energy spectra of electron excitations in graphite โ€ฆ

25
V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al. https://doi.org/10.15407/ujpe65.4.342 V.O. GUBANOV, A.P. NAUMENKO, M.M. BILYI, I.S. DOTSENKO, M.M. SABOV, M.S. IAKHNENKO, L.A. BULAVIN Taras Shevchenko National University of Kyiv, Faculty of Physics (64/13, Volodymyrsโ€™ka Str., Kyiv 01601, Ukraine) ENERGY SPECTRA OF ELECTRON EXCITATIONS IN GRAPHITE AND GRAPHENE AND THEIR DISPERSION MAKING ALLOWANCE FOR THE ELECTRON SPIN AND THE TIME-REVERSAL SYMMETRY The dispersion dependences of electron excitations in crystalline graphite and single-layer graphene have been studied taking the electron spin into consideration. The correlations of the energy spectra of electron excitations and, for the ๏ฌrst time, the compatibility conditions for two-valued irreducible projective representations characterizing the symmetry of spinor ex- citations in the indicated structures are determined, as well as the distributions of spinor quan- tum states over the projective classes and irreducible projective representations for all high- symmetry points in the corresponding Brillouin zones. With the help of theoretical symmetry- group methods for the spatial symmetry groups of crystalline graphite and single-layer graphene (in particular, the splitting of -bands at the Dirac points), the spin-dependent splittings in their electron energy spectra are found. The splitting magnitude can be considerable, e.g., for dichalcogenides of transition metals belonging to the same spatial symmetry group. But it is found to be small for crystalline graphite and single-layer graphene because of a low spin-orbit interaction energy for carbon atoms and, as a consequence, carbon structures. Keywords: crystalline graphite, single-layer graphene, spinor representations, factor- systems, dispersion of electron excitations, projective classes, two-valued irreducible projective representations. 1. Introduction In work [1], a theoretical symmetry-group descrip- tion was presented for the dispersion of vibrational and electron excitations in crystalline graphite. The analysis was carried out on the basis of projective classes of representations following from the spatial symmetry of crystalline graphite structure and deter- mined at various points of the corresponding Bril- louin zone. For high-symmetry points in the Bril- louin zone of crystalline graphite, irreducible pro- jective representations were constructed according to which the wave functions of elementary excitations in this substance are transformed. In work [1], cor- relations between phonon and electron excitations in graphite and single-layer graphene were also demon- strated. For both structures, only -bands โ€“ i.e. the c โ—‹ V.O. GUBANOV, A.P. NAUMENKO, M.M. BILYI, I.S. DOTSENKO, M.M. SABOV, M.S. IAKHNENKO, L.A. BULAVIN, 2020 electron bands of -orbitals producing -electrons and -holes, whose wave functions are orthogonal to the functions of -zones of 2 -hybridized -orbitals โ€“ were considered as electron ones. In so doing, we did not consider the spin-orbit interaction for electron states, because it is insigni๏ฌcant for -bands in car- bon structures [2]. The symmetry of the crystal lattice of Bernal graphite [3] is described by the spatial group 6 3 / ( 4 6โ„Ž ), which is also the spatial symmetry group of the crystal lattices of hexagonal boron ni- tride (BN) and hexagonal polytypes 2H and 2H of the dichalcogenides of transition metals (MoS 2 , MoSe 2 , WS 2 , WSe 2 , TeS 2 , and TeSe 2 ). Therefore, it was important for us to determine the qualita- tive character of the in๏ฌ‚uence of an electron spin on the structure of -bands in graphite and other com- pounds, whose crystal lattice is described by the spa- tial symmetry group 6 3 / ( 4 6โ„Ž ). Another issue, also important for us, was to consider the in๏ฌ‚uence of 342 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Upload: others

Post on 05-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

https://doi.org/10.15407/ujpe65.4.342

V.O. GUBANOV, A.P. NAUMENKO, M.M. BILYI, I.S. DOTSENKO, M.M. SABOV,M.S. IAKHNENKO, L.A. BULAVINTaras Shevchenko National University of Kyiv, Faculty of Physics(64/13, Volodymyrsโ€™ka Str., Kyiv 01601, Ukraine)

ENERGY SPECTRA OF ELECTRONEXCITATIONS IN GRAPHITE AND GRAPHENEAND THEIR DISPERSION MAKINGALLOWANCE FOR THE ELECTRON SPINAND THE TIME-REVERSAL SYMMETRY

The dispersion dependences of electron excitations in crystalline graphite and single-layergraphene have been studied taking the electron spin into consideration. The correlations ofthe energy spectra of electron excitations and, for the first time, the compatibility conditionsfor two-valued irreducible projective representations characterizing the symmetry of spinor ex-citations in the indicated structures are determined, as well as the distributions of spinor quan-tum states over the projective classes and irreducible projective representations for all high-symmetry points in the corresponding Brillouin zones. With the help of theoretical symmetry-group methods for the spatial symmetry groups of crystalline graphite and single-layer graphene(in particular, the splitting of ๐œ‹-bands at the Dirac points), the spin-dependent splittings intheir electron energy spectra are found. The splitting magnitude can be considerable, e.g., fordichalcogenides of transition metals belonging to the same spatial symmetry group. But it isfound to be small for crystalline graphite and single-layer graphene because of a low spin-orbitinteraction energy for carbon atoms and, as a consequence, carbon structures.K e yw o r d s: crystalline graphite, single-layer graphene, spinor representations, factor-systems, dispersion of electron excitations, projective classes, two-valued irreducible projectiverepresentations.

1. Introduction

In work [1], a theoretical symmetry-group descrip-tion was presented for the dispersion of vibrationaland electron excitations in crystalline graphite. Theanalysis was carried out on the basis of projectiveclasses of representations following from the spatialsymmetry of crystalline graphite structure and deter-mined at various points of the corresponding Bril-louin zone. For high-symmetry points in the Bril-louin zone of crystalline graphite, irreducible pro-jective representations were constructed according towhich the wave functions of elementary excitationsin this substance are transformed. In work [1], cor-relations between phonon and electron excitations ingraphite and single-layer graphene were also demon-strated. For both structures, only ๐œ‹-bands โ€“ i.e. the

cโ—‹ V.O. GUBANOV, A.P. NAUMENKO, M.M. BILYI,I.S. DOTSENKO, M.M. SABOV, M.S. IAKHNENKO,L.A. BULAVIN, 2020

electron bands of ๐œ‹-orbitals producing ๐œ‹-electronsand ๐œ‹-holes, whose wave functions are orthogonal tothe functions of ๐œŽ-zones of ๐‘ ๐‘2-hybridized ๐œŽ-orbitals โ€“were considered as electron ones. In so doing, we didnot consider the spin-orbit interaction for electronstates, because it is insignificant for ๐œ‹-bands in car-bon structures [2].

The symmetry of the crystal lattice of Bernalgraphite [3] is described by the spatial group๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž), which is also the spatial symmetrygroup of the crystal lattices of hexagonal boron ni-tride (BN) and hexagonal polytypes 2H ๐‘Ž and 2H ๐‘

of the dichalcogenides of transition metals (MoS2,MoSe2, WS2, WSe2, TeS2, and TeSe2). Therefore,it was important for us to determine the qualita-tive character of the influence of an electron spin onthe structure of ๐œ‹-bands in graphite and other com-pounds, whose crystal lattice is described by the spa-tial symmetry group ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž). Another issue,also important for us, was to consider the influence of

342 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

a bFig. 1. Structure of a standard unit cell of graphite crystals ๐›พ-๐ถ (๐‘Ž) and arrangement and orientation of the elements of thepoint symmetry group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž) (๐‘). Circles indicate the positions of carbon atoms (reproduced from work [1])

the time-reversal symmetry on elementary excitationsin lattices with the indicated spatial symmetry.

2. Standard Unit Cells, Brillouin Zones,and Basic Symmetry Elements of Graphiteand Single-Layer Graphene

In Fig. 1, ๐‘Ž, a standard unit cell of the crystal lat-tice of Bernal graphite, ๐›พ-๐ถ, is shown [3]. It corre-sponds to the standard diagram of its spatial sym-metry group ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž) [4]. In Fig 1, ๐‘, the ar-rangement and orientation of the symmetry elementsfor the point group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž) are demonstrated.

Figure 2 illustrates the Brillouin zone in ๐›พ-๐ถ crys-tals and its symmetry points. The points are denotedby letters corresponding to Herringโ€™s notation forhexagonal structures [5, 6].

The Wignerโ€“Seitz unit cell and the Brillouin zonefor single-layer graphene ๐ถ๐ฟ,1 are depicted in Fig. 3, ๐‘Žand Fig. 3, ๐‘, respectively. Solid lines are used inFig. 3, ๐‘Ž to schematically mark the unit cell ofgraphene ๐ถ๐ฟ,1. The figure also illustrates the corre-sponding primitive translation vectors ๐‘Ž1 and ๐‘Ž2, aswell as the orientation of cell symmetry elements inthe three-dimensional space, which were used in cal-culations. The dashed lines in Fig. 3, ๐‘Ž demonstratethe reciprocal lattice vectors ๐‘1 and ๐‘2 on an arbi-

Fig. 2. Brillouin zone of graphite ๐›พ-๐ถ crystals and its sym-metry points (reproduced from work [1])

trary scale and the positions of reciprocal lattice sitesin the reciprocal space. In Fig. 3, ๐‘, on the contrary,solid lines are used to show the reciprocal lattice vec-tors, and the dashed ones to demonstrate the directlattice vectors. The unit cells (the Wignerโ€“Seitz cells)of the graphene layer in the coordinate (Fig. 3, ๐‘Ž) andreciprocal (Fig. 3, ๐‘) spaces (in the latter case, thiscell coincides with the first Brillouin zone) are col-ored grey. In Fig. 3, ๐‘, the high-symmetry points ฮ“ ,๐พ, and ๐‘€ in the Brillouin zone of graphene are also

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 343

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

a bFig. 3. Wignerโ€“Seitz unit cell (๐‘Ž) and Brillouin zone of single-layer graphene ๐ถ๐ฟ,1 (b) (reproduced from work [1])

shown. The equivalent points are marked by one ortwo primes.

The spatial symmetry group of the crystalline lat-tice of graphite, ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž), is nonsymmor-phic. It is determined by the basic (main) elements,which can be chosen as follows:

โ„Ž1 = (0|๐‘’), โ„Ž2 = (0|๐‘3), โ„Ž3 = (0|๐‘23), โ„Ž4 = (0|(๐‘ข2)1),

โ„Ž5 = (0|(๐‘ข2)2), โ„Ž6 = (0|(๐‘ข2)3), โ„Ž7 =(๐‘Ž1

2

๐‘2

),

โ„Ž8 =(๐‘Ž1

2

๐‘56

), โ„Ž9 =

(๐‘Ž1

2

๐‘6

), โ„Ž10 =

(๐‘Ž1

2

(๐‘ขโ€ฒ

2)1

),

โ„Ž11 =(๐‘Ž1

2

(๐‘ขโ€ฒ

2)2

), โ„Ž12 =

(๐‘Ž1

2

(๐‘ขโ€ฒ

2)3

), โ„Ž13 = (0|๐‘–),

โ„Ž14 = (0|๐‘–๐‘3), โ„Ž15 = (0|๐‘–๐‘23), โ„Ž16 = (0|๐‘–(๐‘ข2)1),

โ„Ž17 = (0|๐‘–(๐‘ข2)2), โ„Ž18 = (0|๐‘–(๐‘ข2)3), โ„Ž19 =(๐‘Ž1

2

๐‘–๐‘2

),

โ„Ž20 =(๐‘Ž1

2

๐‘–๐‘56

), โ„Ž21 =

(๐‘Ž1

2

๐‘–๐‘6

), โ„Ž22 =

(๐‘Ž1

2

๐‘–(๐‘ขโ€ฒ

2)1

),

โ„Ž23 =(๐‘Ž1

2

๐‘–(๐‘ขโ€ฒ

2)2

), โ„Ž24 =

(๐‘Ž1

2

(๐‘ขโ€ฒ

2)3

),

where ๐‘Ž1 is a primitive vector of the crystal latticedirected along the axis ๐‘‚๐‘ (๐‘‚๐‘ง). At the same time,

the spatial symmetry group of the crystal lattice ofsingle-layer graphene, ๐‘ƒ6/๐‘š๐‘š๐‘š (๐ท๐บ80) [7], whosediagram coincides with that of the tri-periodic spatialgroup ๐‘ƒ6/๐‘š๐‘š๐‘š (๐ท1

6โ„Ž), is symmorphic, and all itsโ€œrotationalโ€ elementsโ€“the symmetry elements of thepoint group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž)โ€“do not contain nontrivial(partial) translations.

3. Qualitative Characterof the Influence of Electron Spin andTime-Reversal Symmetry on the EnergySpectra of Elementary Excitationsin Crystalline Graphite, Their Dispersionat the Points Along the Lines ฮ“โ€“ฮ”โ€“A,Kโ€“Pโ€“H, and Mโ€“Uโ€“L of Its Brillouin Zone,and the Energy Spectra and Dispersionof Electron ๐œ‹-Bands of Single-LayerGraphene at Points ฮ“ , K, and M

3.1. Line ฮ“โ€“ฮ”โ€“A of crystalline graphite andpoint ฮ“ of single-layer graphene

3.1.1. Points ฮ“

At points ฮ“, the factor groups of the wave-vectorgroups with respect to the subgroups of trivial trans-lations are isomorphic to the same point symmetry

344 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

group 6/๐‘š๐‘š๐‘š, (๐ท6โ„Ž) for both crystalline graphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1. This point groupis a symmetry group of equivalent directions in theboth structures: in crystalline graphite ๐›พ-๐ถ, where itis a group of the crystalline class, and in single-layergraphene ๐ถ๐ฟ,1, where it characterizes the symmetryof the macromolecular class [1].

The wave functions of vibrational elementary ex-citations at points ฮ“ โˆ’ ฮ“vib (ฮ“lat.vib) are trans-formed, for both crystalline graphite and single-layergraphene, by the single-valued vector irreducible rep-resentations of the point group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž), whichare irreducible representations of the projective class๐พ0 of this group. The representations of those exci-tations are determined by the formula [8]

ฮ“vib = ฮ“eq โŠ— ฮ“vector, (1)

where ฮ“eq is the atomic equivalence representation 1

at point ฮ“ , and ฮ“vector is the representation of a polarvector r with the components ๐‘ฅ, ๐‘ฆ, and ๐‘ง.

Among the electron excitations at points ฮ“ , wewill consider only the excitations of electron ๐œ‹-bands,whose wave functions are orthogonal to those ofthe ๐‘ ๐‘2-hybridized ๐œŽ-bands (i.e. the bands of ๐‘ ๐‘2-hybridized ๐œŽ-electrons). In work [1], when determin-ing the representations ฮ“๐œ‹ for states neglecting thespin (at a weak spin-orbit interaction), we used thefollowing formula, which, in addition to the represen-tation ฮ“eq, includes only the representation ฮ“๐‘ง:

ฮ“๐œ‹ = ฮ“eq โŠ— ฮ“๐‘ง, (2)

where ฮ“๐‘ง is a representation that is an irreduciblerepresentation of the group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž) for a vec-tor directed along the ๐‘ง-axis, because the electron๐œ‹-bands in graphite and graphene are formed by thenondegenerate electron orbitals ๐‘๐‘ง.

In order to determine the electron representation of๐œ‹-bands making allowance for the electron spin, ฮ“โ€ฒ

๐œ‹,we have to use the formula

ฮ“โ€ฒ๐œ‹ = ฮ“eq โŠ— ฮ“โ€ฒ

๐‘ง. (3)

Here, ฮ“โ€ฒ๐‘ง is the representation of the electron ๐œ‹-orbital

taking the spin into account. It is determined using

1 A technique used for determining the character of the atomicequivalence representations and the results of correspondingcalculations for the high-symmetry points in the Brillouinzones of graphite and single-layer graphene were presentedin work [1].

the formula

ฮ“โ€ฒ๐‘ง = ฮ“๐‘ง โŠ—๐ท+

1/2. (4)

In turn, ๐ท+1/2 is an even two-dimensional (spinor) rep-

resentation of the rotation group for the quantumnumber of total electron angular momentum ๐‘— = 1

2 .Its characters in the case of the rotation by the angle๐œ‘ are equal to [9]

๐œ’๐‘—(๐‘๐œ‘) =sin

[(๐‘— + 1

2

)๐œ‘]

sin(๐œ‘2

) . (5)

In Table 1, the irreducible representations of theprojective class ๐พ0 for the group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž) aregiven. They describe the symmetry of vibrationaland electron excitations at points ฮ“ of crystallinegraphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1 mak-ing no allowance for the spin. They are identical tothe ordinary single-valued vector irreducible repre-sentations. In addition, Table 1 contains the irre-ducible representations of the projective class ๐พ1 forthe group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž). They characterize the sym-metry of electron states making allowance for thespin. They are two-valued spinors.

