engineering math - wagmob

208

Upload: delchev2

Post on 10-Sep-2015

26 views

Category:

Documents


7 download

DESCRIPTION

eng math

TRANSCRIPT

  • TableofContents

    ComplexNumbersIComplexNumbersIIMatrixSolutionofSimultaneousEquationDifferentialCalculusIDifferentialCalculusIIIntegralCalculusIIntegralCalculusIIOrdinaryDifferentialEquationsIOrdinaryDifferentialEquationsIIOrdinaryDifferentialEquationsIIIFourierSeriesIFourierSeriesIILaplaceTransformVectorCalculusIVectorCalculusIIDisclaimerAboutUsHelpAndSupport

  • Chapter:1ComplexNumbersI

    Topicscoveredinthissnack-sizedchapter:

    ComplexNumbersImaginaryNumbersArgandDiagramComplexConjugateAddingandSubtractingComplexNumbersMultiplyingComplexNumbersDividingComplexNumbersTheComplexPlane

  • ComplexNumbers

    Acomplexnumberisanumberconsistingofarealandimaginarypart.

    Itcanbewrittenintheform a+bi.oWhereaandbarerealnumbers

    i(calledasIota)isthestandardimaginaryunitwiththepropertyi2=-1.

  • ImaginaryNumbers

    Imaginarynumberisthenumberwhichhasimaginarypart.Wecansplitthenegativenumbersintopositivenumberand1.Wearedefining(-1)=i

    oi2=-1oi3=-ioi4=1

    Thisisknownasimaginarynumber.

    Example:

    Findtheimaginarynumberofthefollowing(-5)Solution:

    Weknow-5=-15So(-5)=(-15)=(-1)5

    =2.23i

    Sotheimaginarynumberis2.23i

  • ArgandDiagram

    ThegraphicalrepresentationofthecomplexnumberfieldiscalledanArganddiagram.Anycomplexnumberz=a+ibcanberepresentedbyanorderedpair(a,b)andhenceplottedonxy-axiswiththerealpartmeasuredalongthex-axisandtheimaginarypartalongthey-axis.

  • ComplexConjugate

    Inmathematics,complexconjugatesareapairofcomplexnumbers,bothhavingthesamerealpart,butwithimaginarypartsofequalmagnitudeandoppositesigns.

    Theconjugateofthecomplexnumberz=a+ib,whereaandbarerealnumbers,is.

  • AddingandSubtractingComplexNumbers

    Addorsubtracttwocomplexnumbers

    and

    Theruleistoaddtherealandimaginarypartsseparately:

    z1+z2=a+ib+c+id

    =a+c+i(b+d)

    z1-z2=a+ibc-id

    =ac+i(b-d)

    Example1:

    (1+i)+(3+i)

    =1+3+i(1+1)

    =4+2i

    Example2:

    (2+5i)-(1-4i)

    =2+5i-1+4i

    =1+9i

  • MultiplyingComplexNumbers

    Wemultiplytwocomplexnumbersjustaswemultiplyexpressionsoftheform(x+y)together.

    (a+ib)(c+id)

    =ac+a(id)+(ib)c+(ib)(id)

    =ac+iad+ibc-bd

    =acbd+i(ad+bc)

    Example:

    (2+3i)(3+2i)

    =23+22i+3i3+3i2i(Bysubstitutingi2=-1)

    =6+4i+9i6=13i

  • DividingComplexNumbers

    Fordividingtwocomplexnumbersmultiplytopandbottombythecomplexconjugateofthedenominator.

    Thedenominator isnowarealnumber.

    Example:

  • TheComplexPlane

    Thecomplexplaneorz-planeisageometricrepresentationofthecomplexnumbers.ItcanbemodifiedasaCartesianplane.Therealpartofacomplexnumberrepresentedbyadisplacementalongthex-axisandtheimaginarypartbyadisplacementalongthey-axis.

    Themultiplicationoftwocomplexnumberscanbeexpressedeasilyinpolarcoordinates.Themagnitudeormodulusoftheproductistheproductofthetwoabsolutevalue,ormoduli.

    Theangleorargumentoftheproductisthesumofthetwoangles,orarguments.Inparticular,multiplicationbyacomplexnumberofmodulus1actsasarotation.

  • Geometricrepresentationof anditsconjugate inthecomplexplane

    Thedistancealongtheredlinefromtheorigintothepointzisthemodulusorabsolutevalueofz.

    Theangle istheargumentofz.

  • Chapter:2ComplexNumbersII

    Topicscoveredinthissnack-sizedchapter:

    PolarFormofaComplexNumberEulersFormulaDeMoivresTheoremPowersofComplexNumbers

  • PolarFormofaComplexNumber

    Thepolarformofacomplexnumberisanotherwaytorepresentacomplexnumber.Theformz=a+biiscalledtherectangularcoordinateformofacomplexnumber.

    Thehorizontalaxisistherealaxisandtheverticalaxisistheimaginaryaxis.

    Therealandcomplexcomponentsintermsofrand whereristhelengthofthevectorand istheanglemadewiththerealaxis.

    FromPythagoreanTheorem:

    Byusingthebasictrigonometricratios:

    Multiplyingeachsidebyr:

  • Therectangularformofacomplexnumberisgivenby

    Substitutethevaluesofaandb.

    Inthecaseofacomplexnumber,rrepresentstheabsolutevalueormodulusandtheangle iscalledtheargumentofthecomplexnumber.

