ene 428 microwave engineering

32
ENE428 ENE 428 Microwave Engineering Lecture 1 Uniform plane waves

Upload: maite-hamilton

Post on 31-Dec-2015

56 views

Category:

Documents


1 download

DESCRIPTION

ENE 428 Microwave Engineering. Lecture 1 Uniform plane waves. Syllabus. Asst. Prof. Dr. Rardchawadee Silapunt, [email protected] Lecture: 9:30pm-12:20pm Tuesday, CB41004 12:30pm-3:20pm Wednesday, CB41002 Office hours : By appointment - PowerPoint PPT Presentation

TRANSCRIPT

ENE428

ENE 428Microwave

Engineering

Lecture 1 Uniform plane waves

ENE428

Syllabus

•Asst. Prof. Dr. Rardchawadee Silapunt, [email protected]•Lecture: 9:30pm-12:20pm Tuesday, CB41004

12:30pm-3:20pm Wednesday, CB41002 •Office hours : By appointment•Textbook: Applied Electromagnetics by Stuart M. Wentworth (Wiley, 2007)

ENE428

Homework 20% Midterm exam 40% Final exam 40%

Grading

Vision Providing opportunities for intellectual growth in the context of an engineering discipline for the attainment of professional competence, and for the development of a sense of the social context of technology.

ENE428

Course overview

• Maxwell’s equations and boundary conditions for electromagnetic fields

• Uniform plane wave propagation• Waveguides• Antennas• Microwave communication systems

ENE428

Introduction

• From Maxwell’s equations, if the electric field is changing with time, then the magnetic field varies spatially in a direction normal to its

orientation direction

• A uniform plane wave, both electric and magnetic fields lie in the transverse plane, the plane whose normal is the direction of propagation

• Both fields are of constant magnitude in the transverse plane, such a wave is sometimes called a transverse electromagnetic (TEM) wave.

BBBBBBBBBBBBBBEBBBBBBBBBBBBBBH

http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=52

ENE428

Maxwell’s equations

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBB

v

DH J

t

BE

t

D

B

(1)

(2)

(3)

(4)

ENE428

Maxwell’s equations in free space

= 0, r = 1, r = 1

0

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBB

EH

t

HE

t

Ampère’s law

Faraday’s law

ENE428

General wave equations

• Consider medium free of charge where• For linear, isotropic, homogeneous, and

time-invariant medium,

(1)

(2)

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB EH E

t

BBBBBBBBBBBBBBBBBBBBBBBBBBBB HE

t

ENE428

General wave equations

Take curl of (2), we yield

From

then

For charge free medium

( )

BBBBBBBBBBBBBBBBBBBBBBBBBBBB HE

t

2

2

( )

BBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBE

E E EtEt t t

2 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

A A A

22

2

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

E EE E

t t

0 BBBBBBBBBBBBBBE

ENE428

Helmholtz wave equation

22

2

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB E EE

t t

22

2

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB H HH

t t

For electric field

For magnetic field

ENE428

Time-harmonic wave equations

• Transformation from time to frequency domain

Therefore

j

t

2 ( ) BBBBBBBBBBBBBBBBBBBBBBBBBBBBs sE j j E

2 ( ) 0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBs sE j j E

2 2 0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBs sE E

ENE428

Time-harmonic wave equations

or

where

This term is called propagation constant or we can write

= +j

where = attenuation constant (Np/m) = phase constant (rad/m)

2 2 0 BBBBBBBBBBBBBBBBBBBBBBBBBBBBs sH H

( ) j j

ENE428

Solutions of Helmholtz equations

• Assuming the electric field is in x-direction and the wave is propagating in z- direction

• The instantaneous form of the solutions

• Consider only the forward-propagating wave, we have

• Use Maxwell’s equation, we get

0 0cos( ) cos( )

BBBBBBBBBBBBBBz z

x xE E e t z a E e t z a

0 cos( )

BBBBBBBBBBBBBBz

xE E e t z a

0 cos( )

BBBBBBBBBBBBBBz

yH H e t z a

ENE428

Solutions of Helmholtz equations in phasor form

• Showing the forward-propagating fields without time-harmonic terms.

• Conversion between instantaneous and phasor form

Instantaneous field = Re(ejtphasor field)

0

BBBBBBBBBBBBBB

z j zs xE E e e a

0

BBBBBBBBBBBBBB

z j zs yH H e e a

ENE428

Intrinsic impedance

• For any medium,

• For free space

x

y

E jH j

0 0

0 0

120 x

y

E EH H

ENE428

Propagating fields relation

1

BBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBs s

s s

H a E

E a H

where represents a direction of propagationa

ENE428

Propagation in lossless-charge free media

• Attenuation constant = 0, conductivity = 0

• Propagation constant

• Propagation velocity

– for free space up = 3108 m/s (speed of light)

– for non-magnetic lossless dielectric (r = 1),

1

pu

p

r

cu

ENE428

Propagation in lossless-charge free media

• intrinsic impedance

• wavelength

2

ENE428

Ex1 A 9.375 GHz uniform plane wave is propagating in polyethelene (r = 2.26). If the amplitude of the electric field intensity is 500 V/m and the material is assumed to be lossless, finda) phase constant

b) wavelength in the polyethelene

ENE428

c) propagation velocity

d) Intrinsic impedance

e) Amplitude of the magnetic field intensity

ENE428

Propagation in dielectrics• Cause

– finite conductivity– polarization loss ( = ’-j” )

• Assume homogeneous and isotropic medium

' "( ) BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBH E j j E

" '[( ) ] BBBBBBBBBBBBBBBBBBBBBBBBBBBBH j E

ENE428

Propagation in dielectrics

" effDefine

From2 ( ) j j

and2 2( ) j

ENE428

Propagation in dielectrics

We can derive2

( 1 1)2

2

( 1 1)2

and 1

.1 ( )

j

ENE428

Loss tangent

• A standard measure of lossiness, used to classify a material as a good dielectric or a good conductor

"

' 'tan

eff

ENE428

Low loss material or a good dielectric (tan « 1)

• If or < 0.1 , consider the material

‘low loss’ , then

1

2

(1 ).2

jand

ENE428

Low loss material or a good dielectric (tan « 1)

• propagation velocity

• wavelength

1

pu

2 1

f

ENE428

High loss material or a good conductor (tan » 1)

• In this case or > 10, we can

approximate

1

2 f

45 .

jje

therefore

2

1 1)

and

ENE428

High loss material or a good conductor (tan » 1)

• depth of penetration or skin depth, is a distance

where the field decreases to e-1 or 0.368 times of

the initial field

• propagation velocity

• wavelength

1 1 1m

f

pu

22

ENE428

Ex2 Given a nonmagnetic material having r = 3.2 and = 1.510-4 S/m,

at f = 3 MHz, find a) loss tangent

b) attenuation constant

ENE428

c) phase constant

d) intrinsic impedance

ENE428

Ex3 Calculate the followings for the wave with the frequency f = 60 Hz propagating in a copper with the conductivity, = 5.8107 S/m: a) wavelength

b) propagation velocity

ENE428

c) compare these answers with the same wave propagating in a free space