In Table 2, the characters of equivalence repre-sentations, ฮ“eq, and the characters of representa-tions that characterize the symmetry of electron ๐œ‹-bands making allowance for the electron spin (๐œ‹โ€ฒ-bands), ฮ“โ€ฒ

๐œ‹ = ฮ“eq โŠ— ฮ“โ€ฒ๐‘ง, are presented for points ฮ“

in the Brillouin zones of crystalline graphite ๐›พ-๐ถ andsingle-layer graphene ๐ถ๐ฟ,1. The table also presentsthe characters of the representations ฮ“๐‘ง, ๐ท+

1/2, andฮ“โ€ฒ๐‘ง = ฮ“๐‘ง โŠ—๐ท+

1/2, as well as the corresponding projec-tive representations, for other high-symmetry pointsin the Brillouin zones of those structures.

The electron excitation distributions at the high-symmetry points in the Brillouin zones of crystallinegraphite and single-layer graphene with respect toirreducible two-valued spinor projective representa-tions are shown in Table 3. For the sake of compari-son, the distributions of electron excitations with re-spect to irreducible projective representations for ๐œ‹-bands without taking the electron spin into consider-ation are also included.

In Table 3, the following notations for the irre-ducible projective representations are applied in orderto clearly distinguish two-valued spinor representa-tions in various projective classes for various points

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 345

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 1. Characters of the one- and two-valued irreducible projectiverepresentations for points ฮ“ in the Brillouin zones of crystalline graphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1

Projec-tiveclass

Notation forirreducibleprojective

representation

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘2 ๐‘56 ๐‘6 3๐‘ขโ€ฒ2 ๐‘– ๐‘–๐‘3 ๐‘–๐‘23 3๐‘–๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ

2

๐พ0 ฮ“+1 ๐ด+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1ฮ“โˆ’1 ๐ดโˆ’

1 1 1 1 1 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1

ฮ“+2 ๐ด+

2 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1

ฮ“โˆ’2 ๐ดโˆ’

2 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 1 1 1ฮ“+3 ๐ด+

3 1 1 1 โˆ’1 1 1 1 โˆ’1 1 1 1 โˆ’1 1 1 1 โˆ’1

ฮ“โˆ’3 ๐ดโˆ’

3 1 1 1 โˆ’1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 โˆ’1 โˆ’1 โˆ’1 1ฮ“+4 ๐ด+

4 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1ฮ“โˆ’4 ๐ดโˆ’

4 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 โˆ’1 โˆ’1 โˆ’1 1 1 1 1 โˆ’1

ฮ“+5 ๐ธ+

1 2 โˆ’1 โˆ’1 0 2 โˆ’1 โˆ’1 0 2 โˆ’1 โˆ’1 0 2 โˆ’1 โˆ’1 0ฮ“โˆ’5 ๐ธโˆ’

1 2 โˆ’1 โˆ’1 0 2 โˆ’1 โˆ’1 0 โˆ’2 1 1 0 โˆ’2 1 1 0ฮ“+6 ๐ธ+

2 2 โˆ’1 โˆ’1 0 โˆ’2 1 1 0 2 โˆ’1 โˆ’1 0 โˆ’2 1 1 0ฮ“โˆ’6 ๐ธโˆ’

2 2 โˆ’1 โˆ’1 0 โˆ’2 1 1 0 โˆ’2 1 1 0 2 โˆ’1 โˆ’1 0

๐พ1 ฮ“+7 (๐ธโ€ฒ

1)+ 2 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0 2 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0

ฮ“โˆ’7 (๐ธโ€ฒ

1)โˆ’ 2 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0 โˆ’2 โˆ’1 1 0 0 โˆ’

โˆš3

โˆš3 0

ฮ“+8 (๐ธโ€ฒ

2)+ 2 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0 2 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0

ฮ“โˆ’8 (๐ธโ€ฒ

2)โˆ’ 2 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0 โˆ’2 โˆ’1 1 0 0

โˆš3 โˆ’

โˆš3 0

ฮ“+9 (๐ธโ€ฒ

3)+ 2 โˆ’2 2 0 0 0 0 0 2 โˆ’2 2 0 0 0 0 0

ฮ“โˆ’9 (๐ธโ€ฒ

3)โˆ’ 2 โˆ’2 2 0 0 0 0 0 โˆ’2 2 โˆ’2 0 0 0 0 0

in the Brillouin zones: letters denote points in theBrillouin zone of the structure; primed letters de-note two-valued spinor representations, whereas non-primed letters denote ordinary single-valued vectorones; parenthesized figures in the superscript indi-cate projective classes; figures in the internal sub-script mean the ordinal number of an irreducible rep-resentation in the given projective class; and the signsโ€œ+โ€ and โ€œโˆ’โ€ in the external superscript indicate therepresentation parity. It is evident that in those no-tations, ((ฮ“โ€ฒ)

(1)1 )+ โ‰ก ฮ“+

7 and ((ฮ“โ€ฒ)(1)2 )โˆ’ โ‰ก ฮ“โˆ’

8 , whereฮ“+7 and ฮ“โˆ’

8 are the spinor representations (writtenin the conventional notation system) that were used,e.g., to denote two-valued spinor representations inTable 1. An additional external subscript, if any, in-dicates the ordinal number of the representation, ifthere are several ones.

3.1.2. Point ๐ด

The wave-vector star of point ๐ด in the Brillouin zoneof crystalline graphite ๐›พ-๐ถ, similarly to that of pointฮ“ , is composed of a single vector ๐‘˜๐ด = โˆ’ 1

2 ๐‘1 [1]. The

factor group of the wave-vector group with respect tothe invariant translation subgroup for graphite crys-tals is, as it takes place for point ฮ“ , also isomorphicto the group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž).

It was shown in work [1] that the two-valued (spi-nor) irreducible projective representations at point ๐ดin the Brillouin zone of crystalline graphite ๐›พ-๐ถ be-long to the projective class ๐พ4 of the point symme-try group of equivalent directions ๐น๐‘˜, 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž),coinciding with the crystal class group. It is so be-cause the single-valued (vector) projective represen-tations for point ๐ด, which are determined by theproperties of the spatial symmetry group of graphite,๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท6โ„Ž), at this point, belong to the pro-jective class ๐พ5 [1], the transformation of spinorsat symmetry operations of the directional groupsof wave-vector groups to the projective class ๐พ1,and the product of the projective classes ๐พ5 and๐พ1, which is determined by the pairwise multipli-cation of the values of the coefficients ๐›ผ, ๐›ฝ, and ๐›พ(i.e. ๐›ผ(5)๐›ผ(1), ๐›ฝ(5)๐›ฝ(1), and ๐›พ(5)๐›พ(1)), equals ๐พ5๐พ1 =๐พ4 in the system of notations used for projectiveclasses [1].

346 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Table 2. Characters of the equivalence representations ๐ทeq, the representations ๐ท๐‘ง

characterizing the spatial symmetry of ๐œ‹-orbitals, the spinor representations ๐ท+1/2

, and the spinor

representations ๐ทโ€ฒ๐‘ง = ๐ท๐‘ง ร— ๐ท

+1/2

characterizing the symmetry of ๐œ‹-orbitals taking the spininto account (the spin ๐œ‹-orbitals); and the characters of the representations ๐ทโ€ฒ

๐œ‹

that characterize the symmetry of electron ๐œ‹-bands taking the spin into account for variouspoints of Brillouin zones in crystalline graphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1

Points ฮ“Point groups 6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

Projective classes ๐พ1 except for the representations ฮ“eq and ฮ“๐‘ง

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž) ๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘2 ๐‘56 ๐‘6 3๐‘ขโ€ฒ2 ๐‘– ๐‘–๐‘3 ๐‘–๐‘23 3๐‘–๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ

2

๐›พ โˆ’ ๐ถ ๐‘˜ = 0 ฮ“eq 4 4 4 0 0 0 0 4 0 0 0 4 4 4 4 0ฮ“๐‘ง 1 1 1 โˆ’1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 โˆ’1 โˆ’1 โˆ’1 1

๐ท+1/2

2 1 โˆ’1 0 0 โˆ’โˆš3

โˆš3 0 2 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0

ฮ“โ€ฒ๐‘ง 2 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0 โˆ’2 โˆ’1 1 0 0

โˆš3 โˆ’

โˆš3 0

ฮ“โ€ฒ๐œ‹ 8 4 โˆ’4 0 0 0 0 0 0 0 0 0 0 4

โˆš3 โˆ’4

โˆš3 0

๐ถ๐ฟ,1 ๐‘˜ = 0 ฮ“eq 2 2 2 0 0 0 0 2 0 0 0 2 2 2 2 0ฮ“โ€ฒ๐œ‹ 4 2 โˆ’2 0 0 0 0 0 0 0 0 0 0 2

โˆš3 โˆ’2

โˆš3 0

Point ๐ดPoint group 6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

Projective class ๐พ4 except for the representation ๐ดeq and ๐ดโ€ฒ๐‘ง

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž) ๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘2 ๐‘56 ๐‘6 3๐‘ขโ€ฒ2 ๐‘– ๐‘–๐‘3 ๐‘–๐‘23 3๐‘–๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ

2

๐›พ โˆ’ ๐ถ ๐‘˜๐ด =

= โˆ’(1/2)๐‘1

๐ดeq 4 4 4 0 0 0 0 0 0 0 0 4 0 0 0 0๐ดโ€ฒ

๐‘ง 2 1 โˆ’1 0 0 โˆ’โˆš3

โˆš3 0 โˆ’2 โˆ’1 1 0 0

โˆš3 โˆ’

โˆš3 0

๐ดโ€ฒ๐œ‹ 8 4 โˆ’4 0 0 0 0 0 0 0 0 0 0 0 0 0

Points ๐พPoint groups 6๐‘š2(๐ท3โ„Ž)

Projective classes ๐พ1 except for the representations ๐พeq, ๐พ๐‘ง and ๐พ๐œ‹

6๐‘š2(๐ท3โ„Ž) ๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐›พ โˆ’ ๐ถ (๐‘˜๐พ)1 = โˆ’(1/3)(2๐‘2 โˆ’ ๐‘3) ๐พeq 4 1 1 0 4 1 1 0(๐‘˜๐พ)2 = (1/3)(2๐‘2 โˆ’ ๐‘3) ๐พ๐‘ง 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1

๐พ๐œ‹ 4 1 1 0 โˆ’4 โˆ’1 โˆ’1 0๐ท+

1/22 1 โˆ’1 0 0 โˆ’

โˆš3

โˆš3 0

๐พโ€ฒ๐‘ง 2 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0

๐พโ€ฒ๐œ‹ 8 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0

๐ถ๐ฟ,1 (๐‘˜๐พ)1 = โˆ’(1/3)(2๐‘1 โˆ’ ๐‘2) ๐พeq 2 โˆ’1 โˆ’1 0 2 โˆ’1 โˆ’1 0(๐‘˜๐พ)2 = (1/3)(2๐‘1 โˆ’ ๐‘2) ๐พ๐œ‹ 2 โˆ’1 โˆ’1 0 โˆ’2 1 1 0

๐พโ€ฒ๐œ‹ 4 โˆ’1 1 0 0 โˆ’

โˆš3

โˆš3 0

Point ๐ปPoint group 6๐‘š2(๐ท3โ„Ž)

Projective classes ๐พ1 (๐ปeq, ๐ป๐œ‹ , ๐ท+1/2

and ๐ปโ€ฒ๐‘ง) and ๐พ0(๐ปโ€ฒ

๐‘ง)

6๐‘š2(๐ท3โ„Ž) ๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐›พ โˆ’ ๐ถ (๐‘˜๐ป)1 = โˆ’(1/2)๐‘1 โˆ’ (1/3)(2๐‘2 โˆ’ ๐‘3) ๐ปeq 4 1 1 0 0โˆš3 โˆ’

โˆš3 0

(๐‘˜๐ป)2 = โˆ’(1/2)๐‘1 + (1/3)(2๐‘2 โˆ’ ๐‘3) ๐ป๐‘ง 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1๐ป๐œ‹ 4 1 1 0 0 โˆ’

โˆš3๐‘–

โˆš3๐‘– 0

๐ท+1/2

2 1 โˆ’1 0 0 โˆ’โˆš3

โˆš3 0

๐ปโ€ฒ๐‘ง 2 1 โˆ’1 0 0

โˆš3 โˆ’

โˆš3 0

๐ปโ€ฒ๐œ‹ 8 1 โˆ’1 0 0 3๐‘– 3๐‘– 0

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 347

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Point ๐‘ƒPoint group 3๐‘š(๐ถ3๐œ)Projective class ๐พ0

3๐‘š(๐ถ3๐œ) ๐‘’ ๐‘3 ๐‘23 3๐‘–๐‘ขโ€ฒ2

๐›พ โˆ’ ๐ถ (๐‘˜๐‘ƒ )1 = โˆ’๐‘˜๐‘ง โˆ’ (1/3)(2๐‘2 โˆ’ ๐‘3) ๐‘ƒeq 4 1 1 0(๐‘˜๐‘ƒ )2 = โˆ’๐‘˜๐‘ง + (1/3)(2๐‘2 โˆ’ ๐‘3) ๐‘ƒ๐‘ง 1 1 1 1(๐‘˜๐‘ƒ )3 = ๐‘˜๐‘ง โˆ’ (1/3)(2๐‘2 โˆ’ ๐‘3) ๐‘ƒ๐œ‹ 4 1 1 0(๐‘˜๐‘ƒ )4 = ๐‘˜๐‘ง + (1/3)(2๐‘2 โˆ’ ๐‘3) ๐ท+

1/22 1 โˆ’1 0

๐‘ƒ โ€ฒ๐‘ง 2 1 โˆ’1 0

๐‘ƒ โ€ฒ๐œ‹ 8 1 โˆ’1 0

Points ๐‘€Point groups ๐‘š๐‘š๐‘š(๐ท2โ„Ž)

Projective classes ๐พ0 (๐‘€eq, ๐‘€๐‘ง and ๐‘€๐œ‹) and ๐พ1 (๐ท+1/2

, ๐‘€ โ€ฒ๐‘ง and ๐‘€ โ€ฒ

๐œ‹)

๐‘š๐‘š๐‘š(๐ท2โ„Ž) ๐‘’ (๐‘ข2)1 ๐‘2 (๐‘ขโ€ฒ2)1 ๐‘– ๐‘–(๐‘ข2)1 ๐‘–๐‘2 ๐‘–(๐‘ขโ€ฒ

2)1

๐›พ โˆ’ ๐ถ (๐‘˜๐‘€ )1 = โˆ’(1/2)๐‘3, ๐‘€eq 4 0 0 4 0 4 4 0(๐‘˜๐‘€ )2 = (1/2)๐‘2 ๐‘€๐‘ง 1 โˆ’1 1 โˆ’1 โˆ’1 1 โˆ’1 1

(๐‘˜๐‘€ )3 = โˆ’(1/2)(๐‘2 โˆ’ ๐‘3), ๐‘€๐œ‹ 4 0 0 โ€“4 0 4 โ€“4 0๐ท+

1/22 0 0 0 2 0 0 0

๐‘€ โ€ฒ๐‘ง 2 0 0 0 โ€“2 0 0 0

๐‘€ โ€ฒ๐œ‹ 8 0 0 0 0 0 0 0

๐ถ๐ฟ,1 (๐‘˜๐‘€ )1 = โˆ’(1/2)๐‘2 ๐‘€eq 2 0 0 2 0 2 2 0(๐‘˜๐‘€ )2 = (1/2)๐‘1 ๐‘€๐œ‹ 2 0 0 โ€“2 0 2 โ€“2 0(๐‘˜๐‘€ )3 = โˆ’(1/2)(๐‘1 โˆ’ ๐‘2) ๐‘€ โ€ฒ

๐œ‹ 4 0 0 0 0 0 0 0

Point ๐ฟPoint group ๐‘š๐‘š๐‘š(๐ท2โ„Ž)

Projective classes ๐พ5 (๐ฟ๐œ‹) and ๐พ4 (๐ฟโ€ฒ๐œ‹)

๐‘š๐‘š๐‘š(๐ท2โ„Ž) ๐‘’ (๐‘ข2)1 ๐‘2 (๐‘ขโ€ฒ2)1 ๐‘– ๐‘–(๐‘ข2)1 ๐‘–๐‘2 ๐‘–(๐‘ขโ€ฒ

2)1

๐›พ โˆ’ ๐ถ (๐‘˜๐ฟ)1 = โˆ’(1/2)(๐‘1 + ๐‘3) ๐ฟeq 4 0 0 0 0 4 0 0(๐‘˜๐ฟ)2 = โˆ’(1/2)(๐‘1 โˆ’ ๐‘2) ๐ฟ๐‘ง 1 โ€“1 1 โ€“1 โ€“1 1 โ€“1 1(๐‘˜๐ฟ)3 = โˆ’(1/2)(๐‘1 + ๐‘2 โˆ’ ๐‘3) ๐ฟ๐œ‹ 4 0 0 0 0 4 0 0

๐ท+1/2

2 0 0 0 2 0 0 0

๐ฟโ€ฒ๐‘ง 2 0 0 0 โ€“2 0 0 0

๐ฟโ€ฒ๐œ‹ 8 0 0 0 0 0 0 0

The factor-system for point ๐ด with making al-lowance for the spin, ๐œ”2,๐ด(๐‘Ÿ2, ๐‘Ÿ1), is the prod-uct of the factor-systems ๐œ”1,๐ด(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1),i.e. ๐œ”2,๐ด(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”1,๐ด(๐‘Ÿ2, ๐‘Ÿ1)๐œ”2(๐‘Ÿ2, ๐‘Ÿ1). The formeris determined by the structure of the spatial group ofa graphite crystal, ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž), at point ๐ด ne-glecting the spin, and the latter describes the trans-formations of spinors at point ฮ“ (in the point symme-try group 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž)). They and their structureare described in details in work [1] (see Tables 1 and6 in the cited work). The factor-system ๐œ”2,๐ด(๐‘Ÿ2, ๐‘Ÿ1) ispresented in Table 4.