    Thepolarformofacomplexnumber

    is

    Where,

    and

    and

    For

  • Or

    Or

    For

    Example:

    Expressthecomplexnumberinpolarform.

    Thepolarformofacomplexnumber is .So,firstfindtheabsolutevalueofr.

    Nowfindtheargument .

    Sincea>0,usetheformula

  • Thathere ismeasuredinradians.

    Therefore,thepolarformof isabout .

  • EulersFormula

    Eulersformulaestablishestherelationshipbetweenthetrigonometricfunctionsandcomplexexponentialfunction.

    Itstatesthatforanyrealnumberx:eix=cosx+isinx

    whereiistheimaginaryunit.

    Proof:

    Forrealvaluesofx:

    Itcanalsobedemonstratedusingacomplexintegral.

    Let

  • ln

    So

  • DeMoivresTheorem

    Theorem

    Inpolarform,if and thentheproduct iseasityobtained:

    Inparticular,if and (i.e. ),

    Multiplyingeachsideby gives

    Onaddingtheargumentsofthetermsintheproduct.Similarly

    Aftercompletingnsuchproductswehave:

    wherenisapositiveinteger.

  • Thisresultcanbeshowntobetrueforthosecasesinwhichnisanegativeintegerand

    whennisarationalnumbere.g.

    Note:

    If isarationalnumber:

    oThisresultisknownasDeMoivresTheorem.

    InexponentialformDeMoivrestheorem,inthecasewhenpisapositiveinteger,issimplyastatementofthelawsofindices:

    Example:

    UseDeMoivrestheoremtoobtainanexpressionfor intermsofpowersofalone.

    Solution:

    FromDeMoivrestheoremwehave

    However,expandingthelefthandside(using: )

    Andthen,equatingtherealpartsofbothsides,givestherelation:

  • Replacing by ;

    Finally:

    istherequiredrelation.

  • PowersofComplexNumbers

    Definition:If isasequenceofcomplexnumberssuchthatthelimits

    and

    Exist,thenwesaythat isthelimitof andiswrittenas:

  • Theorem2:If then

    oIf then .

    oIf then .

    oIf then existsifandonlyif .

  • Corollary: existsifonly or .

    oIf thenthepowers spiralinto .oIf thenthepowers spiraloutto .

    oIf and thenthepowers runaroundontheunitcircle.

    Example:

    and

  • Chapter:3Matrix

    Topicscoveredinthissnack-sizedchapter:

    MatrixTypesofMatricesPropertiesofMatrixAdditionPropertiesofMatrixMultiplicationTheTransposeofaMatrixDeterminantofaMatrixMinorsofaMatrixCo-factorofaMatrixAdjointofaMatrixInverseofaMatrixWaystofindtheInverseofMatrix

  • Matrix

    AMatrixisarectangulararrayofnumbersenclosedbyapairofbracket.Asetofmnnumbersarrangedintheformofanorderedsetofmrowsandncolumnsiscalledmnmatrix(tobereadasmbynmatrix).

    mnmatrixAiswrittenas:

    A= oi=1,2,moj=1,2,n

    Where representstheelementattheintersectionof throwand thcolumn.

  • TypesofMatrices

    SquareMatrix

    Amatrixinwhichthenumberofrowsisequaltothenumberofcolumnsiscalledasquarematrix.

    oThusmnmatrixAwillbeasquarematrixifm=n

    DiagonalElements

    Inasquarematrixallthoseelements forwhich i.e.allthoseelementswhichoccurinthesamerowandsamecolumnnamely arecalledtheDiagonalElements.

    DiagonalMatrix

    AsquarematrixAissaidtobeadiagonalmatrixifallitsnon-diagonalelementsbezero.

    Example:

    ScalarMatrix

    AdiagonalmatrixwhoseallthediagonalelementsareequaliscalledaScalarMatrix.

    Example:

  • UnitorIdentityMatrix

    Asquarematrix allofwhosenon-diagonalelementsarezeroandeachofthediagonalelementisunity.

    Example:

    and

    Ingeneralforaunitmatrix, for and for

    ZeroMatrixorNullMatrix

    AnymnmatrixinwhichalltheelementsarezeroiscalledaZeromatrixorNullmatrixofthetypemnandisdenotedby

    ,

    ,

    SymmetricMatrix

    Asquarematrix willbecalledSymmetricifforallvaluesof and ,

  • Aisasymmetricmatrixinwhich ,

  • PropertiesofMatrixAddition

    Matrixadditioniscommutative:A+B=B+A

    Matrixadditionisassociative:A+(B+C)=(A+B)+C

  • PropertiesofMatrixMultiplication

    MultiplicationofMatricesisdistributivewithrespecttoadditionofmatrices.oA(B+C)=AB+AC

    MatrixMultiplicationisassociativeifconformabilityisassured.oA(BC)=(AB)C

    ThemultiplicationofMatricesisnotalwayscommutative.oABisnotalwaysequaltoBA

    MultiplicationofaMatrixAbyanullmatrixconformablewithAformultiplicationisanullmatrix.

    oA0=0

    IfAB=0thenitdoesnotnecessarilymeanthatA=0orB=0orbothare0.Example:

    MultiplicationofMatrix byaUnitMatrixoLetAbeamnmatrixandIbeasquareunitmatrixofordern,sothatAandIareconformableformultiplicationthen

  • TheTransposeofaMatrix

    If beagivenmatrixofthetypemnthenthematrixobtainedbychangingtherowsofAintocolumnsandcolumnsofAintorowsiscalledTransposeofmatrixAandisdenotedby

    AstherearemrowsinAthereforetherewillbemcolumnsin andsimilarlyastherearencolumnsinAtherewillbenrowsin

    Example:

    Then

  • PropertiesofTranspose:

  • DeterminantofaMatrix

    ADeterminantisarealnumberassociatedwitheverysquarematrix.

