energy management: 2013/2014 industrial energy use sgcie and primary energy evaluation methods class...

81
Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa [email protected]

Upload: internet

Post on 18-Apr-2015

102 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management: 2013/2014

Industrial Energy UseSGCIE

and Primary Energy Evaluation Methods

Class # 6

Prof. Tânia [email protected]

Page 2: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Cement, ceramics, glass, lime

Aluminium, copper, nickel

Plastics and fertilizers

GEA, 2012

Final Energy Use in Industry in 2005

Page 3: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy Use in Industry in 2005

• World Industrial final energy use in 2005 is 115EJ

• The bulk of industrial energy use is due to the production of a small number of energy intensive commodities:

– Chemicals and petrochemicals and the iron and steel sector account for approximately half of all industrial energy used worldwide.

• Other sectors that account for a significant share of industrial energy use:

– non-ferrous metals, non-metallic minerals and the pulp and paper sector.

Cement, ceramics, glass, lime

Aluminium, copper, nickel

Plastics and fertilizers

GEA, 2012

Page 4: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Final Energy Use in Industry in 2005

The bulk of industrial energy use isin developing economies (80% pop.)

Page 5: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World production of key materials

• Higher growth rates from the 90’ and then from the 2000’ onwards

Page 6: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World production of key materials

• Higher growth rates from the 90’ and then from the 2000’ onwards

• Heterogeneous growth

Page 7: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Production of key materials

• Growth rates between 2000-2007– Per-capita demand for materials increases with

income and economic development and then stabilizes

Page 8: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Production of key materials

• Growth rates between 2000-2007– Per-capita demand for materials increases with

income and economic development and then stabilizes (exceptions: paper and aluminium)

China is atypical

Page 9: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Production of key materials

• Growth rates between 2000-2007– Per-capita demand for materials increases with

income and economic development and then stabilizes (exceptions: paper and aluminium)

Page 10: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between different products and sectors

– And for the same products/sector?

Page 11: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between different products and sectors

– It changes in time due to technological inovations

Page 12: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between different products and sectors

– It changes in time due to technological inovations

Page 13: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between countries for similar products

Industrial Energy Intensity

Page 14: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between countries for similar products WHY?

Industrial Energy Intensity

Page 15: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity - energy use per unit of production or VA (UNIDO, 2010):– It differs between countries for similar products

• Access to resources (steel from steel recycling is 8 GJ/ton while from iron ore is 20.6 GJ/ton)

• Energy Prices

• Plant size and age of capital stock

• Capital cost (more efficient capital is also more expensive - interest rates)

• Awareness of energy efficiency measures and opportunity cost

• Government policies

Page 16: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Benchmark Curve

• Management tool to compare similar plants in energy use and energy efficiency (improvment potential)

SECEEI

BPT

more efficient

Energy efficiency index

Specific energy consumption

Page 17: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Benchmarking Industrial Energy Use

Page 18: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Benchmarking Industrial Energy Use

Page 19: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Benchmarking Industrial Energy Use

• Average 10-20% or 30-35% improvment potential– Lower than for other energy uses (e.g. in buildings is close to

50%)

Page 20: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

World Sankey Diagram in 2005

IAASA – Global Energy Assessment 2012

Page 21: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity (energy use per unit of VA):

– Depends on what?

Industrial Energy Use

VA

Page 22: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Industrial Energy Intensity

• Industrial energy intensity (energy use per unit of VA):– Efficiency

– Sectoral Structure

Page 23: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

• Industrial energy intensity (energy use per unit of VA):

– Efficiency

– Sectoral Structure

Industrial Energy Intensity

Industrial Energy Use

VA

Page 24: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Use in Industry

Page 25: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

• SGCIE (DL 71/2008) – Sistema de Gestão dos Consumos Intensivos de Energia (Energy Management System for Intensive Energy Consumers)

SGCIE

Page 26: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

• SGCIE (DL 71/2008) – Sistema de Gestão dos Consumos Intensivos de Energia (Energy Management System for Intensive Energy Consumers)

– It promotes energy efficiency for big primary energy consumers

– It promotes clean primary energy fuels mix

SGCIE

Page 27: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Domain of Application– All entities with an annual primary energy consumption

higher than 500 toe (1 toe = 41868 MJ)– Exceptions: Cogeneration facilities, transport entities

and buildings

• Supervision– DGEG

• Management – ADENE

Page 28: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Obligations (for IEC entities)– Promote the registration of facilities– Perform Energy Audits