The standard factor-system for point ๐ด with mak-ing allowance for the spin, ๐œ”โ€ฒ

2,๐ด(๐‘Ÿ2, ๐‘Ÿ1), which belongsto the projective class ๐พ4, coincides with the standardfactor-system of this class, ๐œ”โ€ฒ

(4)(๐‘Ÿ2, ๐‘Ÿ1), and is theproduct of the standard factor-systems ๐œ”โ€ฒ

1,๐ด(๐‘Ÿ2, ๐‘Ÿ1) โ‰กโ‰ก ๐œ”โ€ฒ

(5)(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”โ€ฒ2(๐‘Ÿ2, ๐‘Ÿ1), i.e. ๐œ”โ€ฒ

2,๐ด(๐‘Ÿ2, ๐‘Ÿ1) โ‰กโ‰ก ๐œ”โ€ฒ

(4)(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”โ€ฒ(5)(๐‘Ÿ2, ๐‘Ÿ1)๐œ”

โ€ฒ2(๐‘Ÿ2, ๐‘Ÿ1). This factor-

system is presented in Table 5. The reductioncoefficients ๐‘ข2,๐ด(๐‘Ÿ) of the factor-system ๐œ”2,๐ด(๐‘Ÿ2, ๐‘Ÿ1)to the standard form ๐œ”โ€ฒ

2,๐ด(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(4)(๐‘Ÿ2, ๐‘Ÿ1) are

determined as the products of the correspondingreduction coefficients ๐‘ข1,๐ด(๐‘Ÿ) and ๐‘ข2(๐‘Ÿ) of the factor-

348 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Table 3. Distributions of electron excitations over the irreducible projectiverepresentations of corresponding projective classes for electron ๐œ‹-bands at high-symmetrypoints in the Brillouin zones of the crystalline graphite ๐›พ-๐ถ and single-layer graphene๐ถ๐ฟ,1 structures not taking (๐‘Ž) and taking (๐‘) the electron spin into account

Crystallinegraphite ๐›พ-๐ถ

Single-layergraphene ๐ถ๐ฟ,1

Points ฮ“Point groups 6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

a) Projective classes ๐พ0

ฮ“๐œ‹ = 2(ฮ“(0)2 )+ + 2(ฮ“

(0)3 )โˆ’(ฮ“๐œ‹ = 2ฮ“+

2 + 2ฮ“โˆ’3 ) ฮ“๐œ‹ = (ฮ“

(0)2 )+ + (ฮ“

(0)3 )โˆ’(ฮ“๐œ‹ = ฮ“+

2 + ฮ“โˆ’3 )

b) Projective classes ๐พ1

ฮ“โ€ฒ๐œ‹ = 2((ฮ“โ€ฒ)

(1)1 )+ + 2((ฮ“โ€ฒ)

(1)2 )โˆ’(ฮ“โ€ฒ

๐œ‹ = 2ฮ“+7 + 2ฮ“โˆ’

8 ) ฮ“โ€ฒ๐œ‹ = ((ฮ“โ€ฒ)

(1)1 )+ + (ฮ“โ€ฒ)

(1)2 )โˆ’(ฮ“โ€ฒ

๐œ‹ = ฮ“+7 + ฮ“โˆ’

8 )

Points ๐ดPoint group 6๐‘š๐‘š๐‘š(๐ท6โ„Ž)

a) Projective class ๐พ5

๐ด๐œ‹ = 2๐ด(5)1 [(๐ด

(5)1 )1 + (๐ด

(5)1 )2]

b) Projective class ๐พ4

๐ดโ€ฒ๐œ‹ = 2(๐ดโ€ฒ)

(4)3 [((๐ดโ€ฒ)

(4)3 )1 + ((๐ดโ€ฒ)

(4)3 )2]

Points ๐พPoint groups 6๐‘š2(๐ท3โ„Ž)Projective classes ๐พ0

๐พ๐œ‹ = ๐พ(0)2 +๐พ

(0)4 +๐พ

(0)6 ๐พ๐œ‹ = ๐พ

(0)6

Projective classes ๐พ1

๐พโ€ฒ๐œ‹ = 2(๐พโ€ฒ)

(1)1 + (๐พโ€ฒ)

(1)2 + (๐พโ€ฒ)

(1)3 ๐พโ€ฒ

๐œ‹ = (๐พโ€ฒ)(1)2 + (๐พโ€ฒ)

(1)3

Points ๐ปPoint group 6๐‘š2(๐ท3โ„Ž)

a) Projective class ๐พ1

๐ป๐œ‹ = ๐ป(1)1 +๐ป

(1)3

b) Projective class ๐พ0

๐ปโ€ฒ๐œ‹ = ((๐ปโ€ฒ)

(0)1 + (๐ปโ€ฒ)

(0)3 ) + (๐ปโ€ฒ)

(0)5 + 2(๐ปโ€ฒ)

(0)6

Points ๐‘ƒPoint group 3๐‘š(๐ถ3๐œ)

a) Projective class ๐พ0

๐‘ƒ๐œ‹ = ๐‘ƒ(0)1 + ๐‘ƒ

(0)2 + ๐‘ƒ

(0)3

b) Projective class ๐พ0

๐‘ƒ โ€ฒ๐œ‹ = ((๐‘ƒ โ€ฒ)

(0)1 + (๐‘ƒ โ€ฒ)

(0)2 ) + 3(๐‘ƒ โ€ฒ)

(0)3

Points ๐‘€Point groups ๐‘š๐‘š๐‘š(๐ท2โ„Ž)a) Projective classes ๐พ0

๐‘€๐œ‹ = 2(๐‘€(0)2 )+ + 2(๐‘€

(0)3 )โˆ’ ๐‘€๐œ‹ = (๐‘€

(0)2 )+ + (๐‘€

(0)3 )โˆ’

b) Projective classes ๐พ1

๐‘€ โ€ฒ๐œ‹ = 2((๐‘€ โ€ฒ)(1))+ + 2((๐‘€ โ€ฒ)(1))โˆ’ ๐‘€ โ€ฒ

๐œ‹ = ((๐‘€ โ€ฒ)(1))+ + ((๐‘€ โ€ฒ)(1))โˆ’

Point ๐ฟPoint group ๐‘š๐‘š๐‘š(๐ท2โ„Ž)

ะฐ) Projective class ๐พ5

๐ฟ๐œ‹ = 2๐ฟ(5)1

b) Projective class ๐พ4

๐ฟโ€ฒ๐œ‹ = 2((๐ฟโ€ฒ)

(4)1 ) + (๐ฟโ€ฒ)

(4)2 )

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 349

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Ta

ble

4.F

act

or-

syst

em

2,A(r2,r1)

for

poin

t A

inth

e B

rill

ou

in z

on

e of

cry

stall

ine

gra

ph

ite

-(t

he

spati

al

sym

metr

y g

rou

p

4

36h

P6/mmc(D

),

the

pro

ject

ive

class

4).

Th

e b

ott

om

part

of

the

tab

le c

on

tain

s

the

valu

es o

f th

efu

nct

ion

2,A

u(r)

that

tra

nsf

orm

th

e fa

ctor-

syst

em

2,A

21

(r,r)

to t

he

sta

nd

ard

form

2,A

21

(4)

21

(r,r)

(r, r)

350 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

21

4 6h

Ta

ble

5.S

tan

da

rd f

act

or-

syst

em

2,A(r,r)

(th

e sp

ati

al

sym

met

ry g

rou

p P63/mmc(D

),th

e p

roje

ctiv

e cl

ass

4)

for

po

int A

in t

he

Bri

llo

uin

zo

ne

of

cryst

all

ine

gra

ph

ite

-ta

kin

g t

he

elec

tro

n s

pin

in

to a

cco

un

t, w

hic

h c

oin

cid

es w

ith

th

e st

an

dard

(4)

21

fact

or-

syst

em

(r,r)

of

the

pro

ject

ive

cla

ss

4of

the

po

int

sym

met

ry g

rou

p2,A

21

6h

(4)

21

(r,r)

6/mmm(D

):

(r,r)

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 351

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 6. Characters of the irreducible projective representationsof the projective class ๐พ4 corresponding to the standard factor-system ๐œ”โ€ฒ

(4)(๐‘Ÿ2, ๐‘Ÿ1) of this class

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

๐‘’ ๐‘1 ๐‘23 3๐‘ข2 ๐‘2 ๐‘56 ๐‘6 3๐‘ขโ€ฒ2 ๐‘– ๐‘–๐‘3 ๐‘–๐‘23 3๐‘–๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ

2

๐พ4 ๐‘ƒ(4)1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

๐‘ƒ(4)2 2 2 2 โ€“2 0 0 0 0 0 0 0 0 0 0 0 0

๐‘„(4) 4 โˆ’2 โˆ’2 0 0 0 0 0 0 0 0 0 0 0 0 0

๐‘ข2,๐ด(๐‘Ÿ) 1 โ€“1 1 ๐‘– ๐‘– โˆ’๐‘– โˆ’๐‘– โ€“1 1 โ€“1 1 ๐‘– โˆ’๐‘– ๐‘– ๐‘– 1

Table 7. Characters of the two-valued (spinor) irreducibleprojective representations of point ๐ด in the Brillouin zone of crystalline graphite ๐›พ-๐ถ

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘2 ๐‘56 ๐‘6 3๐‘ขโ€ฒ2 ๐‘– ๐‘–๐‘3 ๐‘–๐‘23 3๐‘–๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ

2

๐พ4 (๐ดโ€ฒ)(4)1 2 โˆ’2 2 2๐‘– 0 0 0 0 0 0 0 0 0 0 0 0

((๐ดโ€ฒ)(4)1 + (๐ดโ€ฒ)

(4)2 )<

(๐ดโ€ฒ)(4)2 2 โˆ’2 2 โˆ’2๐‘– 0 0 0 0 0 0 0 0 0 0 0 0

(๐ดโ€ฒ)(4)3 4 2 โˆ’2 0 0 0 0 0 0 0 0 0 0 0 0 0

systems ๐œ”1,๐ด(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) to the standardform, i.e. ๐‘ข2,๐ด(๐‘Ÿ) = ๐‘ข1,๐ด(๐‘Ÿ)๐‘ข2(๐‘Ÿ) [1]. The values ofthe coefficients ๐‘ข2,๐ด(๐‘Ÿ) are shown in the bottom partof Table 4.

The characters of the irreducible projective rep-resentations of the projective class ๐พ4, which cor-respond to the standard factor-system of this class,๐œ”โ€ฒ(4)(๐‘Ÿ2, ๐‘Ÿ1), are given in Table 6, and the characters

of the two-valued (spinor) irreducible projective rep-resentations of point ๐ด are quoted in Table 7. In thebottom part of Table 6, the values of the coefficients๐‘ข2,๐ด(๐‘Ÿ) are shown. As it has to be, the equalities

(๐ดโ€ฒ)(4)๐‘– = ๐‘ข2,๐ด(๐‘Ÿ)๐‘ƒ

(4)๐‘– (6)

are satisfied.The characters of the projective equivalence repre-

sentation at point ๐ด, i.e. the representation ๐ดeq andthe two-valued representations ๐ดโ€ฒ

๐‘ง โ‰ก ฮ“โ€ฒ๐‘ง and ๐ดโ€ฒ

๐œ‹ aregiven in Table 2. The distributions of electron exci-tations at point ๐ด in the Brillouin zone of crystallinegraphite ๐›พ-๐ถ for the ๐œ‹-bands neglecting the electronspin and taking it into account are presented in Ta-ble 3. It is of interest that electron excitations of ๐œ‹-bands at point ๐ด in the Brillouin zone of crystalline

graphite ๐›พ-๐ถ making allowance for the spin are four-fold degenerate, because their states are transformedaccording to the four-dimensional irreducible projec-tive representations of the projective class ๐พ4. In theabsence of external magnetic fields, additional condi-tions associated with the time-reversal invariance areimposed on the wave functions of states and, accord-ingly, on the representations. In this case, some of thestates may become additionally degenerate.

Let us account for the time-reversal invariance ofthe states at points ฮ“ and ๐ด in the Brillouin zone ofcrystalline graphite and point ฮ“ in the Brillouin zoneof single-layer graphene with the help of the Herringcriterion [5, 6, 9]. The corresponding calculation pro-cedure is described in works [9,10] in detail. In partic-ular, the summation is carried out over the elements๐‘”โ€ฒ = (๐›ผ|๐‘Ÿโ€ฒ) of the wave-vector group ๐บ๐‘˜ that satisfythe condition ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜ (๐‘Ÿโ€ฒ๐‘˜ = โˆ’๐‘˜).

For points ฮ“ and ๐ด of crystalline graphite ๐›พ-๐ถand point ฮ“ of single-layer graphene ๐ถ๐ฟ,1, each wave-vector star has one ray. At those points, the wave vec-tors โˆ’๐‘˜ and ๐‘˜ are equivalent (โˆ’๐‘˜ โ‰ก ๐‘˜), and the con-dition ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜ is satisfied, for crystalline graphite๐›พ-๐ถ, by the elements ๐‘”โ€ฒ1 = (0 |๐‘’ ), ๐‘”โ€ฒ2 = (0 |๐‘3 ),

352 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

๐‘”โ€ฒ3 = (0๐‘23 ), ๐‘”โ€ฒ4 = (0 |(๐‘ข2)1 ), ๐‘”โ€ฒ5 = (0 |(๐‘ข2)2 ), ๐‘”โ€ฒ6 =

= (0 |(๐‘ข2)3 ), ๐‘”โ€ฒ7 = (๐‘Ž1

2 |๐‘2 ), ๐‘”โ€ฒ8 = (๐‘Ž1

2

๐‘56 ), ๐‘”โ€ฒ9 =

= (๐‘Ž1

2 |๐‘6 ), ๐‘”โ€ฒ10 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2 )1), ๐‘”โ€ฒ11 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2 )2),

๐‘”โ€ฒ12 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2 )3), ๐‘”โ€ฒ13 = (0 |๐‘– ), ๐‘”โ€ฒ14 = (0 |๐‘–๐‘3 ), ๐‘”โ€ฒ15 =

= (0๐‘–๐‘23 ), ๐‘”โ€ฒ16 = (0 |๐‘–(๐‘ข2)1 ), ๐‘”โ€ฒ17 = (0 |๐‘–(๐‘ข2)2 ), ๐‘”โ€ฒ18 =

= (0 |๐‘–(๐‘ข2)3 ), ๐‘”โ€ฒ19 = (๐‘Ž1

2 |๐‘–๐‘2 ), ๐‘”โ€ฒ20 = (๐‘Ž1

2

๐‘–๐‘56 ), ๐‘”โ€ฒ21 =

= (๐‘Ž1

2 |๐‘–๐‘6 ), ๐‘”โ€ฒ22 = (๐‘Ž1

2 |๐‘–(๐‘ขโ€ฒ2 )1), ๐‘”โ€ฒ23 = (๐‘Ž1

2 |๐‘–(๐‘ขโ€ฒ2 )2),

and ๐‘”โ€ฒ24 = (๐‘Ž1

2 |๐‘–(๐‘ขโ€ฒ2 )3) and, for single-layer graphene

๐ถ๐ฟ,1, by the same values, for which the nontrivialtranslation ๐‘Ž1

2 = 0, because the spatial group ofsingle-layer graphene is symmorphic and, unlike thespatial group of crystalline graphite, does not containnontrivial translations.