    Thedeterminantofasquarematrix isdenotedby or

  • Determinantofa matrices

  • Determinantofa matrices

  • MinorsofaMatrix

    AMinorforanyelementisthedeterminantthatresultswhentherowandcolumnofthatelementaredeleted.

    Forthematrixshownbelow(Notethat isrow and iscolumn )

    C1

    C2

    C3

    R1

    1

    4

    3

    R2

    0

    5

    2

    R3

    3

    6

    1

    Minorfor ( , ,deleted)is :

    C2

    C3

    R1

    4

    3

    R3

    6

    1

  • Co-factorofaMatrix

    Co-factorforanyelementiseithertheminorortheoppositeoftheminor,basedontheelementspositionintheoriginalDeterminant.

    oIftherowandcolumnoftheelementadduptoanevennumber,theco-factoristhesameastheminor.oIftherowandcolumnoftheelementadduptoanoddnumbertheco-factoristheminorwithoppositesign.

  • AdjointofaMatrix

    Thematrixformedbytakingthetransposeofthecofactormatrixofagivenmatrix.TheAdjointofmatrixisoftenwrittenasadjA.Example:

    Findtheadjointforthematrix

    Solution:

    FirstdeterminethecofactormatrixoCofactorof5=3oCofactorof7=-4oCofactorof4=-7oCofactorof3=4

    Cofactormatrix=

    AdjA=Transposeofcofactormatrix

  • InverseofaMatrix

    ForasquarematrixA,theinverseiswrittenas .WhenAismultipliedby theresultistheidentitymatrixI.

    Non-squarematricesdonothaveinverses.

  • WaystofindtheInverseofMatrix

  • Adjointmethod:

    or

    Example:

    Considerthematrix

    ThecofactormatrixforAis

    Sotheadjointis

    SincedetA=22,weget

  • AugmentedMatrixMethod:

    AnAugmentedMatrixisamatrixobtainedbyappendingthecolumnsoftwogivenmatrices,usuallyforthepurposeofperformingthesameelementaryrowoperationsoneachofthegivenmatrices.

    Example:

    GiventhematricesAandB,where:

    ,B=

    Then,theaugmentedmatrix iswrittenas:

  • Chapter:4SolutionofSimultaneousEquation

    Topicscoveredinthissnack-sizedchapter:

    SolutionofLinearEquationsCramersRuleSolutionofSimultaneousEquationbyGaussianEliminationmethodEigenvaluesandEigenvectorsCayleyHamiltonTheorem

  • SolutionofLinearEquations

    Considerthesetofequations:

    or

    Theabovesetsofequationscanbeconvenientlywritteninmatrixformasunder:

    or

    Intheabove,thematrixAiscalledCoefficientMatrix.Iftheaboveequationshaveasolutionwesaythattheyareconsistentandhaveeitherauniquesolutionorinfinitesolutions.

    Incasetheydonothaveanysolution,weshallsaythatthesystemsofequationsareinconsistent.

    Example:

    haveauniquesolution

    x=1,y=2ascanbeverifiedbysolvingthem.

    Herethecoefficientmatrixis

  • and

    oMatrixAisnon-singularanditsinverseexists.oInthiscase,wewillhaveauniquesolution.Theaboveequationcanbewritteninmatrixformas:

    oWhere isanon-singularmatrixas and

    oMultiplyingbothsidesofequation by ,weget:

    or

  • CramersRule

    Givenasetoflinearequations:

    Considerthedeterminant:

    NowmultiplyDbyx,andusethepropertyofdeterminantsthatmultiplicationbyaconstantisequivalenttomultiplicationofeachentryinasinglecolumnbythatconstant,so

    Anotherpropertyofdeterminantsenablesustoaddaconstanttimesanycolumntoanycolumnandobtainthesamedeterminant,soaddytimescolumn2andztimescolumn3tocolumn1,

    If ,thenreducesto ,sothesystemhasnondegeneratesolutions(i.e.,solutionsotherthan )onlyif (inwhichcasethereisafamilyofsolutions).

  • If and ,thesystemhasnouniquesolution.

    Ifinstead and ,thensolutionsaregivenby

    andsimilarlyfor

    Thisprocedurecanbegeneralizedtoasetofnequationsso,givenasystemofnlinearequations

    Let

    If ,thennondegeneratesolutionsexistonlyif .

    If and ,thesystemhasnouniquesolution.Otherwise,compute

  • Then for Inthethree-dimensionalcase,thevectoranalogofCramersruleis

    Example:

    UseCramersRuletosolvethesystem:5x4y=2

    6x5y=1

    Solution:

    Webeginbysettingupandevaluatingthethreedeterminants :

    =(5)(-5)-(6)(-4)

    =-25+24=-1

    =(2)(-5)-1(-4)

    =-10+4=-6

    =(5)(1)-(6)(2)

    =512=-7

    FromCramersRule,wehave

  • Thesolutionis(6,7).