• Every 6 years for entities 1000 toe

• Every 8 years for entities from 500 to 1000 toe

Page 29: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Obligations (for IEC entities)– Develop Energy Racionalization Plans

• Every measure with payback lower than 5 years must be implemented in the first 3 years for entities 1000 toe

• Every measure with payback lower than 3 years must be implemented in the first 3 years for entities from 500-1000 toe

Page 30: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Obligations (for IEC entities)– Develop Energy Racionalization Plans

• Energy Intensity must decrease 6% in 6 years for entities 1000 toe

• Energy Intensity must decrease 4% in 8 years for entities from 500 to 1000 toe

Page 31: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• What is the relationship between the Energy Intensity obtained using the definition in SGCIE and the energy specific consumption obtained with the block diagrams methodology?

Operation Am2

m3

mR

EAMaterials

lnput Production

Energyconsumption

Residues

m1 3 A 1 23

3 3

E E +E +ECE = =

m m

Page 32: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• The Energy Intensity obtained using the definition in SGCIE is the same obtained with the block diagrams methodology if:– There is only one product– The energy specific consumptions of the inputs is zero

8 (produção 1)

 

  A

  C

  D

  E

  B

 

 

 

 

 

 

 

 

2

1

 

F   

G

 

1413

1211

Electricity

Fueloil

Page 33: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Obligations (for IEC entities)– Develop Energy Rationalization Plans

• The carbon intensity must not increase

– Why a goal on carbon intensity?

Page 34: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Obligations (for IEC entities)– Develop Energy Rationalization Plans

• The carbon intensity must not increase

– Why a goal on carbon intensity?• Promote less polutant energy mixes (do not increase

energy efficiency by replacing less polutant energy forms with more polutant ones)

Page 35: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for CO2 emissions and primary energy– Despacho nº 17313/2008

Page 36: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for CO2 e emissions and primary energy– For primary fuels:

Page 37: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for primary energy– For electricity (in kWh per toe)?

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricida

de

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

Thermoelectricity produced with coal, oil, natural gas, biomass, urban waste and biogas

Page 38: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for primary energy– For electricity:

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricida

de

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

Thermoelectricity produced with coal, oil, natural gas, biomass, urban waste and biogas

06

2 325 57045%

2 444 703  475 571+1 970 751  61 957+1  82 765+1  9 7290.45 41868

kWh0.45toe 0.45 41868MJ 3.6 5234kWh toe1toe toe toe

1kWh needs 191 10 toe

Page 39: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for primary energy– For electricity:

– What would happen to this coefficient if we consider cogeneration?

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricida

de

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

Thermoelectricity produced with coal, oil, natural gas, biomass, urban waste and biogas

06

2 325 57045%

2 444 703  475 571+1 970 751  61 957+1  82 765+1  9 7290.45 41868

kWh0.45toe 0.45 41868MJ 3.6 5234kWh toe1toe toe toe

1kWh needs 191 10 toe

Page 40: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for primary energy– For electricity:

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricida

de

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

Thermoelectricity produced with coal, oil, natural gas, biomass, urban waste and biogas

BALANÇO ENERGÉTICOtep

 Total de Petróleo

Gás Natural

(*)

Gases o Outros

Derivados

Termo-electricidade

CalorResíduos

IndustriaisRenováveisSem Hídrica

2008  22= 15 +

2123

30 = 24 a 29

35 37 38 46 = 39 a 45

Cogeração 6.7

834 520 626 392 24 379 - 485 426 -1 472 450 2 523 974 514

Page 41: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for CO2 emissions

– For electricity (in kg CO2 e per kWh)?

