energy efficient wireless communications

226
Energy Efficient Wireless Communications Jingon Joung ACT: Advanced Commun. Tech. Dept. I 2 R: Institute for Infocomm Research A STAR: Agency for Science, Technology, And Research, Singapore Tutorial 2: The 14th International Conference on Electronics, Information and Communication (ICEIC’2015), Singapore 29 January 2015 Jingon Joung Tutorial 2: Energy Efficient Wireless Communications 1 / 112

Upload: jingon-joung

Post on 16-Aug-2015

112 views

Category:

Engineering


3 download

TRANSCRIPT

  1. 1. Energy Ecient Wireless Communications Jingon Joung ACT: Advanced Commun. Tech. Dept. I2 R: Institute for Infocomm Research A STAR: Agency for Science, Technology, And Research, Singapore Tutorial 2: The 14th International Conference on Electronics, Information and Communication (ICEIC2015), Singapore 29 January 2015 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 1 / 112
  2. 2. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 2 / 112
  3. 3. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 3 / 112
  4. 4. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 4 / 112
  5. 5. Green Wireless Communications Green to reduce energy consumption to reduce CO2 emission Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 5 / 112
  6. 6. Green Wireless Communications Green Information & Communications Tech. (ICT) [1] the 5th largest industry in power consumption energy consumption: 3% (2007) CO2 emission: 2% (2007) will increase X35, 4% (2020) e.g., cellular networks: energy: 77.5 TWh (2/60/3.5/10 TWh for 3b/4MM/20,000/etc. subscribers/radio stations/radio controllers/others) CO2: 35 Mt (1/20/2/5 Mt for ) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 5 / 112
  7. 7. Green Wireless Communications Wireless access communication networks consume significant amount of energy to overcome [2] fading, distortion, degradation (path loss) obstacles, interferences TX wirelesschannel RX Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 5 / 112
  8. 8. Green Wireless Communications The energy is mostly consumed at the transmitter e.g., 80-85% power at base station (BS) in cellular networks [2] Base Band Module D A C Informationbinarybits Filter Filter LO LFTPA Attn. control DC control Mixer VGA Synthethesizer Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 5 / 112
  9. 9. Green Wireless Communications 5080% of transmitters power is consumed at power amplifier (PA) [3] PA input signal output signal DC Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 5 / 112
  10. 10. References [1]: [McK, 2007] [Fettweis and Zimmermann, 2008] [Mancuso and Sara Alouf, 2011] [Chatzipapas et al., 2011] [2]: [Richter et al., 2009] [Baliga et al., 2011] [Vereecken et al., 2011] [Chatzipapas et al., 2011] [Joung and Sun, 2012] [3]: [Gruber et al., 2009] [Bogucka and Conti, 2011] [Joung et al., 2012a] [Joung et al., 2014c] [Joung et al., 2013] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 6 / 112
  11. 11. Green ICT Projects & Consortiums C2Power: Project, EU, Jan. 2010Dec. 2012 - cognitive radio and cooperative strategies - power saving in multi-standard wireless devices eWIN, Project, KTH, Sweden ECOnet: low Energy COnsumption NETworks, EU, Oct. 2010Sept. 2013 - dynamic adaptive technologies G-MC2: Project, Green Multiuser-MIMO Cooperative Communications, I2 R, Singapore, Jan. 2012Dec. 2014 GREENET: Consortium, green wireless networks, EU GREENT: Consortium, green terminals for next generation wireless systems, EU CO2GREEN Project: Spain - cooperative and cognitive techniques - green wireless communications GreenTouch: Consortium, architecture, specications and roadmap, since 2010 earth: Project, Energy Aware Radio and neTwork tecHnologies Green Radio: mobile virtual center of excellence (VCE) and personal communications, UK Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 7 / 112
  12. 12. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 8 / 112
  13. 13. Whats Eciency? Eciency: has widely varying meanings in dierent disciplines refers to the use of resources so as to maximize the production of goods and services economics is an important factor in determination of productivity business describes the extent to which time, eort or cost is well used for the intended task or purpose wikipedia is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it dictionary Eciency in general valuable resource produced valuable resource consumed Eciency in communications? Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 9 / 112
  14. 14. Whats Eciency? Eciency: has widely varying meanings in dierent disciplines refers to the use of resources so as to maximize the production of goods and services economics is an important factor in determination of productivity business describes the extent to which time, eort or cost is well used for the intended task or purpose wikipedia is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it dictionary Eciency in general valuable resource produced valuable resource consumed Eciency in communications? Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 9 / 112
  15. 15. Whats Eciency? Eciency: has widely varying meanings in dierent disciplines refers to the use of resources so as to maximize the production of goods and services economics is an important factor in determination of productivity business describes the extent to which time, eort or cost is well used for the intended task or purpose wikipedia is the ratio of the energy developed by a machine, engine, etc., to the energy supplied to it dictionary Eciency in general valuable resource produced valuable resource consumed Eciency in communications? Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 9 / 112
  16. 16. Eciency in Communications valuable resource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Eciency (SE) and Energy Eciency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verdu, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 10 / 112
  17. 17. Eciency in Communications valuable resource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Eciency (SE) and Energy Eciency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verdu, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 10 / 112
  18. 18. Eciency in Communications valuable resource produced in comm: information, coverage, subscribers, ... valuable resource consumed in comm: frequency, space, time, power, ... Spectral Eciency (SE) and Energy Eciency (EE) SE, b/s/Hz: number of reliably decoded bits per channel use [Cover and Thomas, 2006, Verdu, 2002, Chen et al., 2011] - Shannon (channel) capacity, data rate (throughput), goodput EE, b/J: number of reliably decoded bits per energy - various EEs in communications Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 10 / 112
  19. 19. Various EEs in Comms. Table 1: Various EEs [Richter et al., 2009, Tombaz et al., 2011, Hasan et al., 2011, Zhou et al., 2013, Joung et al., ]. Metric Type Units power usage eciency facility-level ratio ( 1) data center eciency facility-level % telecommun. energy e. ratio equipment-level Gbps/W telecommun. equipment energy e. rating equipment-level log(Gbps/W) energy consumption rating equipment-level W/Gbps area power consumption network-level Km2 /W user power consumption network-level users/W network energy e. with delay eect network-level dB/J pecuniary eciency network-level bits/$ Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 11 / 112
  20. 20. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 12 / 112
  21. 21. Theoretical SE-EE Tradeo SE, b/s/Hz EE,b/J Figure 1: Theoretical SE-EE tradeo. Figure 2: Ideal power consumption. SE = log2(1 + Pout/2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = SE Pc : ideal power consumption model in Fig. 2 [Verdu, 2002, Chen et al., 2011] [Pout: transmit power; 2: noise power; : total bandwidth] Convex and wide (good) tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 13 / 112
  22. 22. Theoretical SE-EE Tradeo SE, b/s/Hz EE,b/J Figure 1: Theoretical SE-EE tradeo. Pc PPA Pout== Figure 2: Ideal power consumption. SE = log2(1 + Pout/2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = SE Pc : ideal power consumption model in Fig. 2 [Verdu, 2002, Chen et al., 2011] [Pout: transmit power; 2: noise power; : total bandwidth] Convex and wide (good) tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 13 / 112
  23. 23. Theoretical SE-EE Tradeo SE, b/s/Hz EE,b/J 1 2 ln 2 Figure 1: Theoretical SE-EE tradeo. Pc PPA Pout== Figure 2: Ideal power consumption. SE = log2(1 + Pout/2 ): Gaussian signalling, perfectly linear PA [Cover and Thomas, 2006] EE = SE Pc : ideal power consumption model in Fig. 2 [Verdu, 2002, Chen et al., 2011] [Pout: transmit power; 2: noise power; : total bandwidth] Convex and wide (good) tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 13 / 112