  • SolutionofSimultaneousEquationbyGaussianEliminationmethod

    EquivalentSystems:

    Twosystemsoflinearequationsareequivalentiftheyhaveidenticalsolutions.Echelonform:

    Asystemofthreelinearequationsinvariablesx,y,zissaidtobeinechelonformifitcanbewrittenas

    Wherethecoefficientsa,b,canddaregivennumbers,someofwhichmaybezero.

    GaussianElimination:

    ThesystematiceliminationofvariablestochangeasystemoflinearequationsintoanequivalentsysteminechelonformfromwhichwecanreadthesolutioniscalledGaussianElimination.

    ElementaryOperationsandEquivalentSystems:

    ThekeytoGaussianeliminationistheideaofelementaryoperation,thereplacementofoneequationinasystembyanothergivesanequivalentsysteminawaythatleavesthesolutionunchanged.

    Let denotesthe equationofthesystemand-2 + iswhatwegetwhenwemultiplybothsidesofequation by-2andaddtheresulttoequation .

    Operation

    NotationandMeaning

    Interchangetwoequations

    meansinterchangeequation

    and .

    Multiplybyanonzeroconstant

    meansreplaceequation

  • with .

    Addamultipleofoneequationtoanotherequation

    meansreplace with

    .

    Performinganyoftheelementaryoperationsonasystemoflinearequationsgivesanequivalentsystem.

    Example:

    SolvethefollowingsystemofequationbyGaussianElimination:

    Solution:

    Thefollowingelementaryoperationsleadtoanechelonform,fromwhichwefindx,yandz.

    Wenowhaveanechelonforminwhich ,0.z=0,issatisfiedbyanynumberz.Thereforewehaveinfinitesolutions.

    Letz=t,wheretisanynumber. impliesy=z+5=t+5.x=32y+2z=32(t+5)+2t=32t10+2t=-7Therefore,x=-7,y=t+5,z=t,wheretisanynumber.

  • EigenvaluesandEigenvectors

    LetAbeann nmatrix.Thenumber isaneigenvalueofAifthereexistsanon-zerovector suchthat

    Inthiscase,vector iscalledaneigenvectorofAcorrespondingto .

    WecanrewritetheconditionAv= vas

    =0

    whereIisthen nidentitymatrix.Nowinorderofanon-zerovectorvtosatisfythis

    equation,thedeterminantof mustbeequaltozero.Thatis,

    ThisequationisknownascharacteristicequationofAand isthecharacteristicpolynomialofA.

    Example:

    LetA= .Then

    p( )=det

    =(2- )(-1- )(-4)(-1)

    =

    =( -3)( +2)

    Thus, and aretheeigenvaluesofA.

    Letsfindtheeigenvectorscorrespondingto

    Letv= .Then(A3I)v=0givesus

  • = ,fromwhich

    weobtaintheduplicateequations.

    - -4 =0

    - -4 =0

    Ifwelet =t,then =-4t.Alleigenvectorscorrespondingto aremultiplesof

    .

    Repeatingthisfor ,wefindthat

    4 -4 =0

    - + =0

    Ifwelet =t,then =t.Alleigenvectorscorrespondingto aremultiplesof

    .

  • CayleyHamiltonTheorem

    IfAisagivennnmatrixandInisthennidentitymatrix,thenthecharacteristicpolynomialofAisdefinedas:

    p( )=det(A- I)

    TheCayley-HamiltontheoremstatesthateverysquarematrixAsatisfiesitsowncharacteristicequation.

    p(A)=0

    Example:

    ConsiderthematrixA=Itscharacteristicpolynomialis:

    p( )=det(A- )

    =

    = 2

    p(A)=(1-A)2-2

    =A22A-1

  • Chapter:5DifferentialCalculusI

    Topicscoveredinthissnack-sizedchapter:

    TaylorSeriesMaclaurinSeriesPartialDerivativeMaximaandMinima

  • TaylorSeries

    ATaylorseriesisaseriesexpansionofafunctionaboutapoint.Aone-dimensionalTaylorseriesisanexpansionofarealfunctionf(x)aboutapointx=aisgivenby

    Example:

    FindtheTaylorseriesforf(x)=Solution:

    Therefore,

  • MaclaurinSeries

    AMaclaurinseriesisaTaylorseriesexpansionofafunctionabout0.

    Example:

    FindtheMaclaurinExpansionof .Solution:

    Here,of(x)=cosx,of(x)=-sinx,of(x)=-cosx,of(x)=sinx,

    Thenevaluatingeachoftheseatx=0of(0)=1of(0)=0of(0)=-1of(0)=0

    Nowsubstitutingthesevaluesinto

  • PartialDerivative

    Letudenotethefunctionofindependentvariablesxandy;i.e.,u=u(x,y).Atpoint(x,y)thepartialderivativeofuwithrespecttoxandyaredefinedby

    Providethelimitexist.Wemayusethefollowingnotation:

    Ifu=u(x,y)arecontinuous,then

    Also,

    Sincepartialdifferentiationissameastheordinarydifferentiationwithothervariablesregardedasconstants;thefollowingresultholdforpartialdifferentiation:

    oDifferentialcoefficientofaSum:Letz(x,y)=u(x,y)+v(x,y).Thenwehave

  • oDifferentialcoefficientoftheproduct:Letz(x,y)=u(x,y).v(x,y)i.e.,z=uv.Thenwehave

    oDifferentialcoefficientoftheQuotient:Let

    Then

    oFunctionofaFunction:Letz=f(u)andu=u(x,y).Then

    oHeredz/duisusedandnotz/u,aszisthefunctionofsinglevariableu.