It is easy to calculate the squares of those ele-ments, (๐‘”โ€ฒ)2 = (๐‘Ÿ๐›ผ+๐›ผ

๐‘Ÿ2 ). In particular, for points

ฮ“ and ๐ด of crystalline graphite, (๐‘”โ€ฒ1)2 = (0 |๐‘’ ),

(๐‘”โ€ฒ2)2 = (0

๐‘23 ), (๐‘”โ€ฒ3)

2 = (0 |๐‘ž๐‘3 ), (๐‘”โ€ฒ4)2 = (0 |๐‘ž ),

(๐‘”โ€ฒ5)2 = (0 |๐‘ž ), (๐‘”โ€ฒ6)

2 = (0 |๐‘ž ), (๐‘”โ€ฒ7)2 = (๐‘Ž1 |๐‘ž ),

(๐‘”โ€ฒ8)2 = (๐‘Ž1

๐‘ž๐‘23 ), (๐‘”โ€ฒ9)

2 = (๐‘Ž1 |๐‘3 ), (๐‘”โ€ฒ10)2 = (0 |๐‘ž ),

(๐‘”โ€ฒ11)2 = (0 |๐‘ž ), (๐‘”โ€ฒ12)

2 = (0 |๐‘ž ), (๐‘”โ€ฒ13)2 = (0 |๐‘’ ),

(๐‘”โ€ฒ14)2 = (0

๐‘23 ), (๐‘”โ€ฒ15)

2 = (0 |๐‘ž๐‘3 ), (๐‘”โ€ฒ16)2 = (0 |๐‘ž ),

(๐‘”โ€ฒ17)2 = (0 |๐‘ž ), (๐‘”โ€ฒ18)

2 = (0 |๐‘ž ), (๐‘”โ€ฒ19)2 = (0 |๐‘ž ),

(๐‘”โ€ฒ20)2 = (0

๐‘ž๐‘23 ), (๐‘”โ€ฒ21)

2 = (0 |๐‘3 ), (๐‘”โ€ฒ22)2 = (๐‘Ž1 |๐‘ž ),

(๐‘”โ€ฒ23)2 = (๐‘Ž1 |๐‘ž ), (๐‘”โ€ฒ24)2 = (๐‘Ž1 |๐‘ž ) where ๐‘ž is the rota-

tion by the angle 2๐œ‹ around the corresponding axis;and, for point ฮ“ of single-layer graphene ๐ถ๐ฟ,1, theseare the same values, for which the trivial translationvector ๐‘Ž1 = 0.

The stages of calculations according to the Her-ring criterion and the results obtained are presentedin Table 18 (see Appendix). From the values of theHerring criterion, it is easy to see that both thesingle- and two-valued projective representations atpoints ฮ“ and ๐ด of crystalline graphite ๐›พ-๐ถ andpoint ฮ“ of single-layer graphene ๐ถ๐ฟ,1, except forthe representations (๐ดโ€ฒ)

(4)1 and (๐ดโ€ฒ)

(4)2 for crystalline

graphite, are related to the case ๐‘Ž1 [9], where thereis no additional degeneration of the states providedthat their invariance with respect to the time re-versal is taken into account. At the same time, theprojective representations at point ๐ด for crystallinegraphite โ€“ these are the representations (๐ดโ€ฒ)

(4)1 and

(๐ดโ€ฒ)(4)2 โ€“ are related to the case ๐‘1 [9] and, be-

ing representations with complex-conjugated char-acters, group together to increase the degeneracyorder of electron states to four. This grouping ofcomplex-conjugated representations is illustrated inTable 7.

3.1.3. Point ฮ”

The group of equivalent directions of the wave-vectorgroup at point ฮ” of crystalline graphite ๐›พ-๐ถ is thegroup 6๐‘š๐‘š(๐ถ6๐‘ฃ). The wave-vector star at this pointcontains two rays. The irreducible single- and two-valued projective representations for point ฮ” aregiven in work [1]. The condition ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜ at thispoint is satisfied by the elements ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜: ๐‘”โ€ฒ4 == (0 |(๐‘ข2)1), ๐‘”โ€ฒ5 = (0 |(๐‘ข2)2), ๐‘”โ€ฒ6 = (0 |(๐‘ข2)3), ๐‘”โ€ฒ10 == (๐‘Ž1

2 |(๐‘ขโ€ฒ2)1), ๐‘”โ€ฒ11 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)2), ๐‘”โ€ฒ12 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)3),

๐‘”โ€ฒ13 = (0 |๐‘–), ๐‘”โ€ฒ14 = (0 |๐‘–๐‘3), ๐‘”โ€ฒ15 = (0๐‘–๐‘23), ๐‘”โ€ฒ19 =

= (๐‘Ž1

2 |๐‘–๐‘2), ๐‘”โ€ฒ20 = (๐‘Ž1

2

๐‘–๐‘56) and ๐‘”โ€ฒ21 = (๐‘Ž1

2 |๐‘–๐‘6).The squares of those elements can be easily calcu-lated: (๐‘”โ€ฒ4)

2 = (0 |๐‘ž), (๐‘”โ€ฒ5)2 = (0 |๐‘ž ), (๐‘”โ€ฒ6)

2 = (0 |๐‘ž),(๐‘”โ€ฒ10)

2 = (0 |๐‘ž), (๐‘”โ€ฒ11)2 = (0 |๐‘ž), (๐‘”โ€ฒ12)

2 = (0 |๐‘ž),(๐‘”โ€ฒ13)

2 = (0 |๐‘’), (๐‘”โ€ฒ14)2 = (0

๐‘23), (๐‘”โ€ฒ15)

2 = (0 |๐‘ž๐‘3),(๐‘”โ€ฒ19)

2 = (0 |๐‘ž), (๐‘”โ€ฒ20)2 = (0๐‘ž๐‘23) and (๐‘”โ€ฒ21)

2 = (0 |๐‘3).After calculating the Herring criteria, it is easy to

see that all, both single- and two-valued, irreducibleprojective representations at this point belong to thecase ๐‘Ž2 [9] (subscript 2 means that ๐‘˜ is not equiva-lent to โˆ’๐‘˜, but the space group contains an element๐‘… that transforms ๐‘˜ into โˆ’๐‘˜), when there is no addi-tional degeneration of the states provided that theirinvariance with respect to the time reversal is takeninto account. The consistency conditions for the irre-ducible projective representations along the directionฮ“ โˆ’ฮ”โˆ’๐ด, which is the direction of the highest sym-metry in the Brillouin zone of a crystal structure withthe spatial symmetry group ๐‘ƒ63/๐‘š๐‘š๐‘(๐ท4

6โ„Ž), wereshown in Fig. 5 of work [1].

3.2. Line Kโ€“Pโ€“H of crystallinegraphite and point K of single-layer graphene

3.2.1. Redesignation

First of all, let us make an important clarifica-tion. The matrices of the irreducible representationsof the wave-vector groups, ๐ท๐‘˜(โ„Ž), and their charac-ters ๐œ’๐ท๐‘˜(โ„Ž) contain the phase factor ๐‘’โˆ’๐‘–๐‘˜(๐›ผ+๐‘Ž), where๐‘˜ is the wave vector, ๐›ผ the vector of nontrivial trans-lation, and ๐‘Ž the vector of trivial translation forthe element ๐‘” = (๐›ผ + ๐‘Ž|๐‘Ÿ) of the spatial symmetrygroup. This factor was not taken into consideration,when constructing the characters of irreducible rep-resentations in work [1] (see formulas (6) and (7) inwork [1]). For the basic elements of the spatial group,one can choose a = 0, so that this phase factor takes

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 353

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

the form ๐‘’โˆ’๐‘–k๐›ผ, where the nontrivial translation vec-tor ๐›ผ corresponds to the โ€œrotationalโ€ element ๐‘Ÿ, i.e. tothe basic element โ„Ž = (๐›ผ|๐‘Ÿ) of the spatial symme-try group. The account for the phase factor ๐‘’โˆ’๐‘–๐‘˜๐›ผ

for the elements ๐‘Ÿโ€™s is necessary, when constructinga correct irreducible projective representation of thewave-vector group in the cases where the scalar prod-uct (๐‘˜,๐›ผ) = 0. Note that in the case of point ๐ด con-sidered above, the nontrivial translation vector ๐›ผ wasalways equal to zero for the nonzero characters of โ€œro-tationalโ€ elements ๐‘Ÿโ€™s.

Since the phase factor ๐‘’โˆ’๐‘–k๐›ผ(๐‘Ÿ) is inherent to thespatial symmetry of a periodic structure, it can be in-troduced into the definition of the atomic equivalencerepresentation by replacing formula (15) in work [1]by the formula๐œ’eq(๐‘…๐›ผ) = ๐‘’โˆ’๐‘–๐‘˜๐›ผ(๐‘…๐›ผ)

โˆ‘๐‘—

๐›ฟ๐‘…๐›ผ๐‘Ÿ๐‘— ,๐‘Ÿ๐‘—๐‘’๐‘–๐พ๐‘š๐‘Ÿ๐‘— , (7)

denoting the previously used ๐œ’eq(๐‘…๐›ผ) without thephase factor as (๐œ’eq)0(๐‘…๐›ผ), i.e. the new ๐ทeq will con-tain the phase factor ๐‘’โˆ’๐‘–๐‘˜๐›ผ(๐‘…๐›ผ), and also denot-ing ๐ทeq obtained for various points in the Brillouinzone in work [1] and not containing the phase factoras (๐ทeq)0.

At points ๐พ and ๐ป of crystalline graphite ๐›พ-๐ถ andpoint ๐พ of single-layer graphene ๐ถ๐ฟ,1, the factor-

Table 8. Characters of the irreducibleprojective representations of the projective classes๐พ0 and ๐พ1 of the group 6๐‘š2(๐ท3โ„Ž) correspondingto the standard factor-systems ๐œ”โ€ฒ

(0)(๐‘Ÿ2, ๐‘Ÿ1) (the

unity-containing factor-system for ordinary vectorrepresentations) and ๐œ”โ€ฒ

(1)(๐‘Ÿ2, ๐‘Ÿ1), respectively

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐พ0 ๐พ(0)1 ๐พ1 1 1 1 1 1 1 1 1

๐พ(0)2 ๐พ2 1 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1

๐พ(0)3 ๐พ3 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1

๐พ(0)4 ๐พ4 1 1 1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1

๐พ(0)5 ๐พ5 2 โ€“1 โ€“1 0 2 โˆ’1 โˆ’1 0

๐พ(0)6 ๐พ6 2 โ€“1 โ€“1 0 โˆ’2 1 1 0

๐พ1 ๐‘ƒ(1)1 2 โ€“1 โ€“1 0 0

โˆš3๐‘– โˆ’

โˆš3๐‘– 0

๐‘ƒ(1)2 2 โ€“1 โ€“1 0 0 โˆ’

โˆš3๐‘–

โˆš3๐‘– 0

๐‘ƒ(1)2 2 2 2 0 0 0 0 0

๐‘ข2,๐พ(๐‘Ÿ) โ‰ก ๐‘ข2(๐‘Ÿ) 1 โ€“1 1 ๐‘– ๐‘– โˆ’๐‘– โˆ’๐‘– โ€“1

groups of wave-vector groups are isomorphic to thesame point symmetry group 6๐‘š2(๐ท3โ„Ž) with respectto the invariant translational subgroups.

Each of the stars of the wave-vector groups atpoints ๐พ in both crystalline graphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1 contains two vectors. These arethe vectors (๐‘˜๐พ)1 = โˆ’ 1

3 (2๐‘2 โˆ’ ๐‘3) and (๐‘˜๐พ)2 == 1

3 (2๐‘2 โˆ’ ๐‘3) for crystalline graphite, and the vec-tors (๐‘˜๐พ)1 = โˆ’ 1

3 (2๐‘1 โˆ’ ๐‘2) and (๐‘˜๐พ)2 = 13 (2๐‘1 โˆ’ ๐‘2)

for single-layer graphene. For crystalline graphite, thenontrivial translation vector ๐›ผ = ๐‘Ž1/2 is perpen-dicular to the wave vectors (๐‘˜๐พ)1 and (๐‘˜๐พ)2. The-refore, the phase factor ๐‘’โˆ’๐‘–๐‘˜๐พ๐›ผ equals 1 in allcases. This is also true for single-layer graphene aswell, where the nontrivial translation vector equalszero. This means that, for both structures, thefactor-systems ๐œ”1,๐พ(๐‘Ÿ2, ๐‘Ÿ1) include the โ€œ+1โ€-valuesonly, i.e. they are completely unity-containing factor-systems, which coincide with the standard factor-systems of the projective class ๐พ0. At the sametime, since ๐œ”2,๐พ(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”1,๐พ(๐‘Ÿ2, ๐‘Ÿ1)๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) == ๐œ”โ€ฒ

(0)(๐‘Ÿ2, ๐‘Ÿ1)๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1), the factor-sys-tems for the projective representations at points ๐พtaking the spin into account, i.e. ๐œ”2,๐พ(๐‘Ÿ2, ๐‘Ÿ1), coin-cide with the factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) belonging tothe projective class ๐พ1.

The characters of the irreducible projective repre-sentations of the projective classes ๐พ0 (where theycoincide with the ordinary or vector representations)and ๐พ1 of the group 6๐‘š2(๐ท3โ„Ž), which correspondto the standard factor-systems ๐œ”โ€ฒ

(0)(๐‘Ÿ2, ๐‘Ÿ1) (a unity-containing factor-system, whose coefficients equalonly to +1) and ๐œ”โ€ฒ

(1)(๐‘Ÿ2, ๐‘Ÿ1), respectively, are pre-sented in Table 8. The characters of two-dimensionalirreducible projective representations correspondingto the standard factor-system ๐œ”โ€ฒ

(1)(๐‘Ÿ2, ๐‘Ÿ1) are markedwith the symbol ๐‘ƒ . The coefficients ๐‘ข2,๐พ(๐‘Ÿ) โ‰ก ๐‘ข2(๐‘Ÿ)are given in the bottom part of Table 8.

In Table 9, the characters of the two-valued(spinor) irreducible projective representations ofpoints ๐พ in the Brillouin zones of crystalline graphiteand single-layer graphene are given. They are identi-cal for those two structures.

It should be noted that, for the two-valued (spinor)irreducible projective representations of points ๐พin the Brillouin zones of crystalline graphite andgraphene, the following equations are satisfied:

(๐พ โ€ฒ)(1)๐‘– = ๐‘ข2(๐‘Ÿ)๐‘ƒ

(1)๐‘– . (8)

354 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

In addition, for various points in the Brillouin zones โ€“e.g., for points ๐พ โ€“ we can also determine how thecharacters of the representations of the direct prod-ucts ๐พ๐‘– โŠ— ๐ท+

1/2, where ๐พ๐‘– is the character of the ๐‘–-th projective irreducible representation making no al-lowance for the electron spin, can be expanded in two-valued (spinor) irreducible projective representationswith regard for the electron spin. In other words, wecan determine which orbitals or the sum of orbitalsfound making allowance for the spin will correspondto an orbital obtained without regard for the spin, ifthe latter is taken into account.

Let us determine this correspondence proceedingfrom the distributions of the electron ๐œ‹-band rep-resentations at points ๐พ in crystalline graphite andsingle-layer graphene without taking the electron spininto account (see Table 12 in work [1]). In particu-lar, for the products ๐พ

(0)2 โŠ— ๐ท+

1/2, ๐พ(0)4 โŠ— ๐ท+

1/2, and

๐พ(0)6 โŠ— ๐ท+

1/2, whose characters are presented in thebottom part of Table 9, it is easy to find the con-sistency conditions for the irreducible projective rep-resentations, which arise, when the electron spin istaken into account for the orbitals ๐พ๐‘– determinedwithout regard for the spin. In particular, the orbital(๐พ โ€ฒ)

(1)1 , which makes allowance for the electron spin,

corresponds to the orbital ๐พ(0)2 , if the spin is taken

into account; the orbital (๐พ โ€ฒ)(1)1 also corresponds to

the orbital ๐พ(0)4 ; the sum of orbitals (๐พ โ€ฒ)

(1)2 +(๐พ โ€ฒ)

(1)3

corresponds to the orbital ๐พ(0)6 , i.e. if the electron

spin is taken into account, the orbital ๐พ(0)6 , which is

doubly degenerate, if the electron spin is not takeninto account, becomes split into two doubly degener-ate spin orbitals (๐พ โ€ฒ)

(1)2 and (๐พ โ€ฒ)

(1)3 .

The characters of projective representations forpoints ๐พ, namely, the equivalence representations๐พeq, the representations of the spatial symmetry of๐œ‹-orbitals ๐พ๐‘ง, the representations of the symmetryof electron ๐œ‹-bands without regard for the electronspin ๐พ๐œ‹, two-valued representations ๐ท+

1/2, ๐พ โ€ฒ๐‘ง, and

representations of the symmetry of electron ๐œ‹โ€ฒ-bandswith regard for the electron spin ๐พ โ€ฒ

๐œ‹, are presentedin Table 2. The distributions of electron excitationsfor ๐œ‹-bands (without taking and taking the electronspin into account) over the two-valued (spinor) irre-ducible projective representations of points ๐พ in theBrillouin zones of crystalline graphite ๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1 are presented in Table 3.

An important consequence of the account for theelectron spin for electron excitations at points ๐พ isthe splitting of the doubly degenerate spinless orbitals๐พ

(0)6 in the structures of both crystalline graphite

and single-layer graphene. This splitting is predictedby the theoretical-group analysis and occurs as a re-sult of the consideration of the spin-orbit interac-tion. But it is extremely weak for carbon structures(about 1.0รท1.5 meV [2]) and will not be noticeableagainst the state energies measured in electronvoltsand even tens of electronvolts. From the viewpoint ofa theoretical group description, this splitting of thespinless orbitals ๐พ

(0)6 into the spin orbitals (๐พ โ€ฒ)

(1)2

and (๐พ โ€ฒ)(1)3 , if the spin is taken into account, has a

principal character for noncarbon structures with thespatial symmetry group ๐‘ƒ63/๐‘š๐‘š๐‘(๐ท4

6โ„Ž) as well. Forinstance, it can be significant for dichalcogenides oftransition metals.