  24. 24. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 14 / 112
  25. 25. Practical PA Package (a) SM2122-44L (b) SM0822-39 Figure 3: (a) High power PA with Pmax out = 25 W(44 dBm) and g = 55 dB. Frequency band 2.1 GHz 2.2 GHz. (b) Low power PA with Pmax out = 8 W and g = 45 dB. PA: a type of electronic amplier - converts a low-power RF signal into a larger signal of signicant power - typically, for driving the antenna of a transmitter Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 15 / 112
  26. 26. Basic Circuit Model of PA ACRF-drive,Pin DC input, PDC PAoutput,Pout Power Amplier (PA) Figure 4: Power amplier model with eld-eect transistor (FET) [Cripps, 2006, Kazimierczuk, 2008]. Transistor is a core semiconductor device: amplies and switches electronic signals and electrical power changes a voltage or current: terminals (G,D) to terminals (S,D) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 16 / 112
  27. 27. Basic Circuit Model of PA ACRF-drive,Pin DC input, PDC PAoutput,Pout gate drainsource transistor RFC DC blocking capacitor inputnetwork outputnetwork resistor Figure 4: Power amplier model with eld-eect transistor (FET) [Cripps, 2006, Kazimierczuk, 2008]. Transistor is a core semiconductor device: amplies and switches electronic signals and electrical power changes a voltage or current: terminals (G,D) to terminals (S,D) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 16 / 112
  28. 28. Ideal PA Linearity 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1.0 1.2 normalized input signal amplitude, |vin| normalizedoutputsignalamplitude,|vout| (a) 30 20 10 0 10 1 0 1 input power, dBm normalizedgain,dB (b) 30 20 10 0 10 1 0 1 input power, dBm phaseshift,degree (c) Figure 5: (a) and (b): Dynamic amplitude-to-amplitude modulation (AM/AM) distortion characteristics. (c) amplitude-to-phase modulation (AM/PM) characteristic. between RF input and output signals, i.e., Pin and Pout Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 17 / 112
  29. 29. Ideal PA Eciency 5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55 PDC dBm Pout(Pmax)dBm Figure 6: Maximum output power at linear region versus PA power consumption. between input and output signals, i.e., Pout/PDC. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 18 / 112
  30. 30. Linearity Models [Teikari, 2008] Transistor-level System-level accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 19 / 112
  31. 31. Linearity Models [Teikari, 2008] Transistor-level System-level Memory Memoryless accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate a frequency-domain fluctuation due to the capacitance and Inductance in the circuits and the thermal fluctuation of the PAs, i.e., an electrical and thermal memory effects, respectively [23,24] Volterra series model [25] Wiener, Hammerstein models [26] Memory polynomial [27] previous PA output signal does not affect the current PA output signal PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 19 / 112
  32. 32. Linearity Models [Teikari, 2008] Transistor-level System-level Memory Memoryless Passband Baseband accurate yet difficult to obtain, generalize or analyze a few parameters obtained from measurements, tractable, and reasonably accurate a frequency-domain fluctuation due to the capacitance and Inductance in the circuits and the thermal fluctuation of the PAs, i.e., an electrical and thermal memory effects, respectively [23,24] Volterra series model [25] Wiener, Hammerstein models [26] Memory polynomial [27] previous PA output signal does not affect the current PA output signal difficult to do simulation and computation Nonlinearity of complex baseband frequency approximation is captured simply [28] PA Linearity Models [23][Vuolevi et al., 2000], [24][Boumaiza and Ghannouchi, 2003], [25][Gadringer et al., 2005], [26][Morgan et al., 2006], [27][Kim and Konstantinou, 2001], [28][Jeruchim et al., 2000] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 19 / 112
  33. 33. Memoryless Baseband PA Models Generic model: simplied baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minko, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgangs theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = (|x|) e2j(|x|) - (): amplitude-dependent gain function - (): phase shift function (|x|) |x|, if |x| < vsat, vsat, otherwise, (|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 20 / 112
  34. 34. Memoryless Baseband PA Models Generic model: simplied baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minko, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgangs theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = (|x|) e2j(|x|) - (): amplitude-dependent gain function - (): phase shift function (|x|) |x|, if |x| < vsat, vsat, otherwise, (|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 20 / 112
  35. 35. Memoryless Baseband PA Models Generic model: simplied baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minko, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgangs theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = (|x|) e2j(|x|) - (): amplitude-dependent gain function - (): phase shift function (|x|) |x|, if |x| < vsat, vsat, otherwise, (|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 20 / 112
  36. 36. Memoryless Baseband PA Models Generic model: simplied baseband model for tractable analysis Ideal model for analysis: y = gx, where x and y are PA input and output signals; and g > 0 is a linear gain. Linear model for analysis [Minko, 1985]: y = gx + n, where n is the nonlinear distortion that is independent of x and modeled as Gaussian noise based on Bussgangs theorem [Bussgang, 1952]. Soft limiter model for analysis [Tellado et al., 2003]: y = (|x|) e2j(|x|) - (): amplitude-dependent gain function - (): phase shift function (|x|) |x|, if |x| < vsat, vsat, otherwise, (|x|) 0 where vsat is a saturation output amplitude. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 20 / 112
  37. 37. Memoryless Baseband PA Models PA-specic model: accurate baseband model specied to PA type Saleh model for traveling wave tube amplier [Saleh, 1981]: (|x|) a1|x| 1 + a2|x|2 ; (|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coecients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; (|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: (|x|) |x| 1 + |x| vsat 2p 1 2p ; (|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 21 / 112
  38. 38. Memoryless Baseband PA Models PA-specic model: accurate baseband model specied to PA type Saleh model for traveling wave tube amplier [Saleh, 1981]: (|x|) a1|x| 1 + a2|x|2 ; (|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coecients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; (|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: (|x|) |x| 1 + |x| vsat 2p 1 2p ; (|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 21 / 112
  39. 39. Memoryless Baseband PA Models PA-specic model: accurate baseband model specied to PA type Saleh model for traveling wave tube amplier [Saleh, 1981]: (|x|) a1|x| 1 + a2|x|2 ; (|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coecients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; (|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: (|x|) |x| 1 + |x| vsat 2p 1 2p ; (|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 21 / 112
  40. 40. Memoryless Baseband PA Models PA-specic model: accurate baseband model specied to PA type Saleh model for traveling wave tube amplier [Saleh, 1981]: (|x|) a1|x| 1 + a2|x|2 ; (|x|) b1|x|2 1 + b2|x|2 where ai and bi are the distortion coecients Ghorbani model for FET PA and for low amplitude nonlinearity [Ghorbani and Sheikhan, 1991]: (|x|) a1|xa2 | 1 + a3|xa2 | + a4|x|; (|x|) b1|xb2 | 1 + b3|xb2 | + b4|x| Rapp model for envelope characteristic of solid state PA (especially, class-AB) [Rapp, 1991, Falconer et al., 2000]: (|x|) |x| 1 + |x| vsat 2p 1 2p ; (|x|) 0 where p is a smoothness factor. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 21 / 112
  41. 41. PA Linearity = Nonlinear 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0 1.2 Ideal model Linearized model (35dB) Soft limiter model Rapp model (p=10) Rapp model (p=2) Saleh model Ghorbani model p=10 p=2 normalized input signal amplitude, |vin| normalizedoutputsignalamplitude,|vout| Figure 7: AM/AM distortion characteristics for various baseband PA models. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 22 / 112
  42. 42. Eciency Models Eciencies of PA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain eciency: D Pout PDC 2 Power-added eciency (PAE): PAE PoutPin PDC = D 1 1 g 3 Overall eciency: O Pout PDC+Pin Typically D PAE O, Pin PDC, Pin Pout Two important factors Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 23 / 112