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricidade

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

4111.4 kg CO2 e/toe3236.4 kg CO2 e/toe

2348.8 kg CO2 e/toe

Page 42: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

SGCIE

• Conversion coefficients for CO2 emissions

– For electricity (in kg CO2 e per kWh)

BALANÇO ENERGÉTICOtep

 Total de Carvão

Total de Petróleo

Gás Natural(*)

Termo-electricidade

Lenhas e Resíduos Vegetais

Resíduos Sólidos Urbanos

Biogás

2008   4 = 1 a 3 22= 15 + 21 23 35 40 41 44

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570 61 957 182 765 19 729

4111.4 kg CO2 e/toe3236.4 kg CO2 e/toe

2348.8 kg CO2 e/toe

2

2

4111.4 2 444 703 3236.4 475 571 2348.8 1 970 751 kg CO e2 325 570 41868

kWh3.6

0.6kg CO e kWh

IC

IC

Page 43: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Conversion coefficients for CO2 emissions and primary energy– For electricity:

– Conversão directa de kWh em tep?

Page 44: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Conversion coefficients for CO2 emissions and primary energy– For electricity:

– Conversão directa de kWh em tep?• 1kWh=3.6MJ=3.610-3/41.87 tep = 86 10-6

Page 45: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

SGCIE

• Conversion coefficients for CO2 emissions and primary energy– For vapor:

Page 46: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 47: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 48: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 49: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 50: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 51: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Page 52: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Exercise

• A factory produces 2 end products: P1 and P2. These products follow the production process shown in the diagram below, with P1 = 50000 ton/year and P2 = 30000 ton/year. The operation G treats the effluents from E and F. These two (E and F) are the only productive operations that generate waste, and SE = 1.2, SF = 1.3. In operation G, only 20% of the input effluent, exits the process as waste. The values of composition are as follows: f4 = 0.4, f6 = 0.5. The table presents the specific consumption of each operation. Consider that for electricity: 0.215 kgep/kWh & 0.47 kg CO2e/KWh and for fueloil 0.984 kgep/kg & 3236.4 kg CO2e/toe

a) What is the carbon intensity of this factory?A B C D E F G H

Electricidade (kWh/ton produto) 100 20 30 20 20 20

Thick Fuel Óleo (kg/ton produto) 50 60 50

8 (produção 1)

 

  A

  C

  D

  E

  B

 

 

 

 

 

 

 

 

2

1

 

F   

G

 

1413

1211

10 (produção 2)

3

4

5

6

7

9

Page 53: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Energy Management

Class # 6 :: Block Diagrams (cont.) & LCA & SGCIE

Exercise

8 (produção 1)

 

  A

  C

  D

  E

  B

 

 

 

 

 

 

 

 

2

1

 

F   

G

 

1413

1211

10 (produção 2)

3

4

5

6

7

9

3 4 5 6

7 9 10 11 12 2

3 4 8

8 8 10 10

100 20 300.215 0.47

20 20 20 kg CO

50 60 0.984 3.2364

CE CE kgoe

m m m m

m m m m m

m m mCI

m m

Page 54: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Valuation Methods

• Primary Energy flows that are not heat are not easily compared with the heat that fuels can deliver (e.g. ….)

Page 55: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de PetróleoGás Natural

(*)Gases o Outros

DerivadosTotal de

EectricidadeCalor

Resíduos Industriais

RenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 4547=4+22+23+30+36+3

7+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193

SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751   -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 24 379 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

Page 56: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de PetróleoGás Natural

(*)Gases o Outros

DerivadosTotal de

EectricidadeCalor

Resíduos Industriais

RenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 4547=4+22+23+30+36+3

7+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193

SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751   -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 24 379 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?

Page 57: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• Is there other primary energy associated with the electricity production in 2008?

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de PetróleoGás Natural

(*)Gases o Outros

DerivadosTotal de

EectricidadeCalor

Resíduos Industriais

RenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 4547=4+22+23+30+36+3

7+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193

SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751   -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 24 379 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

Page 58: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de PetróleoGás Natural

(*)Gases o Outros

DerivadosTotal de

EectricidadeCalor

Resíduos Industriais

RenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 23 30 = 24 a 29 36 = 31 a 35 37 38 46 = 39 a 4547=4+22+23+30+36+3

7+38+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167   923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.         1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960         - 837 97 193

SAÍDAS 4. 24 949 3 680 661     112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207   1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143   -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751   -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 24 379 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103   605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842             1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961   4 159 099 1 201 714 38 680 1 806 488 18 572 807

Primary Energy used for Electricity

• Is there other primary energy associated with the electricity production in 2008?

Page 59: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?– Primary energy associated with fuels that produce

(only) thermoelectricity is not problematic

– Primary energy associated with fuels that produce thermoelectricity & heat is more problematic

• Why?