    Example:

    Findf/xandf/yforthefunctionf(x,y)=x3y+ex?Solution:

    f(x,y)=x3y+ex

  • MaximaandMinima

    Thediagrambelowshowspartofafunctiony=f(x).

    ThepointAisalocalmaximumandthepointBisalocalminimum.Thetermlocalisusedsincethesepointsarethemaximumandminimuminthisparticularregion.

    Theremaybeothersoutsidethisregion.Ateachofthesepointsthetangenttothecurveisparalleltothex-axissothederivativeofthefunctioniszero.

    AboutthelocalmaximumpointAthegradientchangesfrompositive,tozero,tonegative.Thegradientisthereforedecreasing.

    AboutthelocalminimumpointBthegradientchangesfromnegative,tozero,topositive.Thegradientisthereforeincreasing.

    Therateofchangeofafunctionismeasuredbyitsderivative.oWhenthederivativeispositive,thefunctionisincreasing.oWhenthederivativeisnegative,thefunctionisdecreasing.

    Thustherateofchangeofthegradientismeasuredbyitsderivative,whichisthesecondderivativeoftheoriginalfunction.Inmathematicalnotationthisisasfollows.

  • Atthepoint(a,b)

    oIf and thenthepoint(a,b)isalocalmaximum

    oIf and thenthepoint(a,b)isalocalminimum.

    Example:

    Findthestationarypointofthefunctiony= andhencedeterminethenatureofthispoint.

    Solution:

    Ify= then,

    Now whenx=1.

    Thefunctionhasonlyonestationarypointwhenx=1(andy=2).

    Since(d2y)/(dx2)=2>0forallvaluesofx,thisstationarypointisalocalminimum.

    Thusthefunctiony= hasalocalminimumatthepoint(1,2).

  • Chapter:6DifferentialCalculusII

    Topicscoveredinthissnack-sizedchapter:

    TangentandNormalSub-tangentandSubnormalRadiusofCurvature

  • TangentandNormal

    Theequationofthetangentatpoint(x1,y1)tothecurvey=f(x)is

    Thenormalatpoint(x1,y1)tothecurvey=f(x)is

    Example:

    Tangentsaredrawnfromtheorigintothecurvey=sinx.Provethatpointsofcontactlieonx2y2=x2y2.

    Solution:

    If(x1,y1)isthepointofcontactthen

    Differentiatey=sinxw.r.t.x,weget

    Thetangentequationis:

  • Sincegiventhattangent(2)passesthrough(0,0),then

    Fromequations(1)and(3),weget

    Hencepointofcontactlieonthecurveis

  • Sub-tangentandSubnormal

    LetthetangentPTandnormalPGatanypointP(x,y)ofanycurvemeettheaxisofxinTandGrespectively.

    FromPdrawPMperpendicularonx-axis,thenthelengthTMiscalledCartesiansub-tangentatPandthelengthMGiscalledCartesiansubnormalatPofthecurve.

    If betheanglewhichthetangentatPmakeswithaxisofx,thenslope

    oSub-tangent=

    oSubnormal=

    oLengthoftangentatpointP(x,y)=PT

    oLengthofnormalatpointP(x,y)=PG

  • oInterceptonx-axis

    oInterceptony-axis

    Example:

    Provethatthecurveay2=(x+b)3.Thesubnormalvariesasthesquareofthesub-tangent.

    Solution:

    Givenay2=(x+b)3

    Therefore,

    Weknowthat

  • Therefore,

    Hence,subnormal (subtangent)2.

  • RadiusofCurvature

    LetPbeanypointonthecurveC.DrawthetangentatPtothecircle.

    OsculatingCircle:

    ThecirclehavingthesamecurvatureasthecurveatPtouchingthecurveatP,iscalledthecircleofcurvatureorOsculatingCircle.

    RadiusofCurvature:

    TheradiusoftheOsculatingcircleiscalledtheradiusofcurvatureandisdenotedby .

    CentreofCurvature:

    ThecenterofcurvatureforapointP(x,y)ofacurveisthecenterCofthecircleofcurvatureatP.Thecoordinates( )ofthecenterofcurvaturearegivenby

  • Example:

    Forthecurvey=c ,showthat

    Solution:

    y=c

  • Chapter:7IntegralCalculusI

    Topicscoveredinthissnack-sizedchapter:

    TheDefiniteIntegralPropertiesofDefiniteIntegralsDefiniteIntegralastheLimitofaSumSummationofSeriesUsingDefiniteIntegralsastheLimitasSum

  • TheDefiniteIntegral

    Let betheprimitiveorantiderivativeofafunctionf(x)definedoninterval[a,b]

    i.e., .

    Thenthedefiniteintegraloff(x)over[a,b]isdenotedby andisdefinedas.

    Thenumbersaandbarecalledthelimitsofintegration,aiscalledthelowerlimitandbtheupperlimit.