  43. 43. Eciency Models Eciencies of PA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain eciency: D Pout PDC 2 Power-added eciency (PAE): PAE PoutPin PDC = D 1 1 g 3 Overall eciency: O Pout PDC+Pin Typically D PAE O, Pin PDC, Pin Pout Two important factors Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 23 / 112
  44. 44. Eciency Models Eciencies of PA [Kazimierczuk, 2008, Raab et al., 2002] 1 Drain eciency: D Pout PDC 2 Power-added eciency (PAE): PAE PoutPin PDC = D 1 1 g 3 Overall eciency: O Pout PDC+Pin Typically D PAE O, Pin PDC, Pin Pout Two important factors Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 23 / 112
  45. 45. PA Eciency < 100% 5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55 20% drain efficiency line 30% drain efficiency line 100% drain efficiency line PAs: 01 GHz PAs: 12 GHz PAs: 23 GHz PAs: 34 GHz PAs: 45 GHz PDC dBm Pout(Pmax)dBm Figure 8: Maximum output power (at the linear region) versus PDC. < 100% [Raab et al., 2003a] Typically between 20% and 30% [Joung et al., 2012a] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 24 / 112
  46. 46. PA Eciency Drop 0 5 10 15 20 25 28 30 34 40 45 50 0 10 20 30 40 50 60 70 Power-addedeciency(PAE),% Pout dBm SKY65162-70LF optimal matching Doherty class-AB MAX2840 RF2132 RF2146 SST13LP01 AN10923 Doherty 21180 Figure 9: PAE versus Pout. usually drops rapidly as the output power decreases [Shirvani et al., 2002] a peak is achieved at the peak envelope power (PEP) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 25 / 112
  47. 47. PA Classes Table 2: Examples of PA Classes [Raab et al., 2002, Raab et al., 2003a, Raab et al., 2003b]. Class Linearity Eciency Utilization Factor Main Applications A high 50% 0.125 millimeter wave (30-100GHz) 4W/30%/Ka-band 250mW/25%/Q-band 200mW/10%/W-band B high 78.5% 0.125 broadband at HF and VHF C 85% - high-power vacuum-tube Tx D low 100% 0.159 100W to 1kW HF E low 100% 0.098 high-eciency at K-band 16W with 80% eciency at UHF 100mW with 60% eciency at 10GHz F low very high 50% from 0.125 to 0.159 UHF and microwave (operation) class: amplication method power-output capability (transistor utilization factor): output power (# of transistor)(peak drain voltage)(peak drain current) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 26 / 112
  48. 48. Applications of PAs HF VHF UHF L S C X Ku K Ka V W G THF 3M 30M 300M 1G 2G 12G 18G4G 8G 26.5G 40G 110G 300G 3T3G 75G (1-300M) Comm. Submarines (3-30K) AM broadcasts (153K-26M) Navigation FM (87.5-108M) TV (54M-890M, VHF, UHF) Weather radio (162M) Aircraft comm. Land/maritime mobile comm. RFID (ISM band) Shortwave Broadcasts Citizens' band radio Over-the-horizon radar/comm. Amateur radio (3G-30G) WLAN 802.11a/ac/ad/n (5G) DBS (10.7G-12.75G) Satellite comm./TV (C,Ku,Ka) Microwave devices/communications Modern radars Radio astronomy Amateur radio (30G-300G) LMDS (26G-29G, 31G-31.3G) WLAN 802.11ad (60G) HIgh-frequency microwave radio relay MIcrowave remote sensing DIrected-energy weapon MIllimeter wave scanner Radio astronomy Amateur radio (1T~) Terahertz imaging Ultrafast molecular dynamics Condensed-matter physics Terahertz time-domain spectroscopy Terahertz computing/communications Sub-mm remote sensing Amateur radio (300M-3G) FRS/GMRS (462M-467M) ZigBee (ISM: 868M,915M,2.4G) Z-Wave (900M) DECT/Cordless telephone (900M) GPS (1.2,1.5G) GSM (900M,1.8G) UMTS (2.1G) LTE (698M-3.8G) WLAN (802.11b/g/n/ad 2.4G) Bluetooth (2.4-2.483.5MHz) BAN/WBAN/BSN (2.36G-2.4G) UWB (1.6G-10.5G) Modern Cordless telephone (1.9G,2.4G,5.8G) Si LDMOS GaN-HEMT Si RF CMOS SiGe-HBT, SiGe-BiCMOS GaAs-HBT, GaAs-pHEMT InP-HBT InP-HEMT, GaAs-mEHMT SiC-MESFET 0 Figure 10: Power amplier applications over IEEE bands [Joung et al., 2014b]. FET: eld eect transistor MOSFET: metal oxide semiconductor FET MESFET: metal epitaxial semiconductor FET DMOS: diued metal oxide semiconductor LDMOS: laterally DMOS CMOS: complementary metal oxide semicond. BiCMOS: bipolar CMOS HBT: heterojunction bipolar transistor HEMT: high electron mobility transistor mHEMT: metamorphic HEMT pHEMT: pseudomorphic HEMT SiGe: silicon Germanium GaAs: Gallium Arsenide GaN: Gallium Nitride InP: Indium Phosphide ISM: industrial, scientic and medical WPAN: wireless personal area network WLAN: wireless local area network LTE: long term evolution GSM: Global system for mobile communications UMTS: universal mobile telecommun. system UWB: ultra-wide band GPS: global positioning system FRS: family radio service GMRS: general mobile radio service BSN: body sensor network BAN: body area network WBAN: wireless body area network DBS: direct-broadcast satellite LMDS: local multipoint distribution service DECT: digital enhanced cordless telecommun. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 27 / 112
  49. 49. PA in Wireless Communications The LDMOS PA are employed for many communication equipments. The international technology roadmap for semiconductors (ITRS) reports that 48 volt LDMOS transistor is widely used in cellular infrastructure market in 2011 [ITRS, 2011]. The LDMOS can support high output power required for a base station (BS) in cellular networks. Table 3: Transmit Power of BSs [Auer et al., 2011, earth, 2015] Type Pmax out back-o average max output power ISD [m] Macro 54 dBm (250 W) 8 dB 43 dBm (20 W) 1 Km 5 Km Micro 46 dBm (40 W) 8 dB 38 dBm (6.3 W) 100 m 500 m Pico 33 dBm (2 W) 12 dB 21 dBm (125 mW) 10 m 80 m Femto 29 dBm (800 mW) 12 dB 17 dBm (50 mW) indoor To compensate poor eciency of LDMOS devices in the low power regime, envelope tracking architecture or Doherty technique is used for 3G and 4G networks that employs high PAPR waveform signals. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 28 / 112
  50. 50. Previous Studies on the Practical SE-EE Tradeo Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeo conjecture [Chen et al., 2011] Practical SE-EE tradeo analysis with practical power consumption model [Heliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantication of SE-EE tradeo with BOTH nonlinearity and imperfect eciency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 29 / 112
  51. 51. Previous Studies on the Practical SE-EE Tradeo Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeo conjecture [Chen et al., 2011] Practical SE-EE tradeo analysis with practical power consumption model [Heliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantication of SE-EE tradeo with BOTH nonlinearity and imperfect eciency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 29 / 112
  52. 52. Previous Studies on the Practical SE-EE Tradeo Practical SE analysis with PA nonlinearity for multicarrier systems [Tellado et al., 2003, Zillmann and Fettweis, 2005, Gutman and Wulich, 2012] Practical SE-EE tradeo conjecture [Chen et al., 2011] Practical SE-EE tradeo analysis with practical power consumption model [Heliot et al., 2012, Onireti et al., 2012] Analytical and numerical quantication of SE-EE tradeo with BOTH nonlinearity and imperfect eciency of PA [Joung et al., 2012a, Joung et al., 2014c] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 29 / 112
  53. 53. Practical SE-EE Tradeo SE, b/s/Hz EE,b/J ? Figure 11: Practical SE-EE tradeo. Pc PPA Pout Figure 12: Practical Power Consumption. Practical systems power consumption model in Fig. 12 eciency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 30 / 112
  54. 54. Practical SE-EE Tradeo SE, b/s/Hz EE,b/J ? Figure 11: Practical SE-EE tradeo. Pc PPA Pout Figure 12: Practical Power Consumption. Practical systems power consumption model in Fig. 12 eciency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 30 / 112
  55. 55. Practical SE-EE Tradeo SE, b/s/Hz EE,b/J Theoretical tradeo in Fig. 1 Figure 11: Practical SE-EE tradeo. Pc PPA Pout Figure 12: Practical Power Consumption. Practical systems power consumption model in Fig. 12 eciency < 100% and PA nonlinearity SE is not a log function anymore [Joung et al., 2012a, Joung et al., 2014c] Concave, narrow (bad), and biased tradeo Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 30 / 112
  56. 56. Practical SE-EE Tradeo 1 2 ln 2 SE, b/s/Hz EE,b/J PA ineciency and SE degradation resulting in drop of EE PA nonlinearity resulting in drop of SE Theoretical SE-EE tradeo Practical SE-EE tradeo Figure 13: Illustration of SE-EE tradeo. SE maximization or EE maximization? EE for a single antenna (PA) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 31 / 112
  57. 57. Practical SE-EE Tradeo 1 2 ln 2 SE, b/s/Hz EE,b/J PA ineciency and SE degradation resulting in drop of EE PA nonlinearity resulting in drop of SE Theoretical SE-EE tradeo Practical SE-EE tradeo Figure 13: Illustration of SE-EE tradeo. SE maximization or EE maximization? EE for a single antenna (PA) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 31 / 112
