaccesswithotherhubs• ScienceFocusTeams:scientificseminarsandevents;PhDprogram

ScopeExclusions,InterfacesandResponsibilities:

• SCUOsoftwaremaintenance [DMSC]• Externalrelationsincl.ILOnetwork,legalsupport,siteaccess [ADMIN]• Usersafetytraining [ESH]• Individualandcollaborativescientificprojects [NID]

28

Page 29: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ScientificCoordinationandUserOffice–

Labor,Resources,Costs,Comparison

CostandResources: 2737 €

1FTEscientist,2FTEassistants useroffice2FTEscientists,1FTEassistant industryaccess,communityinteraction,SFTs,PhDprogram

incl.trainingactivities,collaborativeindustryactions.FinancialcompensationforscientistsdoingSFTcoordination;synergiesw.MAXIVincluded.Userreimbursement(270€perdayforaverageduration+1day)fortravelandaccommodation.

Benchmarking,Strategy,Experience:

ILL: collegesecretary(SFTcoordination)byinstrumentscientistsusingbonussystem.MAXIV: wellintegratedapproachbetween‘industryasuser’team,userofficeandcomm.

2910/24/17

ESS ILL ESRF ISIS SNS/HFIR

6 FTESc.Coord.

andUser Office

4.5 FTE

UserOffice

4FTE

UserOffice

7FTE

UserService

WBS Personnel Operationsk€/y Labork€/y MinorCptl k€/y TotalCostk€/y

20.4.2.2 3FTEscientists

3FTEassistants

0380scuo ops

1267usr remb

0550PhDprg

540 0 2737

Page 30: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ScientificCoordination- Fosteringascientific

cultureatESSasaplatformforexcellence

ScienceFocusTeams - ‘Feelathome’with

• Strengthenscientificexchangeviaseminarsandscienceday.

• Ensurescientificstudentsupervisionandtheir(financial)support.• Adviseonoutreachactivitiesandscientificpriorities.

• Prioritizeconferencecoverageandsponsoring.

• Support(emerging)communitiesandattract(additional)scientificcapabilities.

o LifeScienceandSoftCondensedMatterResearch Zoëo ChemistryofMaterials,MagneticandElectronicPhenomena Alexo EngineeringMaterials,Geosciences,Archeology,Heritage

ConservationandFastNeutronApplications Robino NuclearandParticlePhysics Valentina

ScientificOutreach

• SFTseminarsatESSandScienceDay

• ScienceSymposiaandConferenceSupport

• Generalpartneroutreachandindustry-relatedoutreach30

Page 31: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

ESS,MAXIVandScienceVillageScandinavia

31

MAXIV

Worldleadingin

brilliance

Nationallab,hosted

byLundUniversity.14

beamlines.2016.

ScienceVillage

Scandinavia,SVS

Ownedbythe

RegionofSkåne,

theCityofLund

andLund

University.18ha.

2019.

31

Ongoingcollaboration

Userofficesoftware

Datamanagement

Deuteration /Xtalisation

Heliummanagement

Technology

Science…

Page 32: Enabling Science using Neutrons at the European Spallation … · 2017. 11. 1. · NMX MIRACLES BEER C-SPEC T-REX MAGIC BIFROST HEIMDAL FREIA SKADI VESPA ESTIA Hall 1 D07 1 ×Life

• ESSwillprovideworldleadingopportunitiesforresearch

usingneutrons

• Useroperationwith8instrumentsisplannedfor2023

• VicinitytoMAXIVandcreationofSVSprovidesunique

opportunitiesforcollaboration

• StrongEuropeanScientificCommunityismobilizedand....

• …wearebuildingESStogethernowtomeetourneeds.

Conclusions