Page 60: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?– Primary energy associated with fuels that produce

(only) thermoelectricity is not problematic

– Primary energy associated with fuels that produce thermoelectricity & heat is more problematic

• Why?

• How to split primary energy into primary energy associated with 1) heat production and 2) electricity production?

Page 61: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?– Primary energy associated with fuels that produce

(only) thermoelectricity is not problematic

– Primary energy associated with fuels that produce thermoelectricity & heat is more problematic

• The % of primary energy associated with electricity is equal to the % of electricity in the output (roughly 25%)

• All primary energy is attributed to electricity production

Page 62: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with the electricity production in 2008?– Primary energy associated with fuels that produce

(only) thermoelectricity is not problematic

– Primary energy associated with fuels that produce thermoelectricity & heat is more problematic

• The % of primary energy associated with electricity is equal to the % of electricity in the output (roughly 25%)

• All primary energy is attributed to electricity production

– What about primary energy associated with primary renewable electricity?

• In the PEB: it is just equal to electricity produced

Page 63: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with 1 kWh of (different types) of primary renewable electricity?

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

“electricity produced” Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh)

Page 64: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with 1 kWh of (different types) of primary renewable electricity?

• What would be the method if we were using the concept of Primary Energy?

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

“electricity produced” Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh)

“measure of fossil energy” 0 0 0 0

Page 65: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with 1 kWh of (different types) of primary renewable electricity?

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

“as it is found in nature” Kinetic energy Radiation Potential Energy Heat

“electricity produced” Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh)

“measure of fossil energy” 0 0 0 0

Page 66: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Physical Content Method (IEA)

• “The primary energy is the 1st energy form downstream for which multiple energy uses are pratical”

• Heat (nuclear, geothermal and solar thermal)– Conversion from heat to electricity in

geothermal is 10% and in nuclear is 30%• Electricity for wind, tide/wave/ocean and solar

photovoltaic (100%)

Page 67: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with 1 kWh of (different types) of primary renewable electricity?

– Physical Content Method: primary energy is the first form of comercial energy available (IEA)

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

“as it is found in nature” Kinetic energy Radiation Potential Energy Heat

“electricity produced” Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh)

“measure of fossil energy” 0 0 0 0

Physical Content Method Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Heat (1/0.1 kWh)

Page 68: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Partial Substitution Method (EIA)

• The amount of energy that would be necessary to generate and identical amount of electricity in conventional thermal power plants– Uses an average generating efficiency (40%) to

convert electricity to primary energy

Page 69: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy used for Electricity

• What is the primary energy associated with 1 kWh of (different types) of primary renewable electricity?

– Physical Content Method: primary energy is the first form of comercial energy available (IEA)

– Partial Substitution Method: primary energy is the amount of conventional energy that would have to be used (EIA)

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

“as it is found in nature” Kinetic energy Radiation Potential Energy Heat

“electricity produced” Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh)

“measure of fossil energy” 0 0 0 0

Physical Content Method Electricity (1 kWh) Electricity (1 kWh) Electricity (1 kWh) Heat (1/0.1 kWh)

Partial Substitution Method Fuel (1/0.4 kWh) Fuel (1/0.4 kWh) Fuel (1/0.4 kWh) Fuel (1/0.4 kWh)

Page 70: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Renewable Primary Energy

• What is the primary energy associated with the renewable electricity production in 2008 (toe)?

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

Portuguese Energetic Balance

495 102 3 268 627 456 16 512

Physical Content Method

Partial Substitution Method

Page 71: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Renewable Primary Energy

• What is the primary energy associated with the renewable electricity production in 2008 (toe)?

• What are the 1) total primary energy consumption & 2) fractions of renewable primary energy

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

Portuguese Energetic Balance

495 102 3 268 627 456 16 512

Physical Content Method 495 102 3 268 627 456 165 120

Partial Substitution Method 495 102/0.4 3 268/0.4 627 456/0.4 16 512/0.4

Methods Ren. Electricity + Other Ren.

Total Fraction of renewables

Portuguese Energetic Balance

Physical Content Method

Partial Substitution Method

Page 72: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Total primary energy consumption & renewable primary energy consumption?