  58. 58. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 32 / 112
  59. 59. Energy Ecient Technologies 5080% of transmitters power is consumed at power amplifier (PA) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 33 / 112
  60. 60. Energy Ecient Technologies Device-Level Approach Transmitter architecture PA package structures Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 33 / 112
  61. 61. Energy Ecient Technologies Device-Level Approach Transmitter architecture PA package structures System-Level Approach Transceiver signal processing IBO/PAPR/DPD/ Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 33 / 112
  62. 62. Energy Ecient Technologies Device-Level Approach Transmitter architecture PA package structures System-Level Approach Transceiver signal processing IBO/PAPR/DPD/ Network-Level Approach Network processing SC/HetNet/CZ/CoMP/CoNap/DTX/ Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 33 / 112
  63. 63. EE Tech. [Joung et al., 2014b] Approaches Methods Improvement Challenges 1. PA Design linear architecture Linearity (L) high cost, parallel architecture Eciency (E) large form factor switching architecture (PAS) E envelope tracking (ET) architecture E PA circuit architecture envelope elimination & restoration (EER/Kahn) L, E outphasing technique (LINK) L, E Doherty technique E 2. Signal Design PAPR reduction clipping L, E out-of-band emission coding additional resource,partial transmit sequence (PTS) latency, PA input/output selective mapping (SLM) complexity signal processing tone reservation (TR) tone insertion (TI) Linearlization feed forward sensitive to PA, feedback additional circuit, digital predistortion (DPD) complexity 3. Network Design Network densication E infrastructure, in/out band small cells overhead signalling, distributed antenna system (DAS) scalability, Ecient network cooperative communications (relay) handover, topology & protocol Network protocol interference design by cell zooming deploying low power PA coordinated multipoint (CoMP) or using PA on/o cell discontinuous TX/RX (DTX/DRX) coordinated sleep and napping (CoNap) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 34 / 112
  64. 64. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 35 / 112
  65. 65. 1. PA Design Architecture: a building block of various circuits (e.g., multiple PAs, oscillators, mixers, lters, matching networks, combiners, and circulators) Transmitter Architecture: direct approach, PA package structures 1 Linear architecture [Raab et al., 2003c] 2 Corporate architecture [Cripps, 2006] 3 Parallel architecture [Shirvani et al., 2002, Alc, 2008] 4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000] 5 Envelope elimination and restoration (EER) technique (or Kahn) [Raab et al., 2003c, Kahn, 1952] 6 Envelope tracking architecture [Raab et al., 2003c] F 7 Outphasing using linear amplication using nonlinear components (LINK) [Raab et al., 2003c, Cox, 1974] 8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010, Auer et al., 2011, Arnold et al., 2010] F 9 Combined complex architecture, etc. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 36 / 112
  66. 66. 1. PA Design Architecture: a building block of various circuits (e.g., multiple PAs, oscillators, mixers, lters, matching networks, combiners, and circulators) Transmitter Architecture: direct approach, PA package structures 1 Linear architecture [Raab et al., 2003c] 2 Corporate architecture [Cripps, 2006] 3 Parallel architecture [Shirvani et al., 2002, Alc, 2008] 4 Stage bypassing and gate switching [Raab et al., 2003c, Staudinger, 2000] 5 Envelope elimination and restoration (EER) technique (or Kahn) [Raab et al., 2003c, Kahn, 1952] 6 Envelope tracking architecture [Raab et al., 2003c] F 7 Outphasing using linear amplication using nonlinear components (LINK) [Raab et al., 2003c, Cox, 1974] 8 Doherty technique [Cha et al., 2004, Doherty, 1936, Correia et al., 2010, Auer et al., 2011, Arnold et al., 2010] F 9 Combined complex architecture, etc. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 36 / 112
  67. 67. Transmit Architectures DC A,P gA,P DC A,P gA,P DC + A,P gA,P DC A,P gA,P A,P gA,P E-Det. A A,P A,P gA,P E-Det. A P DC + A,P gA,P P1 P2 DC + A,P gA,P DC : DC power supply : PA A: amplitude information P: phase information g: gain: RF-drive input : RF output : delay+ : combiner (a) (b1) (d) (e) (b2) (c) (f) (g) SCS limitter DC DC/DC Figure 14: Various transmit architectures: a) Linear architecture. b) Parallel architecture. c) Switching architecture. d) Envelope tracking (ET) architecture. e) EER technique (or Kahn). f) Outphasing technique. g) Doherty technique (DT). ET: DC power is controlled by the envelope of the RF input signal DT: Class-B (carrier or main PA) + Class-C (peaking or auxiliary PA) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 37 / 112
  68. 68. Key Points Table 4: Eciency, costs and environmental impact of a 20,000-base-station network with dierent power amplier technologies [Mancuso and Sara Alouf, 2011]. Traditional technology Doherty technology Envelope tracking PA eciency 15 % 25 % 45 % Power consumption 51.7 MW 27.2 MW 16.1 MW CO2 emission 194,600 tons 102,400 tons 60,800 tons Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$ Challenges: Nonlinearity and ineciency are fundamental and inevitable. mathematical model: modeling and empirical evaluation, i.e., simulated-annealing-based custom computer-aided design high manufacturing cost large form factor wide dynamic range with high eciency advanced materials and metamaterials Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 38 / 112
  69. 69. Key Points Table 4: Eciency, costs and environmental impact of a 20,000-base-station network with dierent power amplier technologies [Mancuso and Sara Alouf, 2011]. Traditional technology Doherty technology Envelope tracking PA eciency 15 % 25 % 45 % Power consumption 51.7 MW 27.2 MW 16.1 MW CO2 emission 194,600 tons 102,400 tons 60,800 tons Power cost 54.3 MM$ 28.6 MM$ 17.0 MM$ Challenges: Nonlinearity and ineciency are fundamental and inevitable. mathematical model: modeling and empirical evaluation, i.e., simulated-annealing-based custom computer-aided design high manufacturing cost large form factor wide dynamic range with high eciency advanced materials and metamaterials Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 38 / 112
  70. 70. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 39 / 112
  71. 71. 2. Signal Design Transceiver Signal Processing: knowledge of the signal properties 1 Input backo (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to suciently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA eciency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 40 / 112
  72. 72. 2. Signal Design Transceiver Signal Processing: knowledge of the signal properties 1 Input backo (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to suciently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA eciency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 40 / 112
  73. 73. 2. Signal Design Transceiver Signal Processing: knowledge of the signal properties 1 Input backo (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to suciently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA eciency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 40 / 112
  74. 74. 2. Signal Design Transceiver Signal Processing: knowledge of the signal properties 1 Input backo (IBO) [Kowlgi and Berland, 2011] - Reducing the transmit power to suciently below its peak output power - Broadband signal having a high peak-to-average power ratio (PAPR), e.g., 8 to 13 dB PAPR for ODFM signals [Kowlgi and Berland, 2011], requires high IBO - High IBO reduces the PA eciency 2 PAPR reduction methods [Jiang and Wu, 2008] Clipping/ coding/ partial transmission sequence and selective mapping/ nonlinear companding transform/ tone reservation and tone injection 3 Linearization [Pothecary, 1999, Kenington, 2000] To mitigate the nonlinearity of PAs in the low power regime, various linearization methods such as feedforward/ feedback/ predistortion 4 Active antenna systems (reducing feeder loss) 5 SE improving system design: large (massive) MIMO, 3D MIMO, etc. 6 Combined complex architecture Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 40 / 112