3.2.2. Point ๐ป

As was mentioned above, the wave-vector factor-group at point ๐ป in the Brillouin zone of crystallinegraphite ๐›พ-๐ถ with respect to the infinite invarianttranslation subgroup is isomorphic to the point group6๐‘š2(๐ท3โ„Ž). The star of the wave-vector group con-tains two vectors, (๐‘˜๐ป)1 = โˆ’ 1

2๐‘1 โˆ’13 (2๐‘2 โˆ’ ๐‘3) and

(๐‘˜๐ป)2 = โˆ’ 12๐‘1 +

13 (2๐‘2 โˆ’ ๐‘3).

Table 9. Characters of the two-valued (spinor)irreducible projective representations of the group6๐‘š2(๐ท3โ„Ž) (the projective class ๐พ1) of the spinorrepresentation ๐ท

+1/2

(๐‘Ÿ) and the projective

representation products ๐พ(0)2 โŠ— ๐ท

+1/2

,

๐พ(0)4 โŠ— ๐ท

+1/2

, and ๐พ(0)6 โŠ— ๐ท

+1/2

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6๐‘š2(๐ท3โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐พ1 (๐พโ€ฒ)(1)1 2 1 โ€“1 0 0

โˆš3 โˆ’

โˆš3 0

(๐พโ€ฒ)(1)2 2 1 โ€“1 0 0 โˆ’

โˆš3

โˆš3 0

(๐พโ€ฒ)(1)3 2 โ€“2 2 0 0 0 0 0

๐ท+1/2

(๐‘Ÿ) 2 1 โ€“1 0 0 โˆ’โˆš3

โˆš3 0

๐พ1 ๐พ(0)2 โŠ—๐ท+

1/22 1 โ€“1 0 0

โˆš3 โˆ’

โˆš3 0

๐พ(0)4 โŠ—๐ท+

1/22 1 โ€“1 0 0

โˆš3 โˆ’

โˆš3 0

๐พ(0)6 โŠ—๐ท+

1/24 โ€“1 1 0 0 โˆ’

โˆš3

โˆš3 0

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 355

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 10. Characters of (๐‘Ž) the one-valued irreducible projective representations of the projectiveclass ๐พ1 of the group 6๐‘š2(๐ท3โ„Ž) corresponding to its standard factor-system and (๐‘) the one-valued ๐‘-equivalentrepresentations describing the symmetry of vibrational and electron excitations without taking the spininto account at point ๐ป in the Brillouin zone of crystalline graphite for the spatial symmetry group (thewave-vector group of point ๐ป) that is a subgroup of the spatial symmetry group ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž)

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6๐‘š2(๐ท3โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐พ1 ๐‘Ž ๐‘ƒ(1)1 2 โ€“1 โ€“1 0 0

โˆš3๐‘– โˆ’

โˆš3๐‘– 0

๐‘ƒ(1)2 2 โ€“1 โ€“1 0 0 โˆ’

โˆš3๐‘–

โˆš3๐‘– 0

๐‘ƒ(1)3 2 2 2 0 0 0 0 0

๐‘ข1,๐ป(๐‘Ÿ) 1 1 1 1 ๐‘– ๐‘– ๐‘– ๐‘–

๐‘’๐‘–๐‘˜๐ป๐‘Ž(๐‘Ÿ) 1 1 1 1 ๐‘– ๐‘– ๐‘– ๐‘–

๐‘’๐‘–๐‘˜๐ป๐‘Ž(๐‘Ÿ)๐‘ข1,๐ป(๐‘Ÿ) 1 1 1 1 โ€“1 โ€“1 โ€“1 โ€“1

๐พ1 b ๐ป(1)1 2 โ€“1 โ€“1 0 0 โˆ’

โˆš3๐‘–

โˆš3๐‘– 0

๐ป(1)2 2 โ€“1 โ€“1 0 0

โˆš3๐‘– โˆ’

โˆš3๐‘– 0

๐ป(1)3 2 2 2 0 0 0 0 0

In work [1], it was shown that both the factor-system of the spatial symmetry group of crystallinegraphite at point ๐ป of its Brillouin zone, ๐œ”1,๐ป(๐‘Ÿ2, ๐‘Ÿ1),with the coefficients ๐‘ข1,๐ป(๐‘Ÿ) of reduction to thestandard form and the factor-system of the spinvariable transformations, ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1), with the coeffi-cients ๐‘ข2(๐‘Ÿ) of reduction to the standard form be-long to the same projective class ๐พ1. This meansthat the two-valued (spinor) irreducible projectiverepresentations for point ๐ป in the Brillouin zoneof crystalline graphite ๐›พ-๐ถ belong to the projec-tive class ๐พ0 (๐พ1 ยท ๐พ1 = ๐พ0), and the reductioncoefficients of the transformation factor-system tothe standard form taking the electron spin into ac-count, ๐œ”2,๐ป(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”1,๐ป(๐‘Ÿ2, ๐‘Ÿ1)๐œ”2(๐‘Ÿ2, ๐‘Ÿ1), are de-termined at this point by the equality ๐‘ข2,๐ป(๐‘Ÿ) == ๐‘ข1,๐ป(๐‘Ÿ)๐‘ข2(๐‘Ÿ). When constructing the charactersof the two-valued (spinor) irreducible projective rep-resentations of point ๐ป, it is also necessary toconsider the phase factor ๐‘’โˆ’๐‘–๐‘˜๐ป๐›ผ(๐‘Ÿ), i.e. to deter-mine the resulting factors ๐‘’โˆ’๐‘–๐‘˜๐ป๐›ผ(๐‘Ÿ)๐‘ข1,๐ป(๐‘Ÿ)๐‘ข2(๐‘Ÿ),by which the characters of the irreducible projec-tive representations of the projective class ๐พ0 (theseare the characters of the vector representations forthe point symmetry group 6๐‘š2(๐ท3โ„Ž)) have to bemultiplied.

The characters of the single-valued irreducible pro-jective representations of the projective class ๐พ1 of

the point group 6๐‘š2(๐ท3โ„Ž), which correspond to thestandard factor-system of this class, and the charac-ters of the single-valued irreducible projective repre-sentations characterizing the spatial symmetry of vi-brational and electron โ€“ in the latter case, not takingthe electron spin into account โ€“ excitations at point๐ป in the Brillouin zone of crystalline graphite aregiven in Tables 10, ๐‘Ž and 10, ๐‘, respectively 2. Thebottom part of Table 10, ๐‘Ž contains the values of thecoefficients ๐‘ข1,๐ป(๐‘Ÿ) that transform the factor-systemof the projective class ๐พ1, which corresponds to thespatial symmetry of point ๐ป, to the standard form,as well as the values of the phase factors ๐‘’โˆ’๐‘–k๐ป๐›ผ(๐‘Ÿ)and the coefficient products ๐‘’โˆ’๐‘–k๐ป๐›ผ(๐‘Ÿ)๐‘ข1,๐ป(๐‘Ÿ).

The characters of the two-valued (spinor) irre-ducible projective representations belonging to theprojective class ๐พ0 and characterizing the symme-try of electron excitations taking the electron spin

2 It is of interest to note that the characters of the single-valued irreducible projective representations for point ๐ป inthe Brillouin zone of crystalline graphite (the spatial sym-metry group of crystalline graphite is ๐‘ƒ63/๐‘š๐‘š๐‘(๐ท4

6โ„Ž), andthe factor-group of the wave-vector group for point ๐ป is iso-morphic to the point group 6๐‘š2(๐ท3โ„Ž) with respect to theinvariant translation subgroup), which belong to the projec-tive class ๐พ1, exactly coincide with the characters of the firstthree irreducible representations presented in Table C.28 ofwork [8].

356 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Table 11. Characters of (๐‘Ž) the two-valued (spinor) irreducible projective representationsat point ๐ป in the Brillouin zone of crystalline graphite ๐›พ-๐ถ (the spatial symmetry group ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž),the projective class ๐พ0) and (๐‘) the projective representation products ๐ป

(1)1 โŠ— ๐ท

+1/2

and ๐ป(1)3 โŠ— ๐ท

+1/2

Projec-tiveclass

Notationfor irreducible

projectiverepresentation

6/๐‘š๐‘š๐‘š(๐ท6โ„Ž)

๐‘’ ๐‘3 ๐‘23 3๐‘ข2 ๐‘–๐‘2 ๐‘–๐‘56 ๐‘–๐‘6 3๐‘–๐‘ขโ€ฒ2

๐พ0 ๐‘Ž (๐ปโ€ฒ)(0)1 1 โ€“1 1 ๐‘– โˆ’๐‘– ๐‘– ๐‘– 1

(๐ปโ€ฒ)(0)2 1 โ€“1 1 ๐‘– ๐‘– โˆ’๐‘– โˆ’๐‘– โ€“1

(๐ปโ€ฒ)(0)3 1 โ€“1 1 โˆ’๐‘– โˆ’๐‘– ๐‘– ๐‘– โ€“1

(๐ปโ€ฒ)(0)4 1 โ€“1 1 โˆ’๐‘– ๐‘– โˆ’๐‘– โˆ’๐‘– 1

(๐ปโ€ฒ)(0)5 2 1 โ€“1 0 โˆ’2๐‘– โˆ’๐‘– โˆ’๐‘– 0

(๐ปโ€ฒ)(0)6 2 1 โ€“1 0 2๐‘– ๐‘– ๐‘– 0

๐‘ข1,๐ป(๐‘Ÿ) 1 1 1 1 ๐‘– ๐‘– ๐‘– ๐‘–

๐‘ข2(๐‘Ÿ) 1 โ€“1 1 ๐‘– ๐‘– โˆ’๐‘– โˆ’๐‘– โ€“1๐‘’๐‘–๐‘˜๐ป๐‘Ž(๐‘Ÿ) 1 1 1 1 ๐‘– ๐‘– ๐‘– ๐‘–

๐‘’๐‘–๐‘˜๐ป๐‘Ž(๐‘Ÿ)๐‘ข1,๐ป(๐‘Ÿ)๐‘ข2(๐‘Ÿ) 1 โ€“1 1 ๐‘– โˆ’๐‘– ๐‘– ๐‘– 1

๐ท+1/2

(๐‘Ÿ) 2 1 โ€“1 0 0 โˆ’โˆš3

โˆš3 0

๐พ0 b ๐ป(1)1 โŠ—๐ท+

1/24 โ€“1 1 0 0 3๐‘– 3๐‘– 0

๐ป(1)3 โŠ—๐ท+

1/24 2 โ€“2 0 0 0 0 0

๐ปโ€ฒ๐œ‹ 8 1 โ€“1 0 0 3๐‘– 3๐‘– 0

into account are given in Table 11, ๐‘Ž. The bot-tom part of Table 11, ๐‘Ž contains the values ofthe coefficients ๐‘ข1,๐ป(๐‘Ÿ) and ๐‘ข2(๐‘Ÿ), which transformthe factor-system ๐œ”1,๐ป(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1), respec-tively, to the standard form, as well as the valuesof the phase factors ๐‘’โˆ’๐‘–k๐ป๐›ผ(๐‘Ÿ), the coefficient prod-ucts ๐‘’โˆ’๐‘–k๐ป๐›ผ(๐‘Ÿ)๐‘ข1,๐ป(๐‘Ÿ)๐‘ข2(๐‘Ÿ), and the characters ofthe double-digit spinor representation ๐ท+

1/2(๐‘Ÿ) of thepoint symmetry group 6๐‘š2(๐ท3โ„Ž). In Table 11, ๐‘, thecharacters of the products of the projectivev repre-sentations ๐ป

(1)1 โŠ— ๐ท+

1/2 and ๐ป(1)3 โŠ— ๐ท+

1/2 are shown,which make it is easy to find the consistency con-ditions for the irreducible projective representationsfor the spinless orbitals of point ๐ป, the orbitals ๐ป

(1)๐‘–

of the projective class ๐พ1 with irreducible projectiverepresentations of spin orbitals (๐ป โ€ฒ)

(0)๐‘– of the projec-

tive class ๐พ0, which arise, when the electron spinis taken into account. For instance, if the electronspin is taken into consideration, the sum of spin or-bitals ((๐ป โ€ฒ)

(0)1 +(๐ป โ€ฒ)

(0)3 )+(๐ป โ€ฒ)

(0)6 corresponds to the

spinless orbital ๐ป(1)1 , and the sum of spin orbitals

(๐ป โ€ฒ)(0)5 + (๐ป โ€ฒ)

(0)6 to the spinless orbital ๐ป(1)

3 .

The characters of the projective representation ofall electron ๐œ‹-bands taking the electron spin into ac-count (๐œ‹โ€ฒ-bands) for point ๐ป in the Brillouin zone ofcrystalline graphite ๐›พ-๐ถ, i.e. the representation ๐ป โ€ฒ

๐œ‹,are equal to the sums of the corresponding charactervalues of all spin orbitals (๐ป โ€ฒ)

(0)๐‘– . They are given in

the bottom part of Table 11, ๐‘. The indicated valuesfor the characters of the projective representation ๐ป โ€ฒ

๐œ‹

can be easily obtained using formula (4) (for point ๐ป,it looks like ๐ป โ€ฒ

๐œ‹ = ๐ปeqโŠ—๐ป โ€ฒ๐‘ง, where ๐ป โ€ฒ

๐‘ง is a representa-tion that characterizes the symmetry of a ๐œ‹-electronwith its spin at point ๐ป in the Brillouin zone of crys-talline graphite).

Table 2 demonstrates the characters of the equiva-lence representation for point ๐ป in the Brillouin zoneof crystalline graphite, the representations ๐ปeq; therepresentations ๐ป๐‘ง โ‰ก ฮ“๐‘ง and ๐ป๐œ‹ = ๐ป๐‘’๐‘žโŠ—๐ป๐‘ง describ-ing the spatial symmetry of ๐œ‹-electron and electron๐œ‹-bands, respectively, without taking the spin intoaccount; the two-valued (spinor) representation ๐ท+

1/2,and the two-valued representations ๐ป โ€ฒ

๐‘ง = ๐ป๐‘ง โŠ—๐ท+1/2

and ๐ป โ€ฒ๐œ‹ = ๐ปeq โŠ— ๐ป โ€ฒ

๐‘ง describing the symmetry of ๐œ‹-electron and electron ๐œ‹-bands making allowance for

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 357

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

the spin. Table 3 contains the distribution of electron๐œ‹โ€ฒ-bands with regard for the spin at point ๐ป over thetwo-valued (spinor) irreducible projective representa-tions of the projective class ๐พ0.

Our calculation of the Herring criterion for point ๐ปwith the use of the symmetry elements satisfying theequality ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜ โ€“ namely, these are the elements๐‘”โ€ฒ7 = (๐‘Ž1

2 |๐‘2) , ๐‘”โ€ฒ8 = (๐‘Ž1

2

๐‘56) , ๐‘”โ€ฒ9 = (๐‘Ž1

2 |๐‘6) , ๐‘”โ€ฒ10 == (๐‘Ž1

2 |(๐‘ขโ€ฒ2)1) , ๐‘”โ€ฒ11 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)2) , ๐‘”โ€ฒ12 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)3) ,

Table 12. (๐‘Ž) Characters of the one-valued irreducibleprojective representations of the projective class ๐พ0

of the group 3๐‘š (๐ถ3๐‘ฃ), which describe the symmetryof vibrational and electron excitations without takingthe spin into account for the spatial symmetry group atpoint ๐‘ƒ (the wave-vector group of point ๐‘ƒ ) in the Bril-louin zone of crystalline graphite and are ๐‘-equivalentto the characters of the one-valued irreducible pro-jective representations corresponding to the standardunity-containing factor-system of this projective class.(b) Characters of the two-valued (spinor) irreducibleprojective representations of point ๐‘ƒ in the Brillouinzone of crystalline graphite ๐›พ-๐ถ (the spatial symme-try group ๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž), the projective class ๐พ0),the two-valued spinor irreducible projective represen-tation ๐ท

+1/2

, the projective representation products

๐‘ƒ(0)1 โŠ—๐ท

+1/2

, ๐‘ƒ (0)2 โŠ—๐ท

+1/2

, and ๐‘ƒ(0)3 โŠ—๐ท

+1/2

, and the two-valued projective representation of electron ๐œ‹โ€ฒ-bandstaking the electron spin into account โ€“ representation๐‘ƒ โ€ฒ

๐œ‹(๐›ฟ)

Projec-tiveclass

Notation forirreducibleprojective

representation

3๐‘š(๐ถ3๐œ)

๐‘’ ๐‘3 ๐‘23 3๐‘–๐‘ขโ€ฒ2

๐พ0 ๐‘Ž ๐‘ƒ(0)1 1 1 1 ๐œ‚๐‘˜๐‘ง

๐‘ƒ(0)2 1 1 1 โˆ’๐œ‚๐‘˜๐‘ง

๐‘ƒ(0)3 2 โ€“1 โ€“1 0

๐‘ข2(๐‘Ÿ) 1 โ€“1 1 ๐‘–

๐พ0 b (๐‘ƒ โ€ฒ)(0)1 1 โ€“1 1 ๐‘–๐œ‚๐‘˜๐‘ง

(๐‘ƒ โ€ฒ)(0)2 1 โ€“1 1 โˆ’๐‘–๐œ‚๐‘˜๐‘ง

(๐‘ƒ โ€ฒ)(0)3 2 1 โ€“1 0

๐ท+1/2

2 1 โ€“1 0

๐‘ƒ(0)1 โŠ—๐ท+

1/22 1 โ€“1 0

๐‘ƒ(0)2 โŠ—๐ท+

1/22 1 โ€“1 0

๐‘ƒ(0)3 โŠ—๐ท+

1/24 โ€“1 1 0

๐‘ƒ โ€ฒ๐œ‹ 8 1 โ€“1 0

* ๐œ‚๐‘˜๐‘ง = ๐‘’โˆ’๐‘–๐‘˜๐‘ƒ๐‘Ž1/2 = ๐‘’โˆ’๐‘–๐‘˜๐‘ง๐‘Ž1/2

๐‘”โ€ฒ13 = (0 |๐‘–) , ๐‘”โ€ฒ14 = (0 |๐‘–๐‘3) , ๐‘”โ€ฒ15 = (0๐‘–๐‘23) , ๐‘”โ€ฒ16 =

