enceladus mission using titan-aga

17
Friday, June 15, 2018 Enceladus Probe Mission Design Using Titan Aerogravity-Assist 15 th International Planetary Probe Workshop, June 11–15, 2018, Boulder, Colorado Ye Lu | Ph.D. Candidate | [email protected] Sarag Saikia | [email protected] Purdue University, School of Aeronautics and Astronautics West Lafayette, IN 47907

Upload: others

Post on 13-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Enceladus Mission using Titan-AGA

Friday, June 15, 2018

Enceladus Probe Mission Design Using Titan Aerogravity-Assist

15th International Planetary Probe Workshop, June 11–15, 2018, Boulder, Colorado

Ye Lu | Ph.D. Candidate | [email protected] Sarag Saikia | [email protected]

Purdue University, School of Aeronautics and AstronauticsWest Lafayette, IN 47907

Page 2: Enceladus Mission using Titan-AGA

Motivation

1

• Larger launch vehicle (SLS, Falcon Heavy, BFR)– More delivered mass– Shorter time of flight

• Aerocapture feasibility study– Requires different sets of interplanetary trajectories– At Titan, L/D = 0.3 requires and enables arrival velocity of 5 km/s

• Expand mission envelope– Explore the benefit of aeroassist during the proposal phase

Higher arrival velocity

Propulsive orbit insertion

Aerocapture/Aerogravity-assist

Page 3: Enceladus Mission using Titan-AGA

Why Enceladus?

2

• Life?

• Enceladus Mission studies

• Using Titan Aerogravity-Assist for Enceladus Orbit/Lander

Enceladus Life Finder (ELF)

Explorer of Enceladus and Titan (E2T)

Life Investigation For Enceladus (LIFE)

Journey to Enceladus and Titan (JET)

Page 4: Enceladus Mission using Titan-AGA

What is Titan Aerogravity-Assist (AGA)?

3

TitanRT = 1,221,870 kmVT = 5.58 km/sP = 16 days

V∞, Saturn

EnceladusRE = 238,000 kmVE = 12.63 km/sP = 33 hours

Page 5: Enceladus Mission using Titan-AGA

• Direct Transfer to Enceladus after Titan AGA• Moon tours at Tethys, Dione, and Rhea

Transfer Orbit to Enceladus

4

Moon of Saturn Tethys Dione Rhea Titan

Distance from Saturn, in Saturn radii

4.89 6.26 8.74 20.27

ΔV capture at Enceladus 0.65 km/s 1.35 km/s 2.19 km/s 3.71 km/s

Page 6: Enceladus Mission using Titan-AGA

Titan AGA

5

• Assumptions:– Low-L/D lifting vehicle– Circular orbit and planar motion

• Trajectory constraints– Transfer orbit to Enceladus limits S/C velocity after AGA– Atmospheric Pass

• δ < Maximum aerodynamic turn angle• V∞,OUT < V∞,IN

– Arrival at Saturn and Titan– Heat rate, heat load, and deceleration

• Constraints on interplanetary arrival trajectory

Page 7: Enceladus Mission using Titan-AGA

Transfer Orbit Restriction

6

Family of feasible VOUT,SC

Family of feasible target V∞,OUT

VT = 5.58 km/s

Saturn Capture with radius

within Tethys

Family of feasible VOUT,SC

Family of feasible target

V∞,OUT

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 8: Enceladus Mission using Titan-AGA

Titan AGA Design Space: V∞,IN

7

Target V∞,OUT

VT = 5.58 km/s

Max aerodynamic turn angle

Feasible V∞,IN Space

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 9: Enceladus Mission using Titan-AGA

Titan AGA Design Space: VIN,SC

8

VT = 5.58 km/s

Feasible V∞,IN Space

Feasible VIN,SC Space

Min VIN,SC = 7.9 km/s

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

With V∞=0 at Saturn, VIN,SC =7.9 km/s

Page 10: Enceladus Mission using Titan-AGA

Titan AGA Design Space: VIN,SC

9

Feasible VIN,SC Space

Minimum orbital flight-path angle

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 11: Enceladus Mission using Titan-AGA

Titan Arrival V∞, km/sOrbital flight-path angle at Titan encounter, deg

Arrival at Titan

10

• Minimum orbital flight-path angle– Assuming 50 deg

• At Saturn Arrival V∞ = 10 km/s– Titan Arrival V∞ is: 10 – 13 km/s

Infeasible due to orbital flight path angle constraints

Page 12: Enceladus Mission using Titan-AGA

Atmospheric Corridor Width

11

• Higher V∞ or higher L/D– higher atmospheric corridor width

• Titan Aerocapture study showed– Required corridor width of 2.5 deg

Feasible Region

Page 13: Enceladus Mission using Titan-AGA

Peak Heat Rate

12

• Heat rate limit– PICA: 1400 W/cm2

– HEEET: 7000 W /cm2 (Tested)

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 14: Enceladus Mission using Titan-AGA

Total Heat Load

13

• Stardust re-entry– Total heat load: 36 kJ/cm2

– TPS mass fraction: 22%

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 15: Enceladus Mission using Titan-AGA

Peak Deceleration

14

• Huygens peak deceleration– ~12 Earth g’s

• Trajectory constraints– Transfer orbit to Enceladus– Atmospheric Pass

• Aerodynamic turn angle• V∞,IN > V∞,OUT

– Arrival at Saturn and Titan– Heat rate– Heat load– Deceleration

Page 16: Enceladus Mission using Titan-AGA

Summary

15

• Titan AGA can be a viable option and low-L/D vehicle is sufficient

• Heating and deceleration load is within the current technology capability

• Developed a methodology for Enceladus probe missions design using Titan AGA

Page 17: Enceladus Mission using Titan-AGA

Thank you!