  75. 75. Key Points Impact: avoidance/compensation of the adverse impact of PA nonlinearity Cost: - PA eciency reduction (high power consumption) for input back o - out-of-band radiation increase for signal clipping - SE reduction for side information - additional computational complexity (see e.g., parameter optimization and multiple candidate sequence generation [Rahmatallah and Mohan, 2013]) - additional analog circuits Challenges: hardware capability limitation high sensitivity to PA status additional resource requirement additional circuits tradeo between: linearity and eciency; SE and EE Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 41 / 112
  76. 76. Key Points Impact: avoidance/compensation of the adverse impact of PA nonlinearity Cost: - PA eciency reduction (high power consumption) for input back o - out-of-band radiation increase for signal clipping - SE reduction for side information - additional computational complexity (see e.g., parameter optimization and multiple candidate sequence generation [Rahmatallah and Mohan, 2013]) - additional analog circuits Challenges: hardware capability limitation high sensitivity to PA status additional resource requirement additional circuits tradeo between: linearity and eciency; SE and EE Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 41 / 112
  77. 77. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 42 / 112
  78. 78. 3. Network Design Network Processing: using small power PA/reducing PA activation time 1 Network densication - in/out band small cell, inter-cell interference coordination (ICIC), heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009] - DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a] - relay [Joung and Sun, 2012, Yang et al., 2009] Figure 15: Example of network densication. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 43 / 112
  79. 79. 3. Network Design Network Processing: using small power PA/reducing PA activation time 1 Network densication - in/out band small cell, inter-cell interference coordination (ICIC), heterogeneous network (HetNet) [Chen et al., 2011, Richter et al., 2009] - DAS [Choi and Andrews, 2007, Joung and Sun, 2013, Joung et al., 2014a] - relay [Joung and Sun, 2012, Yang et al., 2009] carrier frequency 1 carrier frequency 2 joint processing cross-tier interference intra-tier interference in-band small cell coverage out-band small cell coverage cooperative communication region Macro BS coverage usermacro BS small BS relay AP/RRH Figure 15: Example of network densication. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 43 / 112
  80. 80. Network Design 1 Network densication 2 Network protocol design - Cell zooming [Niu et al., 2010] - CoMP [Han et al., 2011] - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 44 / 112
  81. 81. Network Design 1 Network densication 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 44 / 112
  82. 82. Network Design 1 Network densication 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] deactivated BS active BSactive BS - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 44 / 112
  83. 83. Network Design 1 Network densication 2 Network protocol design - Cell zooming [Niu et al., 2010] deactivated BS deactivated BSactive BS - CoMP [Han et al., 2011] deactivated BS active BSactive BS - DTX/CoNap [Frenger et al., 2011, 3GPP, TR 25.927 V11.0.0, 2012, Adachi et al., 2012, Adachi et al., 2013, Shirvani et al., 2002] fre q u e n c y P A c a n b e tu rn e d o ff P A is o p e ra tin g in h ig h e ffic ie n c y T ra n s m it p o w e r Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 44 / 112
  84. 84. Key Points Requirements for cell densication: cross-tier interference management - cell range expansion [Damnjanovic et al., 2011] and eICIC [Kosta et al., 2013] in 3GPP - optimization of beamforming and radio resource management [Joung et al., 2012b, Joung et al., 2012c] Requirements for network protocol design: cooperation or coordination among dierent nodes - decide how often the cooperation/coordination performs PA on and o to balance the system performance and the power saving - optimization of the radio resource allocation Challenges: high infrastructure cost overhead signalling and frequent handover network (backbone) overhead scalability to already-deployed networks Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 45 / 112
  85. 85. Key Points Requirements for cell densication: cross-tier interference management - cell range expansion [Damnjanovic et al., 2011] and eICIC [Kosta et al., 2013] in 3GPP - optimization of beamforming and radio resource management [Joung et al., 2012b, Joung et al., 2012c] Requirements for network protocol design: cooperation or coordination among dierent nodes - decide how often the cooperation/coordination performs PA on and o to balance the system performance and the power saving - optimization of the radio resource allocation Challenges: high infrastructure cost overhead signalling and frequent handover network (backbone) overhead scalability to already-deployed networks Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 45 / 112
  86. 86. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 46 / 112
  87. 87. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 47 / 112
  88. 88. System Model x y IDFTF addCPP/SDAC ADCS/PremoveCP DFTFH x PA LPA() {h0, , hL1} w z y Figure 16: An OFDM system with a nonlinear memoryless PA [Joung et al., 2014c]. x = [x0, , xN1] T CN(0, Pin): OFDM symbol consisting of N complex-valued data symbols x = [x0, , xN1]T = F x: time domain signal vector Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 48 / 112
  89. 89. Signal Model F : N-by-N unitary IDFT matrix wt = LPA(xt): PA output signal, w = [w0, , wN+NCP1]T xt = atejt : at |xt|, t is the phase of xt (0 t < 2) wt = btejt : bt |wt| {h0, h1, , hL1}: L-tap multipath channel Yt = ht wt + zt: received signal - perfect timing synchronization - the CP is removed - indices are shifted to start from 0 - zt CN(0, 2 z ): AWGN - yt rtej : rt and t represent the amplitude and phase of Yt - y = [Y0, , YN1]T : vector representation y = [y0, , yN1]T = F H y: frequency domain signal vector after DFT of y Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 49 / 112
  90. 90. Assumptions A1: {xn} are i.i.d. with distribution x CN(0, Pin) A2: Soft limiter model for PA input/ouput power: LPA(at) = gat, if at < amax bmax, if at amax - amax Pmax in and bmax Pmax out - Linearity in low power regime can be obtained with linearization techniques (e.g., feedforward, feedback, and predistortion) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 50 / 112
  91. 91. Assumptions A1: {xn} are i.i.d. with distribution x CN(0, Pin) A2: Soft limiter model for PA input/ouput power: LPA(at) = gat, if at < amax bmax, if at amax - amax Pmax in and bmax Pmax out - Linearity in low power regime can be obtained with linearization techniques (e.g., feedforward, feedback, and predistortion) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 50 / 112
  92. 92. Mutual Information (MI) in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) H(Y |X) (c) identical MI over t (d) = H(Y ) log2 e2 z [b/s] (d) H(Y |X) = H(N) = log2 e2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 51 / 112
  93. 93. Mutual Information (MI) in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) H(Y |X) (c) identical MI over t (d) = H(Y ) log2 e2 z [b/s] (d) H(Y |X) = H(N) = log2 e2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 51 / 112
  94. 94. Mutual Information (MI) in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) H(Y |X) (c) identical MI over t (d) = H(Y ) log2 e2 z [b/s] (d) H(Y |X) = H(N) = log2 e2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 51 / 112
  95. 95. Mutual Information (MI) in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) H(Y |X) (c) identical MI over t (d) = H(Y ) log2 e2 z [b/s] (d) H(Y |X) = H(N) = log2 e2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 51 / 112
  96. 96. Mutual Information (MI) in Flat Fading Channels (L = 1) Achievable rate averaged over N transmissions is given by I(X; Y )/N (a) = I(X; Y )/N (a) Unitary transform (IDFT) (b) = N1 t=0 I(Xt; Yt)/N (b) independency in time domain (c) = I(X; Y ) = H(Y ) H(Y |X) (c) identical MI over t (d) = H(Y ) log2 e2 z [b/s] (d) H(Y |X) = H(N) = log2 e2 z The entropy of Y is given by [Cover and Thomas, 2006] H(Y ) = y fY (y) log2 fY (y)dy Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 51 / 112
  97. 97. Entropy H(y) in Flat Fading Ch. Dene S as a binary random variable denoting the clipping at the PA: S = 0, if A amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 Q1 (y), max fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z - N0(y): pdf of CN 0, gPin + 2 z , N1(y): pdf of CN bmax, 2 z - Q1(, ): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters max 2(gPin+2 z) gPin bmax and (y) 8gPin(gPin+2 z) 4 z |y|2 - yRe: real part of y - I0(): modied Bessel function of rst kind Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 52 / 112