= (0 |๐‘–(๐‘ข2)1) , ๐‘”โ€ฒ17 = (0 |๐‘–(๐‘ข2)2) , ๐‘”โ€ฒ18 = (0 |๐‘–(๐‘ข2)3) , andtheir squares equal (๐‘”โ€ฒ7)2 = (๐‘Ž1 |๐‘ž) , (๐‘”โ€ฒ8)2 = (๐‘Ž1

๐‘ž๐‘23) ,

(๐‘”โ€ฒ9)2 = (๐‘Ž1 |๐‘3) , (๐‘”โ€ฒ10)

2 = (0 |๐‘ž) , (๐‘”โ€ฒ11)2 = (0 |๐‘ž) ,

(๐‘”โ€ฒ12)2 = (0 |๐‘ž) , (๐‘”โ€ฒ13)

2 = (0 |๐‘’) , (๐‘”โ€ฒ14)2 = (0

๐‘23) ,

(๐‘”โ€ฒ15)2 = (0 |๐‘ž๐‘3) , (๐‘”โ€ฒ16)

2 = (0 |๐‘ž) , (๐‘”โ€ฒ17)2 = (0 |๐‘ž)

and (๐‘”โ€ฒ18)2 = (0 |๐‘ž) โ€“ testifies that the two-valued

one-dimensional spinor irreducible projective repre-sentations (๐ป โ€ฒ)

(0)1 and (๐ป โ€ฒ)

(0)3 at point ๐ป in the

Brillouin zone of crystalline graphite belong to thecase ๐‘2 [9] and, owing to their time-reversal in-variance, they must unite, although our case corre-sponds to the union of nonequivalent complex repre-sentations, rather than complex-conjugate ones. Atthe same time, the two-valued two-dimensionalcomplex-conjugate irreducible projective representa-tions (๐ป โ€ฒ)

(0)5 and (๐ป โ€ฒ)

(0)6 belong to the case ๐‘Ž2 [9] and

do not unite, if the time-reversal symmetry is takeninto account.

3.2.3. Point ๐‘ƒ

The group of equivalent directions of the wave-vectorgroup at point ๐‘ƒ in the Brillouin zone of crys-talline graphite ๐›พ-๐ถ is the group 3๐‘š (๐ถ3๐‘ฃ). The group3๐‘š (๐ถ3๐‘ฃ) has only one class of projective represen-tations. This is the class ๐พ0. Therefore, all projec-tive representations of this group are ๐‘-equivalentto vector ones. The wave-vector star at this pointcontains four rays: (๐‘˜๐‘ƒ )1 = โˆ’๐‘˜๐‘ง โˆ’ 1

3 (2๐‘2 โˆ’ ๐‘3),(๐‘˜๐‘ƒ )2 = โˆ’๐‘˜๐‘ง+

13 (2๐‘2โˆ’๐‘3), (๐‘˜๐‘ƒ )3 = ๐‘˜๐‘งโˆ’ 1

3 (2๐‘2โˆ’๐‘3),and (๐‘˜๐‘ƒ )4 = ๐‘˜๐‘ง +

13 (2๐‘2 โˆ’ ๐‘3).

Table 12 presents (๐‘Ž) the one-valued irreducibleprojective representations of the projective class ๐พ0

of the group 3๐‘š (๐ถ3๐‘ฃ) at point ๐‘ƒ in the Brillouin zoneof crystalline graphite and (b) the two-valued (spinor)irreducible projective representations, also belongingto the projective class ๐พ0 of this group, of equiva-lent directions; the characters of the spinor represen-tation ๐ท+

1/2; the products of projective representa-

tions ๐‘ƒ(0)1 โŠ— ๐ท+

1/2, ๐‘ƒ(0)2 โŠ— ๐ท+

1/2, and ๐‘ƒ(0)3 โŠ— ๐ท+

1/2;and the characters of the projective representation ofelectron ๐œ‹โ€ฒ-bands making allowance for the electronspin, ๐‘ƒ โ€ฒ

๐œ‹. The bottom part of Table 12, ๐‘Ž contains thecoefficients ๐‘ข2(๐‘Ÿ) that transform the factor-systemof transformations of the spin variable ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) tothe standard form ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(0)(๐‘Ÿ2, ๐‘Ÿ1. The bot-

tom part of the whole Table 12 shows the phase fac-tor value.

358 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

The characters of the one-valued projective equiv-alence representations ๐‘ƒeq, the one-valued projectiverepresentations ๐‘ƒ๐‘ง and ๐‘ƒ๐œ‹, the double-valued projec-tive representations ๐ท+

1/2 and ๐‘ƒ โ€ฒ๐‘ง, and the two-valued

(spinor) projective representation ๐‘ƒ โ€ฒ๐œ‹ of electron ๐œ‹โ€ฒ-

bands making allowance for the electron spin for point๐‘ƒ in the Brillouin zone of crystalline graphite aregiven in Table 2. The distributions of projective rep-resentations of electron ๐œ‹-bands without taking theelectron spin into account, ๐‘ƒ๐œ‹, and taking it into ac-count, ๐‘ƒ โ€ฒ

๐œ‹, over the irreducible one- and two-valued,respectively, projective representations are presentedin Table 3.

The calculation of the Herring criterion for point ๐‘ƒin the Brillouin zone of crystalline graphite with theuse of the symmetry elements satisfying the require-ment ๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜โ€“namely, these are the elements ๐‘”โ€ฒ10 == (๐‘Ž1

2 |(๐‘ขโ€ฒ2)1) , ๐‘”โ€ฒ11 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)2) , ๐‘”โ€ฒ12 = (๐‘Ž1

2 |(๐‘ขโ€ฒ2)3) ,

๐‘”โ€ฒ13 = (0 |๐‘–) , ๐‘”โ€ฒ14 = (0 |๐‘–๐‘3) and ๐‘”โ€ฒ15 = (0๐‘–๐‘23) , and

their squares equal (๐‘”โ€ฒ10)2 = (0 |๐‘ž) , (๐‘”โ€ฒ11)

2 = (0 |๐‘ž) ,(๐‘”โ€ฒ12)

2 = (0 |๐‘ž) , (๐‘”โ€ฒ13)2 = (0 |๐‘’) , (๐‘”โ€ฒ14)

2 = (0๐‘23) ,

(๐‘”โ€ฒ15)2 = (0 |๐‘ž๐‘3) โ€“ shows that the two-valued one-

dimensional spinor irreducible projective representa-tions at this point, (๐‘ƒ โ€ฒ)

(0)1 and (๐‘ƒ โ€ฒ)

(0)2 , belong to the

case ๐‘2 [9] and, owing to the time-reversal invari-ance, they unite into the two-dimensional projectiverepresentation ((๐‘ƒ โ€ฒ)

(0)1 + (๐‘ƒ โ€ฒ)

(0)2 ). At the same time,

the one-valued irreducible projective representations๐‘ƒ

(0)1 , ๐‘ƒ (0)

2 , ๐‘ƒ (0)3 , and the two-value (spinor) projective

representation (๐‘ƒ โ€ฒ)(0)3 belong to the case ๐‘Ž2 [9] and do

not unite, if the time-reversal symmetry is taken intoconsideration.

At point ๐ป, which is limiting for points ๐‘ƒ in theBrillouin zone of crystalline graphite, if the elec-tron spin is neglected, i.e. when the phase factor๐‘’โˆ’๐‘–๐‘˜๐‘ง๐‘Ž1/2 = ๐‘– at ๐‘˜๐‘ง = โˆ’๐‘1/2, the sums of the char-acters of one-valued irreducible projective represen-tations ๐‘ƒ

(0)1 and ๐‘ƒ

(0)2 , as the complex-conjugate rep-

resentations, should transform into the characters ofthe two-dimensional one-valued irreducible projectiverepresentation ๐ป

(1)3 belonging to the projective class

๐พ1 of a higher symmetry group than the symmetrygroup of points ๐‘ƒ . It is also easy to see from Ta-ble 12, ๐‘ that, if the electron spin is taken into ac-count, the spin orbital (๐‘ƒ โ€ฒ)

(0)3 corresponds to the spin-

less orbitals ๐‘ƒ (0)1 and ๐‘ƒ

(0)2 , and the sum of the united

spin orbitals ((๐‘ƒ โ€ฒ)(0)1 + (๐‘ƒ โ€ฒ)

(0)2 ) and the spin orbital

(๐‘ƒ โ€ฒ)(0)3 corresponds to the spinless orbital ๐‘ƒ (0)

3 .

3.3. Line Mโ€“Uโ€“L of crystallinegraphite and point M of single-layer graphene

At points ๐‘€ and ๐ฟ in the Brillouin zone of crystallinegraphite ๐›พ-๐ถ and at point ๐‘€ in the Brillouin zone ofsingle-layer graphene ๐ถ๐ฟ,1, the factor-groups of wave-vector groups with respect to the invariant translationsubgroups are isomorphic to the same point symme-try group ๐‘š๐‘š๐‘š (๐ท2โ„Ž), which is the point symmetrygroup of equivalent directions for points ๐‘€ in thosestructures.

3.3.1. Points ๐‘€

Each of the stars of the wave-vector groups at points๐‘€ in the Brillouin zones of the structures con-cerned contains three rays: these are (๐‘˜๐‘€ )1 = โˆ’ 1

2๐‘3,(๐‘˜๐‘€ )2 = 1

2๐‘2, and (๐‘˜๐‘€ )3 = โˆ’ 12 (๐‘2 โˆ’ ๐‘3) for crys-

talline graphite ๐›พ-๐ถ; and (๐‘˜๐‘€ )1 = โˆ’ 12๐‘2, (๐‘˜๐‘€ )2 =

= 12๐‘1, and (๐‘˜๐‘€ )3 = โˆ’ 1

2 (๐‘1 โˆ’ ๐‘2) for single-layergraphene ๐ถ๐ฟ,1.

First of all, as was done in work [1] for the pointgroup 6/๐‘š๐‘š๐‘š (๐ท6โ„Ž), let us construct a factor system๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) describing the transformations of spinorsunder the action of symmetry operations for thepoint group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) and determine the coeffi-cients ๐‘ข2(๐‘Ÿ) that transform it to the standard form๐œ”โ€ฒ2(๐‘Ÿ2, ๐‘Ÿ1).Of three rays of the wave-vector stars at point ๐‘€

in the Brillouin zones of both crystalline graphite andsingle-layer graphene, let us consider the rays (๐‘˜๐‘€ )1(points ๐‘€1), for which the elements of symmetry thattransform these rays into the equivalent ones andform the point symmetry group ๐‘š๐‘š๐‘š are the ele-ments ๐‘’, (๐‘ข2)1, ๐‘2, (๐‘ขโ€ฒ

2)1, ๐‘–, ๐‘–(๐‘ข2)1, ic2, and ๐‘–(๐‘ขโ€ฒ2)1. As

the ๐‘š๐‘š๐‘š group generators, let us choose the ele-ments ๐‘Ž = (๐‘ข2)1, ๐‘ = ๐‘2, and ๐‘ = ๐‘–. This choice makesallowance for the composition principle. According tothe latter, the group ๐‘š๐‘š๐‘š can be represented asthe direct group product 222 โŠ— 1 (๐‘š๐‘š๐‘š = 222 โŠ— 1or ๐ท2โ„Ž = ๐ท2 โŠ— ๐ถ๐‘–), and the group 222 as the directgroup product 2โ€ฒ โŠ— 2 (222 = 2โ€ฒ โŠ— 2 or ๐ท2 = ๐ถ โ€ฒ

2 โŠ—๐ถ2).By applying the defining relations, let us calculate

all values of ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1). It is clear that this is the defin-ing relations for the double group (๐‘š๐‘š๐‘š)

โ€ฒ that haveto be taken for this purpose:๐‘Ž4 = ๐‘’, ๐‘4 = ๐‘’, ๐‘2 = ๐‘’,๐‘Ž๐‘ = ๐‘ž๐‘๐‘Ž, ๐‘Ž๐‘ = ๐‘๐‘Ž, ๐‘๐‘ = ๐‘๐‘.

The factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) calculated for the ๐‘š๐‘š๐‘šgroup following this way and using the method of

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 359

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 13. Factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) for the group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) (a) and the correspondingstandard factor-system ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1) (๐‘). The bottom part of Table 13, ๐‘Ž contains the values of the function๐‘ข2(๐‘Ÿ) that transforms the factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) to the standard form ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(1)

(๐‘Ÿ2, ๐‘Ÿ1)

a b

work [1] is shown in Table 13, ๐‘Ž. This factor sys-tem belongs to the projective class ๐พ1, because ๐›ผ == โˆ’1, ๐›ฝ = 1, and ๐›พ = 1 for it [1]. In Table 13, ๐‘Ž,the subscripts near the coefficients of the factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1), which contain parenthesized num-bers, compose a multiplication table for the elementsof the ๐‘š๐‘š๐‘š group (the numbers in parentheses indi-cate the numerical designations of the elements cor-responding to the products ๐‘Ÿ2๐‘Ÿ1).

With the help of the coefficients ๐‘ข2(๐‘Ÿ) given inthe bottom part of Table 13, ๐‘Ž, the factor system๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) is transformed into a ๐‘-equivalent block-symmetric form, which corresponds to the defini-tion of a standard factor system, i.e. the factor-system ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1). In so doing, the values of thecoefficients ๐‘ข2(๐‘Ÿ) can be calculated using formulas(13.3), (14.18), and (14.19) of work [9]. Alternati-vely, they can be found, when constructing an ex-tended group, the representation group [9], wherethey are determined by its one-valued irreducible rep-resentations, being additional to ordinary vector rep-resentations.

The values of the coefficients ๐‘ข2(๐‘Ÿ), which char-acterize the transformation of spin functions foridentical elements ๐‘Ÿ belonging to different pointgroups โ€“ in our case, to point groups ๐‘š๐‘š๐‘š and6/๐‘š๐‘š๐‘š, where the group ๐‘š๐‘š๐‘š is also a subgroupof the group 6/๐‘š๐‘š๐‘š โ€“ expectedly turned out iden-tical. This means that the factor-system presented inTable 13, ๐‘ is really a standard factor-system for theprojective class ๐พ1 of the point group ๐‘š๐‘š๐‘š, i.e. thefactor-system ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(1)(๐‘Ÿ2, ๐‘Ÿ1). Solid lines in

Table 13, ๐‘ distinguish the contours of blocks, inwhich the coefficients have a value of โˆ’1.

Table 14 displays the characters of the irreduciblerepresentations of the double group (๐‘š๐‘š๐‘š)โ€ฒ (๐ทโ€ฒ

2โ„Ž),the additional one-valued irreducible representationsof which (additional to the ordinary vector one-valuedirreducible representations of the group ๐‘š๐‘š๐‘š, whichcan be obtained from the representations of the group(๐‘š๐‘š๐‘š)โ€ฒ by simply excluding the element ๐‘ž from allrelations) are either two-valued projective or spinorrepresentations of the ๐‘š๐‘š๐‘š group. The spinor rep-resentations are denoted by the symbols (๐ธโ€ฒ)+ and(๐ธโ€ฒ)โˆ’ in the Mulliken notation or the symbols ฮ“+

5

and ฮ“โˆ’5 in the Koster notation, where the letter ฮ“

denotes not only their membership in a certain pointgroup (in the given case, this is the group ๐‘š๐‘š๐‘š),but also in the coinciding group of equivalent direc-tions of the wave-vector group of point ฮ“ in crys-tals or periodic nanostructures. The symbols K0 andK1 denote the corresponding projective classes, andthe notations ((ฮ“โ€ฒ)(1))+ and ((ฮ“โ€ฒ)(1))โˆ’ were proposedby us (here, the prime means the two-valued spinorrepresentation, the superscript (the number in theparentheses) indicates the projective class, and thesuperscripts โ€œ+โ€ and โ€œโˆ’โ€ mean the representationparity).

