engineering microorganisms for synthesis of medicinally important molecules

54
Engineering microorganisms for synthesis of medicinally important molecules Innovación Para el Desarrollo Sostenible, Mérida. Mayo 2014

Upload: horacio-olivo

Post on 16-Jul-2015

268 views

Category:

Education


2 download

TRANSCRIPT

Engineering microorganisms for synthesis of medicinally important molecules

Innovación Para el Desarrollo Sostenible, Mérida. Mayo 2014

N

N

O H C

HO H

OO

O A cHNH

N

H

O H

M e OO

M e O

H O

O

H O

NM e N

O

O

C O 2 M e

NO

O

N

H

H

H

OH

O

H

H

HO

O

O

H

H

H

HO

O H

OO H O H

O H

O H

O H

O

O

OHH

H

HOH

N

H

H

OH

H3C

NO

O

HMe

O

H

H

O

O

O

OH

O HH

M e O

O

N HO

O

M e O

H C l

O

OO H

H O

O H

O H

O HO

O

OH OH

O

O

NO2

MeO

O

O

O

OO

O O

M e

M e

H H

O

NH2

MeO

OMe

MeO

NH

NO

P

O

O

HO

H

O

HO

MeO

OH

OH

OMe

Tarahumaras

Biocatalysis in Organic Chemistry

• Why microorganisms to do organic transformations?

• Epibatidine – an alkaloid from Ecuadorian frogs

• Selective hydroxylation of a piperidine?

• Modafinil – a unique CNS stimulant

• Other uses of lipases --Oxidations

The 12 Principles of Green Chemistry

1. It is better to prevent waste than to treat or clean up waste after it is formed.2. Synthetic methods should be designed to maximize the incorporation of all materials

used in the process into the final product.3. Wherever practicable, synthetic methodologies should be designed to use and

generate substances that possess little or no toxicity to human health and the environment.

4. Chemical products should be designed to preserve efficacy of function while reducing toxicity.

5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when used.

6. Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure.

7. A raw material or feedstock should be renewable rather than depleting wherever technically and economically practicable.

8. Reduce derivatives - Unnecessary derivatization (blocking group, protection/ deprotection, temporary modification) should be avoided whenever possible.

9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.10.Chemical products should be designed so that at the end of their function they do not

persist in the environment and break down into innocuous degradation products.11.Analytical methodologies need to be further developed to allow for real-time, in-

process monitoring and control prior to the formation of hazardous substances.12.Substances and the form of a substance used in a chemical process should be chosen to

minimize potential for chemical accidents, including releases, explosions, and fires.

Paul Anastas & John Warner

Hormone Steroids

O

O

H

H

HHO

O

H

H

H

O

OH

H

H

H

O

O

H

H

H

OOH

OH

O

OHC

H

H

H

HO

OH

O

progesterone estrone testosterone

cortisone aldosterone

Natural sources of steroidsDioscorea mexicana, “cabeza de negro”

Dioscorea composita, “barbasco”

HO

O

O

H

H

H

H

diosgenine

Marker’s Degradation of diosgenine

H O

O

O

H

H

H

HA c 2 O

2 0 0 C

A c O

O

H

H

H

H

O A c

d io s g e n in e

AcO

O

H

H

H

H

OAc

CrO3

AcOH

AcO

O

O OAc

O

Russell E. Marker

AcO

O

O OAc

O

NaOH

EtOH

HO

O

H O

O

O

O

O

O

O H

O

O

O

O H

O

O H

O

O HM e

p r o g e s te r o n e a n d r o s te n e d io n e e th is te r o n e

te s to s te r o n e m e th y lte s to s te r o n eh a lo te s t in

2 1 -h y d r o x y p r o g e s te ro n e

Laboratorios Syntex SA (1944)

O

O

O

O?

Biotransformations

O

O

O

OHO

Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871

Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933

Biotransformations

O

O

O

OHO

O

O

O

OH O

O

O

O H

O HO

c o r t i s o n e

R h i z o p u s a r r h i z u s

Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 1871

Murray and Patterson, J. Am. Chem. Soc. 1952, 74, 5933

C lP . p u t i d a

m u t a n t s t r a i n

C l

O H

O H

David T. Gibson

Tomáš Hudlický

Jack Rosazza

NH

O

O

OH O

OH

OH

OH

HOOH

OH

X

X

X

O

O

N

OH OH

OH

OH

NH

O

OH

N

HO

HO

OHH

O

HO

HO

NMe

microorganism

kifunensin

pancratistatin morphine

trihydroxyheliotridane

OH

O

O

O

HO

O

OH

O

OMe

OH

OO

NHO

erythromycin

N

HN

OO

H

CO2H

penicillin

Biotechnology

insulin

Isolated from Streptomyces erythreus

Isolated from Penicillium fungi

Recombinant DNA

Pros and cons of using whole cell microorganisms

Form Pros Cons

Any No cofactor recycling necessary

Expensive equipment, tedious workup due to large volumes, low productivity due to lower concentration tolerance, low tolerance of organic solvents, side reactions likely due to uncontrolled metabolism