  98. 98. Entropy H(y) in Flat Fading Ch. Dene S as a binary random variable denoting the clipping at the PA: S = 0, if A amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 Q1 (y), max fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z - N0(y): pdf of CN 0, gPin + 2 z , N1(y): pdf of CN bmax, 2 z - Q1(, ): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters max 2(gPin+2 z) gPin bmax and (y) 8gPin(gPin+2 z) 4 z |y|2 - yRe: real part of y - I0(): modied Bessel function of rst kind Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 52 / 112
  99. 99. Entropy H(y) in Flat Fading Ch. Dene S as a binary random variable denoting the clipping at the PA: S = 0, if A amax 1, otherwise The pdf of y can be rewritten as fY (y) = fY (y, S = 0) + fY (y, S = 1) A closed-form expression of fY (y, S = 0) and fY (y, S = 1) (see [Joung et al., 2014c] for the proof): fY (y, S = 0) = N0(y) 1 Q1 (y), max fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z - N0(y): pdf of CN 0, gPin + 2 z , N1(y): pdf of CN bmax, 2 z - Q1(, ): Marcum-Q-function [Papoulis and Pillai, 2002] with parameters max 2(gPin+2 z) gPin bmax and (y) 8gPin(gPin+2 z) 4 z |y|2 - yRe: real part of y - I0(): modied Bessel function of rst kind Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 52 / 112
  100. 100. Analytical Results on SE SE() = H(Y ) log2 e2 z = y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy log2 e2 z If the PA is perfectly linear, i.e., bmax and thus amax fY (y, S = 0) = N0(y) 1 Q1 (y), max = N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z = 0 SEideal () = log2 (1 + ) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 53 / 112
  101. 101. Analytical Results on SE SE() = H(Y ) log2 e2 z = y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy log2 e2 z If the PA is perfectly linear, i.e., bmax and thus amax fY (y, S = 0) = N0(y) 1 Q1 (y), max = N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z = 0 SEideal () = log2 (1 + ) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 53 / 112
  102. 102. Analytical Results on SE SE() = H(Y ) log2 e2 z = y s=0,1 fY (y, S = s) log2 s=0,1 fY (y, S = s) dy log2 e2 z If the PA is perfectly linear, i.e., bmax and thus amax fY (y, S = 0) = N0(y) 1 Q1 (y), max = N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z = 0 SEideal () = log2 (1 + ) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 53 / 112
  103. 103. Analytical Results on SE If PA input power is low, i.e., 1 fY (y, S = 0) = N0(y) 1 Q1 (y), max N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z N1(y) SEIBO () log2 (1 + ) + e 1 log2 2 z e1 1 log2 2 z Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 54 / 112
  104. 104. Analytical Results on SE If PA input power is low, i.e., 1 fY (y, S = 0) = N0(y) 1 Q1 (y), max N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z N1(y) SEIBO () log2 (1 + ) + e 1 log2 2 z e1 1 log2 2 z Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 54 / 112
  105. 105. Analytical Results on SE If PA input power is low, i.e., 1 fY (y, S = 0) = N0(y) 1 Q1 (y), max N0(y) fY (y, S = 1) = N1(y) exp a2 max Pin 2bmaxyRe 2 z I0 2bmax|y| 2 z N1(y) SEIBO () log2 (1 + ) + e 1 log2 2 z e1 1 log2 2 z Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 54 / 112
  106. 106. Analytical Results on SE Theorem 1. The approximated SE, SEIBO (), is a concave function over max 0, 1 ln 2 z < 1 2 . Theorem 2. The SE-aware optimal power loading factor SE which maximizes SEIBO () is obtained by the solution of the following equality: 1 + = e1 2 1 + 1 ln e2 z Proposition 3. A closed form approximation of SE is given by SE SE 1 W 1 ln(e2 z ) where W() denotes the Lambert W function [Chapeau-Blondeau and Monir, 2002] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 55 / 112
  107. 107. Analytical Results on SE Theorem 1. The approximated SE, SEIBO (), is a concave function over max 0, 1 ln 2 z < 1 2 . Theorem 2. The SE-aware optimal power loading factor SE which maximizes SEIBO () is obtained by the solution of the following equality: 1 + = e1 2 1 + 1 ln e2 z Proposition 3. A closed form approximation of SE is given by SE SE 1 W 1 ln(e2 z ) where W() denotes the Lambert W function [Chapeau-Blondeau and Monir, 2002] Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 55 / 112
  108. 108. Numerical Results on SE Bandwidth: = 10 MHz Channel attenuation: G 128 + 10 log10 (d ) [LTE, 2011] - G = 5 dB: TRx feeder loss + antenna gains - d = 200 m: distance between Tx and Rx - = 3.76: path loss exponent AWGN: 2 z = 174 dBm / Hz PA: SM2122-44L Pmax out = 25 W g = 55 dB 0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 14 16 18 Power loading factor, SE(),b/s/Hz SEideal () SE() SEIBO () SE( SE) : ideal SE with an ideal PA : practical SE with a practical PA : approximated SE : optimal SE Figure 17: SE evaluation results. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 56 / 112
  109. 109. Power Consumption And Losses Power Amplifier (PA) Module DC Power Supply (PS) Module Base Band (BB) Module Radio Frequency (RF) Module (except PA) Active Cooler and Battery Back up (CB) Module (if present) PBB PRF PPA PCB Pin Pout loss loss loss loss Figure 18: Block diagram for system power consumption [Auer et al., 2011, Arnold et al., 2010, Deruyck et al., 2010, Deruyck et al., 2011, Kumar and Gurugubelli, 2011]. Px (1 + CPS)(1 + CCB)(PBB + PRF) CPS: power supply coecient between 0.1 and 0.15 CCB: active cooler and battery coecient less than 0.4 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 57 / 112
  110. 110. PA-Dependent Nonlinear Power Consumption Model PA-dependent nonlinear power consumption model (0 < 1): Pc() = Px + c c1 + c2 Pmax out - c: power loading-dependent scaling coecient - -way Doherty PA [Raab, 1987] (for class-A and B, = 1) (c1, c2) = 4 (2, 0) , 0 < 1, (0, 1) , 0 < 1 2 , (1, + 1) , 1 2 < 1. Ideal power consumption model with ideal PA (100% eciency): Pideal c () = Px + c 1 g1 Pmax out Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 58 / 112
  111. 111. PA-Dependent Nonlinear Power Consumption Model PA-dependent nonlinear power consumption model (0 < 1): Pc() = Px + c c1 + c2 Pmax out - c: power loading-dependent scaling coecient - -way Doherty PA [Raab, 1987] (for class-A and B, = 1) (c1, c2) = 4 (2, 0) , 0 < 1, (0, 1) , 0 < 1 2 , (1, + 1) , 1 2 < 1. Ideal power consumption model with ideal PA (100% eciency): Pideal c () = Px + c 1 g1 Pmax out Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 58 / 112
  112. 112. Power Consumption 0 0.2 0.4 0.6 0.8 1 60 90 120 150 180 210 240 Power loading factor, Powerconsumption,Pc(),W idle mode linear model nonlinear model with class B PA nonlinear model with 2-way Doherty PA model with ideal PA Figure 19: Power consumption of microcell base station with Px = 130 W and c = 4.7 4 . Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 59 / 112
  113. 113. Analytical Results on EE Practical EE EE() = SE() Pc() Ideal EE with a perfectly linear and ecient PA EEideal () SEideal () Pideal c () PA-dependent EE with a perfectly linear PA EElinear () SEideal () Pc() Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 60 / 112
  114. 114. Analytical Results on EE Practical EE EE() = SE() Pc() Ideal EE with a perfectly linear and ecient PA EEideal () SEideal () Pideal c () PA-dependent EE with a perfectly linear PA EElinear () SEideal () Pc() Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 60 / 112
  115. 115. Analytical Results on EE Practical EE EE() = SE() Pc() Ideal EE with a perfectly linear and ecient PA EEideal () SEideal () Pideal c () PA-dependent EE with a perfectly linear PA EElinear () SEideal () Pc() Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 60 / 112
  116. 116. Analytical Results on EE Theorem 4. EElinear () is a piecewise quasi-concave function over v + 1 + v2 2 /2 , where v = Pmax out c0c2/(P0 + Pmax out c0c1). Specically, EElinear () is quasi-concave over 1/2 and also over 1/2 < 1. Theorem 5. Assuming EE , EE equals either [ 1 ] 1/2 or [ 2 ]1 1/2,, where 1 and 2 are the solutions of EElinear () = 0 with given (c1, c2). Proposition 6. A closed form approximation of EE, denoted by EE, equals either [ 1 ] 1/2 or [ 2 ]1 1/2,, where i (i {1, 2}) approximates i and is given by EE = i i = 1 exp 2 + 2W ev , i = 1 or 2. where W() > 0 as ev > 0, so that W() is unique. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 61 / 112
  117. 117. Analytical Results on EE Theorem 4. EElinear () is a piecewise quasi-concave function over v + 1 + v2 2 /2 , where v = Pmax out c0c2/(P0 + Pmax out c0c1). Specically, EElinear () is quasi-concave over 1/2 and also over 1/2 < 1. Theorem 5. Assuming EE , EE equals either [ 1 ] 1/2 or [ 2 ]1 1/2,, where 1 and 2 are the solutions of EElinear () = 0 with given (c1, c2). Proposition 6. A closed form approximation of EE, denoted by EE, equals either [ 1 ] 1/2 or [ 2 ]1 1/2,, where i (i {1, 2}) approximates i and is given by EE = i i = 1 exp 2 + 2W ev , i = 1 or 2. where W() > 0 as ev > 0, so that W() is unique. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 61 / 112