  • PropertiesofDefiniteIntegrals

    Example:

    Evaluate

    Solution:

    Put,

  • Weget

    Nowintegratingbyparts,weget

  • DefiniteIntegralastheLimitofaSum

    Letf(x)beacontinuousrealvaluedfunctiondefinedontheclosedinterval[a,b]whichisdividedontheclosedinterval[a,b]whichisdividedintonequalpartseachofwidthhbyintersecting(n1)pointsa+h,a+2h,a+3h,.,a+(n1)hbetweenaandb.

    LetSndenotethesumoftheareasofnrectangles.ThenSn=h.f(a)+h.f(a+h)+h.f(a+2h)++h.f(a+(n-1)h)

    Sn=h[f(a)+f(a+h)+f(a+2h)++f(a+(n-1)h)]

    Sndenotestheareawhichisclosetotheareaoftheregionboundedthecurvey=f(x)x-axisandtheordinatesx=a,x=b.

  • Since

    sothat

    Hence

    Where

    Example:

    Evaluate asthelimitofsum.

    Solution:

    Let

    Bydefinition,wehave,

  • SummationofSeriesUsingDefiniteIntegralsastheLimitasSum

    Iff(x)isanintegrablefunctiondefinedoninterval[a,b],thenwehave

    Where

    or

    Puttinga=0,b=1,then

    in(1),weget

  • Thisformulaisveryusefulinfindingthesummationofinfiniteserieswhichareexpressibleintheform

    WorkingRule:

    StepI:writethegivenseriesintheform

    StepII:Replace by byxand bydx.

    StepIII:Obtainlowerandupperlimitsbycomputing fortheleastandgreatestvaluesofrrespectively.

    StepIV:Evaluatetheintegralobtainedinpreviousstep.Thevaluesoobtainedistherequiredsumofthegivenseries.

    Example:

    Evaluate:

    Solution:

    Thegivenlimit

  • Chapter:8IntegralCalculusII

    Topicscoveredinthissnack-sizedchapter:

    BetaFunctionGammaFunctionRelationbetweenBetaandGammaFunctionsEvaluationofDoubleIntegralsEvaluationofTripleIntegrals

  • BetaFunction

    BetaFunction:TheBetafunctiondenotedbyB(m,n)withparameterm,nisdefinedas

    Properties:

  • GammaFunction

    GammaFunction:TheGammafunctionisdefinedasthedefiniteintegral.

    ThisfunctionisalsocalledEulerianintegralofsecondkind.

    Properties:

  • RelationbetweenBetaandGammaFunctions

    Toprovethat,

    Proof:

    Weknowthat

    Putting weget

    Similarly

    Therefore,

    Changingtopolarcoordinates,weput

    weget

  • Hence,

    Example:

    Provethat:

    Solution:

    Weknowthat:

    Puttingm+n=1i.e.,m=1nintheequation(1)weget

  • Since,weknowthat

    Puttingthesevaluesin(2),weget

  • EvaluationofDoubleIntegrals

    IfthegivenregionRbeboundedbytheinequalities and

    Intheaboveintegral iscalculatedfirst.Duringthisintegrationxisregardedasconstant.

    Example:

    Solution:

    Example:

    Findtheareabetweentheparabolasy2=4axandx2=4ay.Solution:

  • Solvingequation(1)and(2)wegetthepoint(4a,4a)

    TakingstripPQparalleltox-axissothat

    limits to andyvaries0to4a

  • EvaluationofTripleIntegrals

    IftheregionVbeboundedbythe

    inequalities thenintegral

    oIfthelimitsofzaregivenfunctionsofxandylimitsyasfunctionsofxwhilextaketheconstantvalues,then

    oWeintegratefirstw.r.t.zkeepingxandyconstantsandthentheremainingintegrationdoneasinthecaseofdoubleintegrals.IftheareaSisboundedbythecurvesy=y1(x),y=y2(x),xandx=b.

    Example:

    Evaluatethefollowingintegral.

    Solution:

  • Chapter:9OrdinaryDifferentialEquationsI

    Topicscoveredinthissnack-sizedchapter:

    DifferentialEquationOrderandDegreeofaDifferentialEquationLinearandNon-linearDifferentialEquationsSolutionofaDifferentialEquationSolutionofFirstOrderandFirstDegreeDifferentialEquationsDifferentialEquationswhereVariablesareSeparableEquationsReducibletoVariableSeparableHomogeneousDifferentialEquationsLeibnitzsLinearDifferentialEquations

  • DifferentialEquation

    Anequationwhichcontainsderivativesofoneormoreindependentvariablesiscalleddifferentialequation.

    Example:

  • OrderandDegreeofaDifferentialEquation

    Order:

    Theorderofadifferentialequationistheorderofthehighestorderderivativeappearingintheequation.

    Example:

    isoforder2,becausethehighestorderderivativeis2.

    DegreeofDifferentialEquation:

    Thedegreeofadifferentialequationisthedegreeofhighestderivativewhichoccursinit.

    Example:

    Thisdifferentialequationisofdegreetwo.

  • LinearandNon-linearDifferentialEquations

  • SolutionofaDifferentialEquation

    Asolutionorintegralofadifferentialequationisarelationbetweenthevariables,andconstantwhichsatisfiesthegivendifferentialequation.

    GeneralSolution:

    Thesolutionwhichcontainsasmanyasarbitraryconstantsastheorderofthedifferentialequationiscalledthegeneralsolutionofthedifferentialequation.