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de Petróleo

Gás Natural(*)

Total de Eectricidade

CalorResíduos

IndustriaisRenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 2336 = 31 a

3537 38

46 = 39 a 45

47=4+22+23+30+36+37+38

+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.       1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960       - 837 97 193

SAÍDAS 4. 24 949 3 680 661   112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103 605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842           1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807

Page 73: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Total primary energy consumption & renewable primary energy consumption?

BALANÇO ENERGÉTICOtep  

Total de Carvão

Total de Petróleo

Gás Natural(*)

Total de Eectricidade

CalorResíduos

IndustriaisRenováveisSem Hídrica

TOTAL GERAL

2008   4 = 1 a 3 22= 15 + 21 2336 = 31 a

3537 38

46 = 39 a 45

47=4+22+23+30+36+37+38

+46

IMPORTAÇÕES 1. 2 327 219 16 608 384 4 163 167 923 984       24 022 754

PRODUÇÃO DOMÉSTICA 2.       1 142 338   39 800 3 190 679 4 372 817

VARIAÇÃO DE "STOCKS" 3. - 223 603 315 673 5 960       - 837 97 193

SAÍDAS 4. 24 949 3 680 661   112 918     17 634 3 836 162

CONSUMO DE ENERGIA PRIMÁRIA 5. 2 525 873 12 612 050 4 157 207 1 953 404   39 800 3 173 882 24 462 216

PARA NOVAS FORMAS DE ENERGIA 6. 2 444 703 1 079 137 2 597 143 -2 810 996 -1 472 450 1 120 1 367 391 3 206 048

Electricidade 6.6 2 444 703 475 571 1 970 751 -2 325 570     264 451 2 829 906

Cogeração 6.7   834 520 626 392 - 485 426 -1 472 450 2 523 974 514 504 452

CONSUMO DO SECTOR ENERGÉTICO 7.   475 376 56 103 605 301 270 736   3 1 407 519

CONSUMO COMO MATÉRIA PRIMA     1 275 842           1 275 842

DISPONÍVEL PARA CONSUMO FINAL 8. 81 170 9 781 695 1 503 961 4 159 099 1 201 714 38 680 1 806 488 18 572 807

Page 74: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Renewable Primary Energy

• What is the primary energy associated with the renewable electricity production in 2008 (toe)?

• What are the 1) total primary energy consumption & 2) fractions of renewable primary energy

Methods Wind Electricity

Photovoltaic Hydro Electricity

GeothermalElectricity

Portuguese Energetic Balance

495 102 3 268 627 456 16 512

Physical Content Method 495 102 3 268 627 456 165 120

Partial Substitution Method 495 102/0.4 3 268/0.4 627 456/0.4 16 512/0.4

Methods Ren. Electricity + Other Ren.

Total Fraction of renewables

Portuguese Energetic Balance 4316220 24462216 17.6%Physical Content Method

4464828 24610824 18.1%Partial Substitution Method

6029727 26175723 23%

Page 75: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Comparison of Methods

• Neither the Physical Content Method nor the Partial Substitution Methods are a measure of primary fossil energy

• Growth of wind, hydro or solar to produce electricity leads to energy savings with the Physical Content Method

Page 76: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Comparison of Methods

• Energy intensity (energy use per unit of GDP):– What is the meaning of the indicator?

Primary Energy

GDP

Page 77: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Comparison of Methods

• Energy intensity (energy use per unit of GDP):– A measure of the efficiency of a country in using

energy

– Low values correspond to environmental and economic advantages

• What happens to this indicator if a country that only uses electricity as final energy changes from only using coal as primary energy to only using hydro?– With the partial substitution method?

– With the physical content method?

Primary Energy

GDP

Page 78: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Valuation Methods

Physical Content Method

Cegonho, 2011

Page 79: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Valuation Methods

Partial Substitution MethodNominal efficiency is the yearly efficiency of fossil fuel power plants

Cegonho, 2011

Page 80: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Valuation Methods

BP Substitution MethodNominal efficiency is 38 % (typical of a fossil fuel power plant)

Cegonho, 2011

Page 81: Energy Management: 2013/2014 Industrial Energy Use SGCIE and Primary Energy Evaluation Methods Class # 6 Prof. Tânia Sousa taniasousa@ist.utl.pt

Primary Energy Valuation Methods

NL Substitution MethodNominal efficiency is the yearly efficiency of fossil fuel and nuclear power plants

Cegonho, 2011