  118. 118. Numerical Results on EE 0 0.2 0.4 0.6 0.8 1 0 0.5 1.0 1.5 2.0 2.5 Power loading factor, EE(),Mb/J EElinear ( EE); EE( EE); EE in Prop. 6 EElinear () EEideal () EE(): 2-way Doherty PA EE(): class-B PA EE(): class-A PA Figure 20: EE evaluation with Px = 130 W and c = 4.7. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 62 / 112
  119. 119. Practical SE-EE Tradeo 0 2 4 6 8 10 12 14 16 18 0 0.5 1.0 1.5 2.0 2.5 SE(), b/s/Hz EE(),Mb/J SE-EE tradeo with PAlow SE-EE tradeo with PAhigh : (SE( SE), EE( SE)) : (SE( EE), EE( EE)) Fig. 24 Figure 21: SE-EE tradeo with 2-way Doherty PAs. PAlow with Pmax out = 25 W and g = 55 dB, and PAhigh with Pmax out = 100 W and g = 50 dB. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 63 / 112
  120. 120. PA Switching (PAS) Method SE EE Low power PA, PA-1 SE EE High power PA, PA-2 Figure 22: Illustration of PAS Concept. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 64 / 112
  121. 121. PA Switching (PAS) Method SE EE Low power PA, PA-1 SE EE High power PA, PA-2 SE EE PA switching Figure 22: Illustration of PAS Concept. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 64 / 112
  122. 122. PAS for FDD/TDD Frame switching time frame k 1, PA-1 frame k, PA-1 frame k + 1, PA-2 time (a) FDD Systems switching time DL frame, PA-1 UL frame DL frame, PA-2 UL frame length + TTG + RTG > time TTG RTG (b) TDD Systems Figure 23: Illustration of PA switching between PA-1 and PA-2. K: frame number; T: frame length; : switching time Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 65 / 112
  123. 123. SE and EE of PAS SEs(, ) = kT SE 1() + (K k)T SE 2() KT + EEs(, ) = KT SEs(, ) kT P1 c () + (K k)T P2 c () = k K is PA time sharing factor. Switch power consumption is ignored as it is relatively negligible compared to Pi c (). FDD: > 0 unless there is switching. TDD: < 1 ms and UL frame length (10 ms) [LTE, 2011]; PAs can be switched between consecutive DL frames while receiving UL frame, without consuming any switching time overhead, i.e., = 0. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 66 / 112
  124. 124. SE-EE Tradeo of PAS = 10 s, LS = 1 dB, T = 10 ms, and K = 20 A B(D) : EE 210%(41%) SE 12% A C(E) : EE 323%(69%) SE 15% 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 SE(), b/s/Hz EE(),Mb/J GS = 0 dB, = 0 s, ideal GS = 1 dB, = 0 s, TDD GS = 1 dB, = 10 s, FDD GS = 1 dB, = 1 ms, FDD A DE B C SE-EE tradeo with PAhigh Figure 24: SE-EE tradeo. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 67 / 112
  125. 125. TAS-MRC Syst. with Partial CSIT x z1 z2 y1 MRC x y2 Ah2 Ah1S1 M +1 feedback for S1 and PC PC power contorl 1 2 : high-power main power ampliers Figure 25: A transmit antenna selection with maximum ratio combining system. Switch S1 selects a transmit antenna Switch S2 selects a PA [Joung et al., 2013] Pmax out : maximum output power of TX subject to regulatory constraints mPmax out : Maximum output power of PA m 0 < 1 < 2 < < M+1 = 1 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 68 / 112
  126. 126. TAS-MRC Syst. with Partial CSIT x z1 z2 y1 MRC x y2 Ah2 Ah1S1S2 o mode M +1 M 1 ... feedback for S1 and S2 0 M + 1 M 1 1 2 : high-power main power ampliers : low-power auxiliary power ampliers Figure 25: A transmit antenna selection with maximum ratio combining system. Switch S1 selects a transmit antenna Switch S2 selects a PA [Joung et al., 2013] Pmax out : maximum output power of TX subject to regulatory constraints mPmax out : Maximum output power of PA m 0 < 1 < 2 < < M+1 = 1 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 68 / 112
  127. 127. PA Switching Probability A switching probability for given target rate R b/s/Hz fm = Pr(Rm1 < R Rm) = (m1 m) (m1 + m 2) by using order statistics [David, 1970, Proakis and Salehi, 2007] - m 2R 1 2 m + 1 e(2R 1)2 m - 2 m 2 z AmP max out , where 2 z is variance of AWGN - 0 = 0 and M+2 = 1 EE of the proposed TAS-MRC systems for the given R EETAS MRC = R(1 fM+2) M+2 m=1 PTx,mfm - PTx,m 100cmP max out (m) + Px, if m = 1, . . . , M + 1, Px, if m = M + 2 (o-mode) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 69 / 112
  128. 128. PA Switching Probability A switching probability for given target rate R b/s/Hz fm = Pr(Rm1 < R Rm) = (m1 m) (m1 + m 2) by using order statistics [David, 1970, Proakis and Salehi, 2007] - m 2R 1 2 m + 1 e(2R 1)2 m - 2 m 2 z AmP max out , where 2 z is variance of AWGN - 0 = 0 and M+2 = 1 EE of the proposed TAS-MRC systems for the given R EETAS MRC = R(1 fM+2) M+2 m=1 PTx,mfm - PTx,m 100cmP max out (m) + Px, if m = 1, . . . , M + 1, Px, if m = M + 2 (o-mode) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 69 / 112
  129. 129. PA Output Power (Pout W) and Eciency (%) Table 5: Proposed PAS TAS-MRC with M = 2. PAS m PA Pout W % FB s1 s2 fm Auxiliary PA 1 PA1 0.63 W 55% 110/1 1/2 1 f1 2 PA2 2.5 W 43% 010/1 1/2 2 f2 Main PA 3 PA3 10 W 60% 100/1 1/2 3 f3 o-mode 4 o-mode 0 0 000 0 f4 Table 6: Conventional TAS-MRC System with Power Control. Level l PA Pout W % feedback s1 fpow l P1 1 PA3 0.63 W 9% 110/1 1/2 fpow 1 P2 2 PA3 2.5 W 32% 010/1 1/2 fpow 2 P3 3 PA3 10 W 60% 100/1 1/2 fpow 3 P4 4 o-mode 0 0 000 fpow 4 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 70 / 112
  130. 130. Mode Switching Probability 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f1:PA1 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 71 / 112
  131. 131. Mode Switching Probability 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f2:PA2 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 71 / 112
  132. 132. Mode Switching Probability 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f3:PA3 Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 71 / 112
  133. 133. Mode Switching Probability 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f4:PA4, o-mode Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 71 / 112
  134. 134. Mode Switching Probability 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 R b/s/Hz Probability,fm f1:PA1 f2:PA2 f3:PA3 f4:PA4, o-mode Figure 26: Switching probabilities. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 71 / 112
  135. 135. EE Comparison Simulation Environments PA1(0.63 W, 55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G 128 + 10 log10(d) [LTE, 2011] G = 5 dB, d = 0.6 km, = 3.76 2 = 174 dBm / Hz, = 10 MHz, Px = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyeciency(EE)Mb/J no power control Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 72 / 112
  136. 136. EE Comparison Simulation Environments PA1(0.63 W, 55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G 128 + 10 log10(d) [LTE, 2011] G = 5 dB, d = 0.6 km, = 3.76 2 = 174 dBm / Hz, = 10 MHz, Px = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyeciency(EE)Mb/J 1-bit FB for o-mode o-mode gain Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 72 / 112
  137. 137. EE Comparison Simulation Environments PA1(0.63 W, 55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G 128 + 10 log10(d) [LTE, 2011] G = 5 dB, d = 0.6 km, = 3.76 2 = 174 dBm / Hz, = 10 MHz, Px = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyeciency(EE)Mb/J 2-bit FB for Pow Ctrl o-mode power control gain gain Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 72 / 112
  138. 138. EE Comparison Simulation Environments PA1(0.63 W, 55%), PA2(2.5 W, 43%), PA3(10 W, 60%) 8 dB IBO Switch insertion loss: GS = 0 dB for S1, GS = 1 dB for S2 Channel attenuation: A dB = G 128 + 10 log10(d) [LTE, 2011] G = 5 dB, d = 0.6 km, = 3.76 2 = 174 dBm / Hz, = 10 MHz, Px = 40 W and c = 4.7 [Joung et al., 2014c] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0.2 0.4 0.6 0.8 1.0 1.2 R b/s/Hz Energyeciency(EE)Mb/J 2-bit FB for Pow Ctrl 2-bit FB for PAS Figure 27: EE comparison. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 72 / 112
  139. 139. MIMO Syst. with Partial CSIT x2 x1 z2 z1 y2 y1 MRC/MIMO x2 x1 Ah2 Ah1 M +1 M +1 Ant.2 Ant.1 : high-power main power ampliers PC PC power contorl feedback for PC Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs. Switch S0 selects a communication mode Switch S1 selects a PA [Joung et al., 2014d] mPmax out : Maximum output power of PA m {1, , M + 1} 0 < 1 < < M < M+1 = 1 2Pmax out : maximum output power of TX subject to regulatory constraints Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 73 / 112