    Example:

    y=Acosx+Bsinx,isthegeneralsolutionofthedifferentialequation

    ParticularSolution:

    Solutionobtainedbygivingparticularvaluestothearbitraryconstantsinthegeneralsolutionofadifferentialequationiscalledaparticularsolution.

    Example:

    y=3cosx+2sinx,isaparticularsolutionofthedifferentialequation

    Example:

    Showthatthefunctiony=(A+B)e3xisasolutionoftheequation

    Solution:

    Given

    Differentiating(1)w.r.t.x,weget

    Differentiating(2)w.r.t.x,weget

  • Wehave

    =0

    satisfiesthegivendifferentialequation.

    Hence,itisasolutionofthegivendifferentialequation.

  • SolutionofFirstOrderandFirstDegreeDifferentialEquations

    Adifferentialequationoffirstorderandfirstdegreeinvolvesx,yand Soitcanbeputinanyoneofthefollowingforms:

    Wheref(x,y)andg(x,y)areobviouslythefunctionofxandy.

  • DifferentialEquationswhereVariablesareSeparable

    Ifthedifferentialequationscanbeputintheform ,wesaythatthevariablesareseparableandsuchequationscanbesolvedbyintegratingonbothsides.

    Thesolutionisgivenby

    WhereCisanarbitraryconstant.

    Example:

    Solve

    Solution:

    Integratingbothsides,weget

  • EquationsReducibletoVariableSeparable

    Differentialequationsoftheform canbereducedtovariableseparableformbythesubstitution .

    Example:

    Solve

    Solution:

    Givendifferentialequationis

    Put

    Henceequation(1)becomes,

    Integratingbothsides,weget

  • HomogeneousDifferentialEquations

    Afunctionf(x,y)iscalledahomogeneousfunctionofdegreenif

    Alternatively,ahomogeneousfunctionf(x,y)ofdegreencanalwaysbewrittenas

    Example:

    f(x,y)=x2y2+3xyisahomogeneousfunctionofdegree2,because

    Thefirstorderfirstdegreedifferentialequationisoftheform

    oWheref(x,y)andg(x,y)arehomogeneousfunctionsofthesamedegree,then(1)iscalledahomogeneousdifferentialequation.

    Thegivendifferentialequationcanbewrittenas

    Ify=vx,then .

    Substitutingthesevaluesin weget

  • Onintegration,

    WhereCisanarbitraryconstantofintegration.

    Example:

    Solve:

    Solution:

    Thegivenequationcanbewrittenas

    Put

    Hence(1)becomes,

  • Onintegrating,weget

  • LeibnitzsLinearDifferentialEquations

    LinearDifferentialEquationiny:Thegeneralformofalineardifferentialequationis

    oWherePandQarefunctionsofxonlyorconstants.

    Tosolvetheequation,whentheyaremultipliedbyafactor,whichiscalledintegralfactor(I.F.).

    Multiplyingbothsidesof(1)byI.F. ,weget

    Whichistherequiredsolution,whereCistheconstantofintegration.

    Example:

    Solve:

    Solution:

    Hereyisalone,soitmaybelinearinyTherefore,

    Here

    Therefore,

  • Hencesolution:

    Putting

    Puttingthevalueoftintheaboveequation

  • Chapter:10OrdinaryDifferentialEquationsII

    Topicscoveredinthissnack-sizedchapter:

    BernoullisDifferentialEquationorReducibletoLinearDifferentialEquationsExactDifferentialEquationsEquationsofFirstorderandHigherDegreeEquationSolvableforpEquationsSolvableforyEquationsSolvableforxClairautsEquation

  • BernoullisDifferentialEquationorReducibletoLinearDifferentialEquations

    Adifferentialequationsoftheform

    issaidtobeaBernoullisEquation,wherePandQarefunctionsofxofconstants.Dividingbothsidesof(1),byyn,weget

    Put

    Hence(2)becomes:

    oWhichisalineardifferentialequationint.

    Example:

  • Solution:

    Rewritegivenequation:

    Putting

    Hence(1)becomes:

    oWhichisalinearD.Einit.

    Therefore,

    Thecompletesolutionis

  • ExactDifferentialEquations

    Afirstorderdifferentialequationoftheform

    issaidtobeexactdifferentialequation,ifandonlyifitsatisfythefollowingnecessarycondition:

    oWhereMandNarefunctionsofxandy.

    Thesolutionofanexactequation(1)willbe

    Example:

    Solution:

    Comparingwith

    Here

    Therefore,wehave

    Therefore,Clearly

  • Hencegivenequation(1)isanexact.

    TheonlynewtermobtainedonintegratingNwithrespecttoyisyasthetermsarealreadypresentintheintegrationofM.

    Hencethegeneralsolutionofthegivendifferentialequationis:

  • EquationsofFirstorderandHigherDegree

    Adifferentialequationofthefirstorderandnthdegreeis

    Where,

    isrepresentedbyp

    arefunctionsofxandyorconstants.