The characters of the irreducible representations ofthe point group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) of the projective classes๐พ0 (ordinary one-valued or vector) and ๐พ1 (two-valued projective or spinor) for the standard factor-systems ๐œ”โ€ฒ

(0)(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”โ€ฒ(1)(๐‘Ÿ2, ๐‘Ÿ1) of the point group

๐‘š๐‘š๐‘š are presented in Table 15. The irreducible pro-

360 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Table 14. Characters of the irreducible representations of the double group (๐‘š๐‘š๐‘š)โ€ฒ (๐ทโ€ฒ2โ„Ž)

(๐‘š๐‘š๐‘š)โ€ฒ(๐ทโ€ฒ2โ„Ž) ๐‘’ ๐‘ž

(๐‘ข2)1,๐‘ž(๐‘ข2)1

๐‘2,๐‘ž๐‘2

(๐‘ขโ€ฒ2)1,

๐‘ž(๐‘ขโ€ฒ2)1

๐‘– ๐‘ž๐‘–๐‘–(๐‘ข2)1,๐‘ž๐‘–(๐‘ข2)1

๐‘–๐‘2,๐‘ž๐‘–๐‘2

๐‘–(๐‘ขโ€ฒ2)1

๐‘ž๐‘–(๐‘ขโ€ฒ)1

๐พ0 ฮ“+1 ๐ด+

1 1 1 1 1 1 1 1 1 1 1ฮ“โˆ’1 ๐ดโˆ’

1 1 1 1 1 1 โ€“1 โ€“1 โ€“1 โ€“1 โ€“1ฮ“+2 ๐ด+

2 1 1 1 โ€“1 โ€“1 1 1 1 โ€“1 โ€“1ฮ“โˆ’2 ๐ดโˆ’

2 1 1 1 โ€“1 โ€“1 โ€“1 โ€“1 โ€“1 1 1

ฮ“+3 ๐ต+

1 1 1 โ€“1 1 โ€“1 1 1 โ€“1 1 โ€“1ฮ“โˆ’3 ๐ตโˆ’

1 1 1 โ€“1 1 โ€“1 โ€“1 โ€“1 1 โ€“1 1ฮ“+4 ๐ต+

2 1 1 โ€“1 โ€“1 1 1 1 โ€“1 โ€“1 1ฮ“โˆ’4 ๐ตโˆ’

2 1 1 โ€“1 โ€“1 1 โ€“1 โ€“1 1 1 โ€“1

๐พ1 ((ฮ“โ€ฒ)(1))+ ฮ“+5 (๐ธโ€ฒ)+ 2 โ€“2 0 0 0 2 โ€“2 0 0 0

((ฮ“โ€ฒ)(1))โˆ’ ฮ“โˆ’5 (๐ธโ€ฒ)โˆ’ 2 โ€“2 0 0 0 โ€“2 2 0 0 0

Table 15. Characters of the one-valued(vector) and two-valued (spinor) irreducibleprojective representations of the group ๐‘š๐‘š๐‘š (๐ท2โ„Ž)

corresponding to the standard factor systems๐œ”โ€ฒ

(0)(๐‘Ÿ2, ๐‘Ÿ1) (the projective class ๐พ0) and ๐œ”โ€ฒ

(1)(๐‘Ÿ2, ๐‘Ÿ1)

(the projective class ๐พ1), respectively

๐‘š๐‘š๐‘š (๐ท2โ„Ž) ๐‘’ (๐‘ข2)1 ๐‘2 (๐‘ขโ€ฒ2)1 ๐‘– ๐‘–(๐‘ข2)1 ๐‘–๐‘2 ๐‘–(๐‘ขโ€ฒ

2)1

๐พ0 ๐ด+1 1 1 1 1 1 1 1 1

๐ดโˆ’1 1 1 1 1 โ€“1 โ€“1 โ€“1 โ€“1

๐ด+2 1 1 โ€“1 โ€“1 1 1 โ€“1 โ€“1

๐ดโˆ’2 1 1 โ€“1 โ€“1 โ€“1 โ€“1 1 1

๐ต+1 1 โ€“1 1 โ€“1 1 โ€“1 1 โ€“1

๐ตโˆ’1 1 โ€“1 1 โ€“1 โ€“1 1 โ€“1 1

๐ต+2 1 โ€“1 โ€“1 1 1 โ€“1 โ€“1 1

๐ตโˆ’2 1 โ€“1 โ€“1 1 โ€“1 1 1 โ€“1

๐พ1 (๐‘ƒ (1))+ 2 0 0 0 2 0 0 0(๐‘ƒ (1))โˆ’ 2 0 0 0 โ€“2 0 0 0

jective representations for ๐‘€ points in the Brillouinzones of crystalline graphite and single-layer grapheneare identical to them and are shown in Table 16. Inthe group ๐‘š๐‘š๐‘š (๐ท2โ„Ž), the second-order axis (๐‘ข2)1is a senior axis in the structurally distinguished se-nior subgroup [the axis ๐‘2 is involved into the ex-tension of the group consisting of the elements ๐‘’ and(๐‘ข2)1 (the group ๐ถ โ€ฒ

2) to the group ๐ท2]. In other words,in the formation of the direct product of the groups๐ถ โ€ฒ

2 [(๐‘ˆ2)1] and ๐ถ2, the axis (๐‘ข2)1 plays the role of theprincipal axis, according to which the symbols (num-bers) of irreducible representations are determined. Itis easy to see that the characters of the irreducibleprojective representations of the class ๐พ1 of the group๐‘š๐‘š๐‘š for the standard factor-system of this class,

Table 16. Characters of the one-valued (vector)(the projective class ๐พ0) and two-valued (spinor)(the projective class ๐พ1) irreducible projectiverepresentations of points ๐‘€ in the Brillouin zonesof crystalline graphite and single-layer graphene

๐‘š๐‘š๐‘š (๐ท2โ„Ž) ๐‘’ (๐‘ข2)1 ๐‘2 (๐‘ขโ€ฒ2)1 ๐‘– ๐‘–(๐‘ข2)1 ๐‘–๐‘2 ๐‘–(๐‘ขโ€ฒ

2)1

๐พ0 ๐‘€+1 1 1 1 1 1 1 1 1

๐‘€โˆ’1 1 1 1 1 โ€“1 โ€“1 โ€“1 โ€“1

๐‘€+2 1 1 โ€“1 โ€“1 1 1 โ€“1 โ€“1

๐‘€โˆ’2 1 1 โ€“1 โ€“1 โ€“1 โ€“1 1 1

๐‘€+3 1 โ€“1 1 โ€“1 1 โ€“1 1 โ€“1

๐‘€โˆ’3 1 โ€“1 1 โ€“1 โ€“1 1 โ€“1 1

๐‘€+4 1 โ€“1 โ€“1 1 1 โ€“1 โ€“1 1

๐‘€โˆ’4 1 โ€“1 โ€“1 1 โ€“1 1 1 โ€“1

๐พ1 ((๐‘€ โ€ฒ)(1))+ ๐‘€+5 2 0 0 0 2 0 0 0

((๐‘€ โ€ฒ)(1))โˆ’ ๐‘€โˆ’5 2 0 0 0 โ€“2 0 0 0

where they are denoted as (๐‘ƒ (1))+ and (๐‘ƒ (1))โˆ’, onthe one hand, and the characters of the irreducibleprojective representations of the class ๐พ1 of the group๐‘š๐‘š๐‘š for points ๐‘€ , which are denoted by the sym-bols ๐‘€+

5 and ๐‘€โˆ’5 [or ((๐‘€ โ€ฒ)(1))+ and ((๐‘€ โ€ฒ)(1))โˆ’],

on the other hand, coincide with the character ofthe spinor irreducible representations of the doublegroup (๐‘š๐‘š๐‘š)

โ€ฒ.Table 2 exhibits the characters of the projective

equivalence representation at point ๐‘€ (the repre-sentation ๐‘€eq), the characters of the representation๐‘€๐‘ง โ‰ก ฮ“๐‘ง, which determines the spatial symmetry ofthe ๐‘๐‘ง orbital, the characters of the representationof the electron ๐œ‹-bands without taking the spin intoaccount (the representation ๐‘€๐œ‹), and the charactersof the two-valued representations ๐ท+

1/2, ๐‘€ โ€ฒ๐‘ง โ‰ก ฮ“โ€ฒ

๐‘ง,

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 361

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 17. Characters of the irreducible projective representationsof the projective class ๐พ4 of the group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) corresponding to the standardfactor-system of this class, ๐œ”โ€ฒ

(4)(๐‘Ÿ2, ๐‘Ÿ1) (๐‘Ž), and the characters of two-valued (spinor)

irreducible projective representations of point ๐ฟ in the Brillouin zone of crystalline graphite ๐›พ-๐ถ (๐‘)

Projectiveclass

Notation for irreducibleprojective representation

๐‘š๐‘š๐‘š (๐ท2โ„Ž)

๐‘’ (๐‘ข2)1 ๐‘2 (๐‘ขโ€ฒ2)1 ๐‘– ๐‘–(๐‘ข2)1 ๐‘–๐‘2 ๐‘–(๐‘ขโ€ฒ

2)1

๐พ4 a ๐‘ƒ(4)1 2 2 0 0 0 0 0 0

๐‘ƒ(4)2 2 โˆ’2 0 0 0 0 0 0

๐‘ข1,๐ฟ(๐‘Ÿ) 1 1 1 1 1 1 โˆ’1 โˆ’1

๐‘ข2(๐‘Ÿ) 1 ๐‘– ๐‘– โˆ’1 1 ๐‘– ๐‘– โˆ’1

๐‘’โˆ’๐‘–๐‘˜๐ฟ๐‘Ž(๐‘Ÿ) 1 1 ๐‘– ๐‘– 1 1 ๐‘– ๐‘–

๐‘’๐‘–๐‘˜๐ฟ๐‘Ž(๐‘Ÿ)๐‘ข1,๐ฟ(๐‘Ÿ)๐‘ข2(๐‘Ÿ) 1 ๐‘– โˆ’1 โˆ’๐‘– 1 ๐‘– 1 ๐‘–

๐ท+1/2

2 0 0 0 2 0 0 0

๐พ4 ๐ฟ(4)1 2 2๐‘– 0 0 0 0 0 0

b ((๐ฟโ€ฒ)(4)1 + (๐ฟโ€ฒ)

(4)2 )<

๐ฟ(4)2 2 โˆ’2๐‘– 0 0 0 0 0 0

๐ฟโ€ฒ๐œ‹ 8 0 0 0 0 0 0 0

and ๐‘€ โ€ฒ๐œ‹. The distributions of electron excitations at

points ๐‘€ in the Brillouin zones of crystalline graphite๐›พ-๐ถ and single-layer graphene ๐ถ๐ฟ,1 for ๐œ‹-bands with-out taking and taking the electron spin into accountover the one- and two-valued (spinor), respectively, ir-reducible projective representations of points ๐‘€ aregiven in Table 3.

3.3.2. Point ๐ฟ

As was already mentioned above, the factor-group ofthe wave-vector group with respect to the invarianttranslation subgroup at points ๐ฟ in the Brillouin zoneof crystalline graphite is also isomorphic to the pointgroup ๐‘š๐‘š๐‘š (๐ท2โ„Ž). The wave-vector star of point ๐ฟfor the graphite ๐›พ-๐ถ structure also contains threevectors: these are (๐‘˜๐ฟ)1 = โˆ’ 1

2 (๐‘1 + ๐‘3), (๐‘˜๐ฟ)2 == โˆ’ 1

2 (๐‘1 โˆ’ ๐‘2), and (๐‘˜๐ฟ)3 = โˆ’ 12 (๐‘1 + ๐‘2 โˆ’ ๐‘3).

Similarly to what was done earlier for point ๐‘€ , ofthree rays of the wave-vector stars at point ๐ฟ in theBrillouin zone of crystalline graphite, let us considerthe ray (๐‘˜๐ฟ)1, for which the symmetry elementsthattransform the rays of the wave-vector star at point ๐ฟinto the equivalent ones and form the point symme-try group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) are the elements ๐‘’, (๐‘ข2)1, ๐‘2,(๐‘ขโ€ฒ

2)1, ๐‘–, ๐‘–(๐‘ข2)1, ic2, and ๐‘–(๐‘ขโ€ฒ2)1. Again, as was done

for the group of point ๐‘€ , let us choose the elements๐‘Ž = (๐‘ข2)1, ๐‘ = ๐‘2, and ๐‘ = ๐‘– to be the ๐‘š๐‘š๐‘š groupgenerators.

In work [1], it was demonstrated that the factor-system ๐œ”1,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) belongs to the projective class ๐พ5

of the group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) and can be reduced to thestandard form ๐œ”โ€ฒ

1,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(5)(๐‘Ÿ2, ๐‘Ÿ1) with the

help of the coefficients ๐‘ข1,๐ฟ(๐‘Ÿ) given in the bottompart of Table 17, ๐‘Ž in work [1]. It was also shownthat the factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) of spinor transfor-mations at the symmetry operations of the group๐‘š๐‘š๐‘š (๐ท2โ„Ž), as it occurs for point ๐‘€ , belongs to theprojective class ๐พ1 and is reduced to the standardform ๐œ”โ€ฒ

2(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ(1)(๐‘Ÿ2, ๐‘Ÿ1) with the help of the co-

efficients ๐‘ข2(๐‘Ÿ) given in the bottom part of Table 13, ๐‘Žof this work. This means that the factor-system atpoint ๐ฟ making allowance for the spin, ๐œ”2,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1),is the product of the factor-system ๐œ”1,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) (theprojective class ๐พ5), which is determined by thestructure of the spatial group of crystalline graphiteat point ๐ฟ making no allowance for the spin, andthe factor-system ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) (the projective class ๐พ1),which describes the transformations of spinors atpoint ๐ฟ (in the point symmetry group ๐‘š๐‘š๐‘š (๐ท2โ„Ž)),i.e. ๐œ”2,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”1,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1)๐œ”2(๐‘Ÿ2, ๐‘Ÿ1).

The standard factor-system taking the spin intoaccount for point ๐ฟ, ๐œ”โ€ฒ

2,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”โ€ฒ(5)(๐‘Ÿ2, ๐‘Ÿ1)ร—

ร—๐œ”โ€ฒ2(๐‘Ÿ2, ๐‘Ÿ1) = ๐œ”โ€ฒ

(5)(๐‘Ÿ2, ๐‘Ÿ1)๐œ”โ€ฒ(1)(๐‘Ÿ2, ๐‘Ÿ1), belongs to the

projective class ๐พ4 of the group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) (be-cause K5 ยท K1 = K4) and coincides with the stan-dard factor-system of the projective class ๐พ4 of the

362 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Fig. 4. Dispersion of the electron energy ๐œ‹โ€ฒ-bands calculated taking the electron spin intoaccount

group ๐‘š๐‘š๐‘š (๐ท2โ„Ž); i.e., ๐œ”โ€ฒ2,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) โ‰ก ๐œ”โ€ฒ

(4)(๐‘Ÿ2, ๐‘Ÿ1)with the coefficients of transformation to the stan-dard form, ๐‘ข2,๐ฟ(๐‘Ÿ), being equal to the product of thecoefficients of transformation of the factor-systems๐œ”1,๐ฟ(๐‘Ÿ2, ๐‘Ÿ1) and ๐œ”2(๐‘Ÿ2, ๐‘Ÿ1) to the standard form,๐‘ข1,๐ฟ(๐‘Ÿ) and ๐‘ข2(๐‘Ÿ).

The characters of the irreducible projective rep-resentations of the point group ๐‘š๐‘š๐‘š (๐ท2โ„Ž) of theprojective class ๐พ4 for the standard factor-system๐œ”โ€ฒ(4)(๐‘Ÿ2, ๐‘Ÿ1) of the point group ๐‘š๐‘š๐‘š are presented

in Table 17, ๐‘Ž. In the bottom part of this table,the values of the coefficients ๐‘ข1,๐ฟ(๐‘Ÿ), ๐‘ข2(๐‘Ÿ), thephase factors ๐‘’โˆ’๐‘–๐‘˜๐ฟ๐›ผ(๐‘Ÿ), the products of coefficients๐‘’โˆ’๐‘–๐‘˜๐ฟ๐›ผ(๐‘Ÿ)๐‘ข1,๐ฟ(๐‘Ÿ)๐‘ข2(๐‘Ÿ) โ‰ก ๐‘’โˆ’๐‘–๐‘˜๐ฟ๐›ผ(๐‘Ÿ)๐‘ข2,๐ฟ(๐‘Ÿ), and thecharacters of the irreducible spinor projective repre-sentation ๐ท+

1/2 are given. The characters of the two-valued (spinor) irreducible projective representationsat point ๐ฟ in the Brillouin zone of crystalline graphite,which were calculated using the formula

(๐ฟโ€ฒ)(4)๐‘– = ๐‘’โˆ’๐‘–๐‘˜๐ฟ๐›ผ(๐‘Ÿ)(๐‘Ÿ)๐‘ข1,๐ฟ(๐‘Ÿ)๐‘ข2(๐‘Ÿ)๐‘ƒ

(4)๐‘– =

= ๐‘’โˆ’๐‘–๐‘˜๐ฟ๐›ผ(๐‘Ÿ)๐‘ข2,๐ฟ(๐‘Ÿ)๐‘ƒ(4)๐‘– , (9)

are shown in Table 17, ๐‘. The bottom part of thistable contains the characters of the two-valued spinor

projective representation of electron ๐œ‹โ€ฒ-bands makingallowance for the electron spin.