  140. 140. MIMO Syst. with Partial CSIT x2 x1 z2 z1 y2 y1 MRC/MIMO x2 x1 Ah2 Ah1S0 S1 M +1 M +1 M 1 Ant.2 Ant.1 0 0 M + 1 M 1 1 : high-power main power ampliers : low-power auxiliary power ampliers feedback for S1 and S2 ... o-mode Figure 28: PAS MIMO system model with two main PA and M auxiliary PAs. Switch S0 selects a communication mode Switch S1 selects a PA [Joung et al., 2014d] mPmax out : Maximum output power of PA m {1, , M + 1} 0 < 1 < < M < M+1 = 1 2Pmax out : maximum output power of TX subject to regulatory constraints Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 73 / 112
  141. 141. Commun. Mode Selection Prob. A switching probability for given target rate R b/s/Hz - PAS-MRC mode: fm = fU (2R 1)2 m u < (2R 1)2 m1 , m = {1, , M} = m m1 where m 1 + 2R 1 2 m e(2R 1)2 m . - O-mode: fM+3 fC(x < R|2 M+1) = FC(R|2 M+1) FC(x|2 M+1)= 0 ex 1+ x 22 M+1 j2u ln 2 dx 0 x2 ex 1+ x 22 M+1 j2u ln 2 dx 0 xex 1+ x 22 M+1 j2u ln 2 dx 2 1 ej2ux j2u du. - MIMO mode: fM+2 = 1 M+1 m=1 fm fM+3 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 74 / 112
  142. 142. EE Analysis EE can be derived as EEPAS MIMO = R(1fM+3) M+3 m=1 PTx,mfm . - Numerator represents system throughput over bandwidth Hz and given target rate R - Denominator is total power consumption with model dened as [Joung et al., 2013, Heliot et al., 2012]: PTx,m = Pant,m + Psp1 + Px, if m = 1, , M + 1, 2Pant,m + Psp1 + Px, if m = M + 2, Px, if m = M + 3 + Pant,m: power consumption that is proportional to the number of transmit antennas NT [Xu et al., 2011], as Pant,m = cmP max out (m) + Pcc + Psp2 + c: a system dependent power loss coecient which can be empirically measured and obtained + (m): a PA eciency that depends on the input power (or equivalently PA output power) + Pcc and Psp2 are the RF circuit and signal processing related power consumptions per bandwidth, respectively, which are proportional to NT + 4 = 3 + Psp1: a sig. proc.g related power consumption which is independent of NT + Px: a xed power consumption, for power supply and cooling system, which is independent of P max out , NT , and Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 75 / 112
  143. 143. PA Output Power (Pout W) and Eciency (%) Table 7: Proposed PAS MIMO with M = 2. Comm. Mode m PA Pout W % FB s0 s1 fm PAS-MRC 1 PA1 0.63 W 55% 00 0 1 f1 2 PA2 2.5 W 43% 01 0 2 f2 3 PA3 10 W 60% 10 0 3 f3 MIMO 4 two PA3s 2 10 W 60% 11 1 3 f4 o-mode 5 PA4 0 0 null 0 0 f5 Table 8: Conventional MIMO System with Power Control. Level l PA Ptotal out W % feedback fpow l P1 1 PAa 3, PAb 3 2 0.315 W 5% 00 fpow 1 P2 2 PAa 3, PAb 3 2 1.25 W 15.5% 01 fpow 2 P3 3 PAa 3, PAb 3 2 5 W 32% 10 fpow 3 P4 4 PAa 3, PAb 3 2 10 W 60% 11 fpow 4 P5 5 o 0 0 null fpow 5 Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 76 / 112
  144. 144. Mode Switching Probability 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.2 0.4 0.6 0.8 1.0 Target rate, R b/s/Hz Probability,fm m = 1, PA1: 0.63 W m = 2 m = 3 m = 4 PA2 2.5 W PA3 10 W PA3+PA3 2 10 W m = 5, PA4: o-mode (a) 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.2 0.4 0.6 0.8 1.0 Target rate, R b/s/HzProbability,fpow l l = 5, P5: o-model = 1, P1: 2 0.315 W l = 2, P2 2 1.25 W l = 3, P3 2 5 W l = 4, P4 2 10 W (b) Figure 29: Probabilities. (a) fm of PAS. (b) fpow l of power control. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 77 / 112
  145. 145. EE Comparison Simulation Environments Switch insertion loss: GS = 0 dB for S0, GS = 0 dB for S1 2 = 174 dBm/ Hz, = 5 MHz, with 512 FFT size (300 subcarriers) Px = 36.4 W, c = 2.63, Pcc = 66.4 W, Px = 36.4 W, Psp1 = 1.28 W / Hz, Psp2 = 3.32 W / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyeciency(EE)Mb/J Conventional MIMO w/o Pow Ctrl. Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 78 / 112
  146. 146. EE Comparison Simulation Environments Switch insertion loss: GS = 0 dB for S0, GS = 0 dB for S1 2 = 174 dBm/ Hz, = 5 MHz, with 512 FFT size (300 subcarriers) Px = 36.4 W, c = 2.63, Pcc = 66.4 W, Px = 36.4 W, Psp1 = 1.28 W / Hz, Psp2 = 3.32 W / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyeciency(EE)Mb/J Conventional MIMO w/ Pow Ctrl. Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 78 / 112
  147. 147. EE Comparison Simulation Environments Switch insertion loss: GS = 0 dB for S0, GS = 0 dB for S1 2 = 174 dBm/ Hz, = 5 MHz, with 512 FFT size (300 subcarriers) Px = 36.4 W, c = 2.63, Pcc = 66.4 W, Px = 36.4 W, Psp1 = 1.28 W / Hz, Psp2 = 3.32 W / Hz 0 2 4 6 8 10 12 14 16 18 20 22 24 0 0.05 0.10 0.15 0.20 0.25 Target rate, R b/s/Hz Energyeciency(EE)Mb/J Conventional MIMO w/ Pow Ctrl. Proposed MIMO w/ PAS Figure 30: EE comparison of the proposed MIMO-MRC with PAS and the conventional MIMO w/ or w/o Pow Ctrl. Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 78 / 112
  148. 148. Index 1 Introduction and Background (35 min, 24 pages) Green Wireless Communications Eciency in Communications Theoretical Spectral Eciency (SE) Energy Eciency (EE) Tradeo Practical SE-EE Tradeo 2 Technologies for Energy Eciency (20 min, 11 pages) Device-Level Approach System-Level Approach Network-Level Approach 3 Review (30 min, 60 pages) PA Switching/Selection (PAS) Method Large-scale Distributed-Antenna Systems (L-DAS) 4 Conclusion and QnA (5 min, 3 page) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 79 / 112
  149. 149. System Model [Joung et al., 2014a] BBU deactivated DA user equipment SISO MISO MU-MIMO activated DA optical fibre large-scale distributed antennas (DAs) cellular communication networks Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 80 / 112
  150. 150. EE Model of L-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = uU log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc uwc u)|2 puu U u=1,u=u hr u sc u wc u 2 puu +2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(): TPD (transmit power dependent) term g(): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 81 / 112
  151. 151. EE Model of L-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = uU log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc uwc u)|2 puu U u=1,u=u hr u sc u wc u 2 puu +2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(): TPD (transmit power dependent) term g(): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 81 / 112
  152. 152. EE Model of L-DAS EE (S, W, P ) System throughput per unit time Total power consumption System throughput: R(S, W, P ) = uU log2 (1 + SINRu(S, W, P )) SINRu(S, W, P ) = |hr u(sc uwc u)|2 puu U u=1,u=u hr u sc u wc u 2 puu +2 Total power consumption: C(S, W, P ) = f(S, W, P ) + g(S, W ) f(): TPD (transmit power dependent) term g(): TPI (transmit power independent) term Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 81 / 112
  153. 153. Power Consumption Model: TPD ASIC, FPGA, DSP Examples: -digital up converter -digital predistorter -scrambling -CRC check -conv. encoder -interleaver -modulation -IFFT -CP insertion -parallel-to-serial eRF module oRF module oRF module eRF module Examples: -O/E converter Examples: -E/O converter -laser -driver -modulator Examples: -D/A converter -filters -synthesizer Examples: -VGA -driver -PA Examples: -AC/DC -DC/DC -active cooler ... ... ... ... ... ... baseband module mth RF module at BBU baseband unit (BBU) mth distributed antenna (DA) port 1st Ant. mth Ant. Mth Ant. 1 m M ber Psp1, Psp2, Psig (TPI) Pcc1,m (TPI) Pcc2,m (TPI)Pcc2,m (TPI) Px (TPI) Ptx,m (TPD) TPD term f(S, W, P ) = mM c m (S W )P (S W )H mm eRF (electric RF) oRF (optical RF) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 82 / 112
  154. 154. Power Consumption Model: TPI TPI term g(S, W ) = grf(S) + gbb(W ) + gnet(M) + Px grf(S) = mM Pcc1,m + Pcc2,m uU Ru maxu smu gbb(W ) = Psp1 [dim(W )]+1 + Psp2 gnet(M) = MPsig Pcc1: eRF Pcc2: per unit-bit-and-second of oRF Ru: target rate of user u 0: implies overhead power consumption of MU processing compared to SU-MIMO Px: xed power consumption (e.g., pow supply, AC/DC, DC/DC, and cooling system) Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 83 / 112
  155. 155. EE of L-DAS EE (S, W, P ) = uU log2 1 + |hr u (sc u wc u)| 2 puu U u=1,u=u |hr u (sc u wc u )|2 puu + 2 mM c m (S W )P (S W )H mm + mM Pcc1,m + Pcc2,m uU Ru max u smu + Psp1 [dim(W )] +1 + Psp2 + MPsig Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 84 / 112
  156. 156. Original Problem Formulation Po: original problem max {S,W,P } EE (S, W, P ) s.t. (S W )P (S W )H mm Pm, m M, Ru(S, W, P ) Ru, u U, pu1u2 = 0, u1 = u2 U, smu {0, 1}, m M, u U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 85 / 112
  157. 160. Original Problem Formulation Po: original problem max {S,W,P } EE (S, W, P ) s.t. (S W )P (S W )H mm Pm, m M, Ru(S, W, P ) Ru, u U, pu1u2 = 0, u1 = u2 U, smu {0, 1}, m M, u U objective function: EE per-ant pow constraints with max-output pow Pm per-user rate constraints with a target rate Ru diagonal structure of P DA selection Jingon Joung Tutorial 2: Energy Ecient Wireless Communications 85 / 112