    Example:

    Themethodofsolutionofaboveequationdependsupon,whetheritisoSolvableforp,oSolvablefory,oSolvableforx,oClairautsform

  • EquationSolvableforp

    Example:

    Solve:

    Solution:

    Given:

    Hencegeneralsolutionofgivenequationis

  • EquationsSolvablefory

    Thegivenequationbesolvablefory,sothatitcanbeputintotheform

    Differentiatingwithrespecttox,wehave

    Whichisadifferentialequationinthevariablesxandp.letitspossiblesolutionbe

    Example:

    Solve

    Solution:

    Differentiatingthegivenequationwithrespecttox,weget

    Neglectingthesecondfactornotcontainingthederivativesofp,

    Integrating,

  • Thegivenequationmaybewrittenas

    Eliminatingpfromtheaboveequation

    oWhichistherequiredsolutionofthegivenequation.

  • EquationsSolvableforx

    Ifgivendifferentialequationofthefrom

    Thenitcanbesolvedforx.Differentiating(1)w.r.t.yweget

    Nowonsolvingtheaboveequation(2),wegetthesolutionof(2),say

    Theneliminatingpfrom(1)wegettherequiredsolutionofgivenequation(1).

    Example:

    Solvethefollowing:

    Solution:

    Thegivenequationcanbewrittenas

    Differentiatingw.r.t.y,weget

  • or

    Rejectingthesecondfactor,wehave

    Integrationgives,

    Substitutingthisvalueofpinthegivenequation,wehave

    oWhichistherequiredsolutionofthegivendifferentialequation.

  • ClairautsEquation

    Thedifferentialequationoftheform

    isknownasClairautsequation.

    Differentiating(1)w.r.t.x,weget

    Onintegrating,weget

    Eliminatingpfromequations(1),weget

    Example:

    Solvethefollowing

    Solution:

    Givendifferentialequationis

    Takingsubstitution and

  • Therefore

    Puttingvalueofpin(1),weget

    WhichisClairautsform

    Henceputting wegetthesolution

  • Chapter:11OrdinaryDifferentialEquationsIII

    Topicscoveredinthissnack-sizedchapter:

    LinearHigherOrderDifferentialEquationsLinearNon-HomogenousEquationswithConstantCoefficientsParticularIntegralShortMethodsoffindingParticularIntegrals

  • LinearHigherOrderDifferentialEquations

    Alineardifferentialequationofnthorderisoftheform

    Wherea1,a2,.anandQarefunctionsofxorconstants.Ifa1,a2,anareallconstants,thenaboveequationiscalledalineardifferentialequationofnthorderwithconstantcoefficients.

    ThesymbolD

    ThesymbolsDandDnareusedfor and respectively.

    Theexpression

    iscalledadifferentialoperatorofthenthorder.

    ComplementaryFunction(C.F.)

    CaseI:WhentherootsofA.E.areallrealanddistinct.

    owherec1,c2,.,cnarearbitraryconstants.

  • CaseII:WhensomerootsofA.E.arerealandequal.

    oIftworootsareequal,m1=m2=m,say,thenfortheseequalroots

    oIfthreerootsareequal,m1=m2=m3=m,saythenfortheseequalroots

    oSimilarly,wecanwriteC.F.whenfour,five,,rootsareequal.

    CaseIII:WhensomerootsofA.E.areimaginary.Remembertheimaginaryrootsoccurinpairs.

    oIfA.E.hasonepairofimaginaryrootsi.e.,tworootsareimaginary,say,i.e., thenfortheseroots

    Or

    Or

    oIfA.E.hastwoequalpairsofimaginaryrootsi.e.,fourrootsareimaginary,sayi.e. thenfortheseroots

    andsoon.

    CaseIV:WhensomerootsofA.E.areirrational.Rememberthatirrationalrootsoccurinpairs.

  • oIfA.E.hasonepairofirrationalroots,say, where ispositivei.e.,

    ,thenfortheseroots

    Or

    Or

    oIfA.E.hastwoequalpairsofirrationalroots,say i.e.,

    ,thenfortheseroots.

  • LinearNon-HomogenousEquationswithConstantCoefficients

    Thegeneralsolutionofthelinearnon-homogeneousdifferentialequation.

    i.e.,of isgivenbyy=C.F.+P.I.

  • ParticularIntegral

    TheP.Iofthedifferentialequationf(D)y=Qisdefinedby

    TofindtheParticularIntegral

  • ShortMethodsoffindingParticularIntegrals

    TofindP.I.oftheform ,when

    If where ThentoFindP.I.oftheform

    ToFindP.I.oftheforms when

    TofindP.I.oftheform ,WhereVisafunctionofx

  • TofindP.I.theforms and

    Tofind ,whereVissomefunctionofx

  • Chapter:12FourierSeriesI

    Topicscoveredinthissnack-sizedchapter:

    FourierSeriesDifferentformsofEulerFormulaeDirichletsConditionsParsevalsIdentityforFourierSeriesEvenandOddFunctionHalfRangeSeries(HalfRangeExpansion)

  • FourierSeries

    PeriodicFunctions:

    Afunctionf(x)issaidtobeperiodicfunctionT>0ifforallx,f(x+T)=f(x)andTistheleastofsuchvalues.

    Example:

    sinx,cosxareperiodicfunctionswithperiod2 .

    tanx,cotxareperiodicfunctionswithperiod .

    FourierSeries:

    FourierSeriesisaninfiniteseriesrepresentationofperiodicfunctionintermsofthetrigonometricsineandcosinefunctions.

    Fourierseriesistobeexpressedintermsofperiodicfunctions-sinesandcosines.ThestudyofFourierseriesisabranchofFourieranalysis.

    Eulersformulae:

    Fourierseriesforthefunctionsf(x)intheinterval