The characters of the projective equivalence rep-resentation at point ๐ฟ (the representation ๐ฟeq), therepresentation ๐ฟ๐‘ง โ‰ก ฮ“๐‘ง determining the spatial sym-metry of the ๐‘๐‘ง orbital, the representation ๐ฟ๐œ‹ of theelectron ๐œ‹-bands making no allowance for the spin,and the two-valued representations ๐ท+

1/2, ๐ฟโ€ฒ๐‘ง โ‰ก ฮ“โ€ฒ

๐‘ง,and ๐ฟโ€ฒ

๐œ‹ are given in Table 2. The distributions of elec-tron excitations at point ๐ฟ in the Brillouin zone ofcrystalline graphite for ๐œ‹-bands without and with tak-ing the electron spin into account over the one-valuedand, accordingly, two-valued (spinor) irreducible pro-jective representations of point ๐ฟ are presented inTable 3.

Our calculation of the Herring criterion using thesymmetry elements for point ๐ฟ in the Brillouin zoneof crystalline graphite, which satisfy the equality๐‘”โ€ฒ๐‘˜ = โˆ’๐‘˜ โ€“ in particular, these are the elements๐‘”โ€ฒ1 = (0 |๐‘’ ), ๐‘”โ€ฒ4 = (0 |(๐‘ข2)1 ), ๐‘”โ€ฒ7 = (๐‘Ž1

2 |๐‘2 ), ๐‘”โ€ฒ10 == (๐‘Ž1

2 |(๐‘ขโ€ฒ2) 1), ๐‘”

โ€ฒ13 = (0 |๐‘– ), ๐‘”โ€ฒ16 = (0 |๐‘–(๐‘ข2)1 ), ๐‘”โ€ฒ19 =

= (๐‘Ž1

2 |๐‘–๐‘2 ) and ๐‘”โ€ฒ22 = (๐‘Ž1

2 |๐‘–(๐‘ขโ€ฒ2) 1), whose squares

equal (๐‘”โ€ฒ1)2 = (0 |๐‘’ ), (๐‘”โ€ฒ4)2 = (0 |๐‘ž ), (๐‘”โ€ฒ7)2 = (๐‘Ž1 |๐‘ž ),(๐‘”โ€ฒ10)

2 = (0 |๐‘ž ), (๐‘”โ€ฒ13)2 = (0 |๐‘’ ), (๐‘”โ€ฒ16)

2 = (0 |๐‘ž ),

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 363

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Fig. 5. Dispersion of the electron energy (๐‘Ž) ๐œ‹-bands (not taking the electron spin into account) and (๐‘) ๐œ‹โ€ฒ-bands (taking theelectron spin into account) in the K โˆ’ P โˆ’H direction of the Brillouin zone in graphite ๐›พ-๐ถ crystals. The spin-dependent finestructure of ๐œ‹โ€ฒ-bands in panel ๐‘ is shown schematically, with the energy scale for the splitting of electron ๐œ‹โ€ฒ-bands being enlargedby a factor of about 103

(๐‘”โ€ฒ19)2 = (0 |๐‘ž ) and (๐‘”โ€ฒ22)

2 = (๐‘Ž1 |๐‘ž ), โ€“ testifiesthat the two-valued (spinor) irreducible projectiverepresentations of point ๐ฟ in the Brillouin zone ofcrystalline graphite that belong to the projectiveclass ๐พ4 โ€“ these are the representations (๐ฟโ€ฒ)

(4)1 and

(๐ฟโ€ฒ)(4)2 โ€“ belong to the case ๐‘2 [9]. Being the rep-

resentations with complex-conjugate characters, iftheir time-reversal invariance is taken into considera-tion, they unite into four-dimensional representations((๐ฟโ€ฒ)

(4)1 +(๐ฟโ€ฒ)

(4)2 )1 and ((๐ฟโ€ฒ)

(4)1 +(๐ฟโ€ฒ)

(4)2 )2, so that the

degree of degeneration for each of the electron statesincreases to four. In Table 17, ๐‘, just this union ofrepresentations with complex-conjugate characters isindicated.

In Fig. 4, the dispersion of the electron energy ๐œ‹-bands making allowance for the electron spin (๐œ‹โ€ฒ-bands) in graphite crystals is shown schematically.The letters are used to mark points in the Brillouinzone, and the letters with indices to mark the two-valued spinor irreducible projective representationsof the corresponding projective classes (the latterare indicated by the parenthesized superscripts). Thedispersion of electron ๐œ‹-bands is schematically illus-trated for all high-symmetry points in the Brillouinzone of crystalline graphite. The curves agree wellat the qualitative level with the results of numer-ical calculations carried out in works [11, 12] tak-

ing no electron spin into account, i.e. in the case ofweak spin-orbit interaction. Nevertheless, the curvesdemonstrate the qualitative behavior of the disper-sion of the electron ๐œ‹-bands along the line ฮ“โ€“ฮ”โ€“๐ด.

Figure 5, ๐‘Ž exhibits the dispersion of the electron๐œ‹-bands along the line ๐พโ€“๐‘ƒโ€“๐ป in the Brillouin zoneof crystalline graphite calculated making no allowancefor the electron spin. Figure 5, ๐‘ qualitatively demon-strates the spin-dependent fine structure of the energy๐œ‹-bands for the splitting of electron states shown inFig. 5, ๐‘ (the energy scale of the spin-dependent finestructure is enlarged by a factor of about 103). Thisfine structure is obtained, if the methods of theo-retical symmetry-group analysis are consistently ap-plied to determine the dispersion of electron ๐œ‹-bandsin crystalline graphite taking the electron spin intoaccount. The spin-dependent splitting can be sub-stantial, e.g., for dichalcogenides of transition met-als with the same spatial symmetry group. However,it is small for crystalline graphite and single-layergraphene, because it is caused by a low spin-orbitinteraction energy for carbon atoms and, as a conse-quence, carbon structures.

4. Conclusions

1. For the first time, a theoretical symmetry-groupdescription of the dispersion of electron ๐œ‹-bands

364 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4

Energy Spectra of Electron Excitations

Ta

ble

18

(A

pp

en

dix

) .

Calc

ula

tion

of

the H

errin

g c

rit

erio

n

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4 365

V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

in crystalline graphite (the space symmetry group๐‘ƒ63/๐‘š๐‘š๐‘ (๐ท4

6โ„Ž)) and single-layer graphene (thediperiodic space group ๐‘ƒ6/๐‘š๐‘š๐‘š (๐ท๐บ80)) is made.The consistency conditions for the irreducible pro-jective representations making allowance for the elec-tron spin and the changes of the projective classes aredetermined for various high-symmetry points in theBrillouin zones of those materials.

2. A correlation between the electron excitationsin crystalline graphite making allowance for the elec-tron spin and the spinor excitations in single-layergraphene is shown.

3. With the help of theoretical symmetry-groupmethods, the existence of a fine structure for elec-tron ๐œ‹-bands has been predicted for the first time. Itarises, when the electron spin is taken into account,even in the case of weak spin-orbit interaction. Thecorresponding results include the appearance of asmall (about 1.0โ€“1.5 meV according to the estima-tions of work [2]) band gap between the valence andconduction bands at the Dirac points and in theirvery small vicinities in crystalline graphite and single-layer graphene. A new interpretation is also given toa small splitting (the spin-dependent fine structure)of electron ๐œ‹-bands, if the electron spin is taken intoaccount, at point ๐ป of crystalline graphite on the ba-sis of the established change in the projective classesof irreducible projective representations of the wave-vector groups, which excludes the intersection of thedispersion curves of electron bands near point ๐ป.

APPENDIX:Calculation of the Herring criterion

Table 18 illustrates the stages and the results of cal-culations of the characters ๐œ’k,๐ท๐œ‡

[(๐‘”โ€ฒ)2], ๐œ’k,๐ทโ€ฒ๐œ‡[(๐‘”โ€ฒ)2],

and the corresponding values of the Herring criterionfor irreducible representations at points ฮ“ and ๐ด.

1. V.O. Gubanov, A.P. Naumenko, M.M. Bilyi, I.S. Dotsenko,O.M. Navozenko, M.M. Sabov, L.A. Bulavin. Energy spec-tra correlation of vibrational and electronic excitations andtheir dispersion in graphite and graphene. Ukr. J. Phys.63, 431 (2018).

2. M.I. Katsnelson. Graphene: Carbon in Two Dimensions(Cambridge Univ. Press, 2012).

3. J.D. Bernal. The structure of graphite. Proc. Roy. Soc.London A 106, 749 (1924).

4. T. Hahn. International Tables for Crystallography. Vol. A.Space Group Symmetry (D. Reidel, 1983).

5. C. Herring. Effect on time-reversal symmetry on energybands of crystals. Rhys. Rev. 52, 361 (1937).

6. C. Herring. Accidental degeneracy in the energy bands ofcrystals. Rhys. Rev. 52, 365 (1937).

7. E.A. Wood. The 80 diperiodic groups in three dimensions.Bell System Techn. J. 43, 541 (1964).

8. M.S. Dresselhaus, G. Dresselhaus, A. Jorio. Group Theory.Application to the Physics of Condensed Matter (Springer,2008).

9. G.L. Bir, G.E. Pikus. Symmetry and Strain-Induced Ef-fects in Semiconductors (Wiley, 1974).

10. D.S. Balchuk, M.M. Bilyi, V.P. Gryschuk, V.O. Gubanov,V.K. Kononov. Symmetry of vibrational modes, invarianceof energy states to time inversion, and Raman scatter-ing in 4H- and 6H-SiC crystals. 1. Classification of energystates in Brillouin zones. Ukr. Fiz. Zh. 41, 146 (1996) (inUkrainian).

11. E. Doni, G. Pastori Parravicini. Energy bands and opticalproperties of hexagonal boron nitride and graphite. NuovoCimento B 64, 117 (1969).

12. F. Bassani, G. Pastori Parravicini. Electronic States andOptical Transitions in Solids (Pergamon Press, 1975).

Received 22.08.19.Translated from Ukrainian by O.I. Voitenko

ะ’.ะž. ะ“ัƒะฑะฐะฝะพะฒ, ะ.ะŸ.ะะฐัƒะผะตะฝะบะพ, ะœ.ะœ.ะ‘iะปะธะน,I.ะก.ะ”ะพั†ะตะฝะบะพ, ะœ.ะœ.ะกะฐะฑะพะฒ, ะœ.ะก.ะฏั…ะฝะตะฝะบะพ, ะ›.ะ.ะ‘ัƒะปะฐะฒiะฝ

ะ•ะะ•ะ ะ“ะ•ะขะ˜ะงะI ะกะŸะ•ะšะขะ ะ˜ ะ•ะ›ะ•ะšะขะ ะžะะะ˜ะฅะ—ะ‘ะฃะ”ะ–ะ•ะะฌ ะขะ ะ‡ะฅะะฏ ะ”ะ˜ะกะŸะ•ะ ะกIะฏ ะ’ ะ“ะ ะะคIะขII ะ“ะ ะะคะ•ะI: ะ’ะ ะะฅะฃะ’ะะะะฏ ะ•ะ›ะ•ะšะขะ ะžะะะžะ“ะžะกะŸIะะฃ ะขะ ะกะ˜ะœะ•ะขะ Iะ‡ ะ”ะž Iะะ’ะ•ะ ะกIะ‡ ะงะะกะฃ

ะ  ะต ะท ัŽ ะผ ะต

ะ”ะพัะปiะดะถะตะฝะพ ะดะธัะฟะตั€ัiะนะฝi ะทะฐะปะตะถะฝะพัั‚i ะตะปะตะบั‚ั€ะพะฝะฝะธั… ะทะฑัƒะดะถะตะฝัŒะบั€ะธัั‚ะฐะปiั‡ะฝะพะณะพ ะณั€ะฐั„iั‚ัƒ i ะพะดะฝะพัˆะฐั€ะพะฒะพะณะพ ะณั€ะฐั„ะตะฝัƒ iะท ะฒั€ะฐั…ัƒะฒะฐ-ะฝะฝัะผ ัะฟiะฝัƒ ะตะปะตะบั‚ั€ะพะฝะฐ. ะ’ะธะทะฝะฐั‡ะตะฝะพ ะบะพั€ะตะปัั†iั— ะตะฝะตั€ะณะตั‚ะธั‡ะฝะธั…ัะฟะตะบั‚ั€iะฒ ะตะปะตะบั‚ั€ะพะฝะฝะธั… ะทะฑัƒะดะถะตะฝัŒ i, ะฒะฟะตั€ัˆะต, ัƒะผะพะฒะธ ััƒะผiัะฝะพ-ัั‚i ะดะฒะพะทะฝะฐั‡ะฝะธั… ะฝะตะทะฒiะดะฝะธั… ะฟั€ะพะตะบั‚ะธะฒะฝะธั… ะฟั€ะตะดัั‚ะฐะฒะปะตะฝัŒ, ั‰ะพั…ะฐั€ะฐะบั‚ะตั€ะธะทัƒัŽั‚ัŒ ัะธะผะตั‚ั€iัŽ ัะฟiะฝะพั€ะฝะธั… ะทะฑัƒะดะถะตะฝัŒ ะฒ ะทะฐะทะฝะฐั‡ะต-ะฝะธั… ะฒะธั‰ะต ัั‚ั€ัƒะบั‚ัƒั€ะฐั…, ั‚ะฐ ั€ะพะทะฟะพะดiะปะธ ัะฟiะฝะพั€ะฝะธั… ะบะฒะฐะฝั‚ะพะฒะธั…ัั‚ะฐะฝiะฒ ะทะฐ ะฟั€ะพะตะบั‚ะธะฒะฝะธะผะธ ะบะปะฐัะฐะผะธ ั‚ะฐ ะฝะตะทะฒiะดะฝะธะผะธ ะฟั€ะพะตะบั‚ะธะฒ-ะฝะธะผะธ ะฟั€ะตะดัั‚ะฐะฒะปะตะฝะฝัะผะธ ะดะปั ะฒัiั… ั‚ะพั‡ะพะบ ะฒะธัะพะบะพั— ัะธะผะตั‚ั€iั— ัƒะฒiะดะฟะพะฒiะดะฝะธั… ะทะพะฝะฐั… ะ‘ั€iะปะปัŽะตะฝะฐ. ะ—ะฐ ะดะพะฟะพะผะพะณะพัŽ ัะธะผะตั‚ั€iะนะฝะธั…ั‚ะตะพั€ะตั‚ะธะบะพ-ะณั€ัƒะฟะพะฒะธั… ะผะตั‚ะพะดiะฒ ะดะปั ะฟั€ะพัั‚ะพั€ะพะฒะธั… ะณั€ัƒะฟ ัะธะผะตั‚ั€iั—ะบั€ะธัั‚ะฐะปiั‡ะฝะพะณะพ ะณั€ะฐั„iั‚ัƒ i ะพะดะฝะพัˆะฐั€ะพะฒะพะณะพ ะณั€ะฐั„ะตะฝัƒ ะฒัั‚ะฐะฝะพะฒะปะต-ะฝะพ iัะฝัƒะฒะฐะฝะฝั ัะฟiะฝ-ะทะฐะปะตะถะฝะธั… ั€ะพะทั‰ะตะฟะปะตะฝัŒ ะตะฝะตั€ะณะตั‚ะธั‡ะฝะธั… ะตะปะต-ะบั‚ั€ะพะฝะฝะธั… ัะฟะตะบั‚ั€iะฒ, ะทะพะบั€ะตะผะฐ, ั€ะพะทั‰ะตะฟะปะตะฝัŒ ๐œ‹-ะทะพะฝ ะฒ ั‚ะพั‡ะบะฐั… ะ”i-ั€ะฐะบะฐ, ะฒะตะปะธั‡ะธะฝะฐ ัะบะธั… ะผะพะถะต ะฑัƒั‚ะธ ะทะฝะฐั‡ะฝะพัŽ, ะฝะฐะฟั€ะธะบะปะฐะด, ะดะปัะดะธั…ะฐะปัŒะบะพะณะตะฝiะดiะฒ ะฟะตั€ะตั…iะดะฝะธั… ะผะตั‚ะฐะปiะฒ ั‚ะฐะบะพั— ัะฐะผะพั— ะฟั€ะพัั‚ะพั€ะพะฒะพั—ะณั€ัƒะฟะธ ัะธะผะตั‚ั€iั—, ะฐะปะต ั” ะฝะตะฒะตะปะธะบะพัŽ ะดะปั ะบั€ะธัั‚ะฐะปiั‡ะฝะพะณะพ ะณั€ะฐั„iั‚ัƒi ะพะดะฝะพัˆะฐั€ะพะฒะพะณะพ ะณั€ะฐั„ะตะฝัƒ, ะพัะบiะปัŒะบะธ ะฒะพะฝะฐ ะทัƒะผะพะฒะปะตะฝะฐ ะผะฐะปะพัŽะตะฝะตั€ะณiั”ัŽ ัะฟiะฝ-ะพั€ะฑiั‚ะฐะปัŒะฝะพั— ะฒะทะฐั”ะผะพะดiั— ะดะปั ะฐั‚ะพะผiะฒ ะฒัƒะณะปะตั†ัŽ i,ัะบ ะฝะฐัะปiะดะพะบ, ะดะปั ะฒัƒะณะปะตั†ะตะฒะธั… ัั‚ั€ัƒะบั‚ัƒั€.

366 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4