Growing culture Higher activities Large biomass, more byproducts, process control difficult

Resting cells Workup easier, fewer byproducts

lower activities

Immobilized cells Cell re-use possible lower activities

Pros and cons of using isolated enzymes

Form Pros Cons

Any Simple apparatus,Simple workup, better productivity due to higher concentration tolerance

Cofactor recycling necessary

Dissolved in water High enzyme activity Side reactions possible, lipophilic substrates insoluble, workup requires extraction

Suspended in organic solvents Easy to perform, easy workup, lipophilic substrates soluble, enzyme recovery easy

Reduced activities

Immobilized Enzyme recovery easy Loss of activity during immobilization

epibatidine

o Isolation: from the skin of poison frogs Epipedobates tricolor in Ecuador

(< 1 mg from 700 frogs)

o Daly JW et al J. Am. Chem. Soc. 1992, 114, 3475.

o Biological Activity: Pain killer hundreds of times more potent than morphine

o Mode of Action: Found to act on nicotinic receptors, not opioid receptors!

o Synthesis was needed!

HN

N Cl

epibatidine

John W. Daly (March 5, 2008)Epipedobates tricolor

Can microorganisms help us shorten the route to epibatidine?

NR

NR

OH

microorganism

HN

N C l

NR

O H

NR

O+

N C l

I

N C l

Johnson RA, Herr ME, Murray HC, Reineke LM, Fonken GS J. Org. Chem. 1968, 33, 3195

N

C O P h

N

C O P h

H O

N

C O P h

H O

+

B e a u v e r i a b a s s i a n a

4 5 - 7 0 %

NCOPh NCOPh

HOBeauveria bassiana

45 - 70%

Hydroxylation of unfunctionalized carbons

Olivo HF, Hemenway MS, Gezginci MH Tetrahedron Lett. 1998, 39, 1309

Olivo HF, Hemenway MS J. Org. Chem. 1999, 64, 8968

O H

N H 2

i . B e n z o y l c h l o r i d e

E t 3 N , C H 2 C l 2 , 1 0 0 %

i i . C H 3 S O 2 C l

E t 3 N , C H 2 C l 2 , 7 8 %

i i i . K O t - B u , D M F

8 8 %

N

Oi v . B . b a s s i a n a

5 6 % , 2 2 % e e

N

O

O H

HN

N C l

v . T P A P , N M O

C H 2 C l 2 , 8 9 %

N

O

O

v i . 2 - c h l o r o5 - i o d o p y r i d i n e

n - B u L i , T H F - 7 8 C , 7 8 %

N

O

O H

N C l

v i i . C H 3 O ( C O ) 2 C l

2 , 6 - l u t i d i n e , D M A P , 1 0 0 %

v i i i . B u 3 S n H

A I B N , 9 8 %

N

O

H

N C l i x . t - B u O K , t - B u O H1 0 0 C , 3 3 %

x . 6 N H C l1 0 0 C , 9 4 %

r a c - e p i b a t i d i n e

Biotransformation of N-acetylphenyl-Piperidine

N

O B e a u v e r i a s u l f u r e s c e n s

A T C C - 7 1 5 9N

O

H O

3 d a y s , 2 0 % ( J o h n s o n , 1 9 9 2 )5 d a y s , 6 6 % ( R o b e r t s , 1 9 9 8 )3 d a y s , 2 0 - 4 0 % ( H o l l a n d , 1 9 9 9 )

Not a clean reaction…

O

O

N

H O

N

N

N

O

O

H

H

H

N

O

O H

H O

N

O H

O

N

O

O H

O M e

H O

H O

N H O

O

O H

N

O

O H

Osorio V, Tovar R, Olivo HF J. Molecular Catalysis: Enzymatic 1998, 55, 30-36.

modafinilS

N H 2

OO

• Novel CNS stimulant used clinically to treat narcolepsy [Provigil, by Cephalon]

• Unlike other CNS stimulants, it has a low abuse potential

– Gold LH, Balster RL Psychopharmacology 1996, 126, 286-292.

• Currently being evaluated as a new treatment for ADHD, anticonvulsant, and treatment of cocaine and methamphetamine addiction

• Mechanism of action to promote wakefulness is currently unknown

Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811

Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507

Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532

modafinil synthesis

O H + H SO H

Oi . t r i f l u o r o a c e t i c a c i d

9 9 %

SO H

O

SOH

O

ii. Amycolaptosis orientalis

65%

SNH2

OO

(R,S)-modafinil

Olivo HF, Osorio-Lozada A, Prisinzano T Tetrahedron: Asymmetry 2004, 15, 3811

Olivo HF, Osorio-Lozada A, Peeples TL Tetrahedron: Asymmetry 2005, 16, 3507

Olivo HF and Osorio-Lozada A. US Patent US Serial No. 11/460,532

modafinil synthesis

O H + H SO H

Oi . t r i f l u o r o a c e t i c a c i d

9 9 %

SO H

O

SOH

OOii. Bacillus subtilis

99% ee, 68%

SNH2

OO

(S)-modafinil

SOH

O

ii. Beauveria bassiana

99% ee, 89%

SOH

OO

(S)-modafinic acid

LipasesCandida antarctica lipase-B

•Enzyme isolated originally from Antarctica

•317 amino acid residues, formula wt 33 273 Da

•3-Dimensional structure determined

•Ser105-His224-Asp187 cat. triad

•Enzyme expressed in Aspergillus oryzae

•Immobilized on acrylic resin

•Potential Applications:

• Detergents

• Pulp and paper industry

• Fine chemicals (broad substrate specificity

LipasesHydrolysis / Acylation

O

O

O

O

O

O

H 2 O

O

O

O

O H

O

H O

O

l i p a s e+

O

O H

O

O H

E t O H

E t O H

O

O E t

O

O E tH 2 O

H 2 Ol i p a s e

k 1

l i p a s e

k 2

+

+

+

+

OH

OH

AcOH

AcOH

OAc

OAcH2O

H2O+

+

lipase

k2

lipase

k1

+

+

Lipases-resolution-acetylation of alcohols

OH

OH

O

O

O

O

OAc

OAc

OH

OH

acetaldehyde

+

+lipase

k2

lipase

k1

+

+

O

Lipases-resolution-ester hydrolysis

O

O E t

O

O E t

H 2 O

H 2 O

O

O H

O

O H

E t O H

E t O H

+

+l i p a s e

k 2

l i p a s e

k 1

+

+

Reaction mechanism

Asp187

O

ON

N

His224

H

Ser105

O

H

N

Trp

H

Thr

NH R

O

O

R'

R

*RO

O

R*OHAsp

O

ON

N

His

H

Ser

O

H

N

Trp

H

Thr

NHR

O

O

Asp

O

ON

N

His

H

Asp

O

ON

N

His

H

Ser

O

H

N

Trp

H

Thr

NHR

O

O

R'

Ser

O

N

Trp

H

Thr

NHR

O

R'OH

free enzyme

acyl enzyme

Td1

Td2

R'

R 1 O H

O

R 1 O

O

R 3

H 2O

O R 1

O

ser

H 2O 2

R 1 NH

O

R 2

R 1 O

O

O H

acy l-enzym e in term ed ia teR 3-O H

R 2 -N H 2

Reaction mechanismNucleophile promiscuity

Lipases-perhydrolysis

H2O2

O

OH

O

OO

H

H2Operhydrolase

++

Bjorkling, F.; Godtfredsen, S. E.; Kirk, M. L. J. Chem. Soc., Chem. Commun. 1990, 1301

Lipases-perhydrolysis-epoxidation

H2O2O

O

O

O

OH

EtOH+

perhydrolase+

O

O H

O

O

O

OO

H

O

E tO H H 2O

H 2O 2

C an did a an tarctica

lip ase B

Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926

Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926

Alkene Epoxide Time Yield

O

40 hr 83%

O

2 hr 100%

Ph

Ph

O

28 hr 100%

O

11 hr 100%

O

H

60 hr 90%

O

5.5 hr 95%

Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926

Alkene Epoxide Time Yield

O

161 hr 73%

O

46 hr 85%

O

33 hr 81%

O

46 hr 90%

O

46 hr 86%

O

50 hr

72 hr

77%

96%

Lipases-perhydrolysis-Baeyer-Villiger oxidation

O H

O

O

O

OO

H

O

E tO H H 2O O

O

O

H 2O 2

C an did a an tarctica

lip ase B

Rios MY, Salazar E, Olivo HF Green Chemistry 2007, 9, 459-462

Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926

Cyclohexanone Caprolactone Time Yield O

O

O

6 d 80%

O

Ph

O

O

Ph

8 d 75%

O

O

O

3 d 95%

O

O

O

12 d

19 d

68%

78%

O

O

O

26 d 8%

Ankudey EG, Peeples TL, Olivo HF Green Chemistry 2006, 8, 923-926

Cyclohexanone Caprolactone Time Yield O

O

O

6 d 80%

O

O

O

8 d 75%

O

O

O

3 d 95%

O

O

O

12 d

19 d

68%

78%

O

OO

26 d 8%

Lipase-mediated proline-catalyzed epoxidation

Amrit Goswami. Tetrahedron 2007, 63, 8735.

N CO3H

O2N

NO2

N CO2H

O2N

NO2

O

lipase

UHP

1,2-dichloroethane

O

NO2O

NO2

O2NO

O2N

O2N

O

O2N

ClO

Cl

Cl OCl

Cl

O

Cl

Alkene Epoxide Yield (%) ee (%)

73

80

85

77

79

65

76

75

81

76

80

77

75

80

Lipase from Aspergillus 0%

Lipase from Candida antarctica 0%

Lipase from Candida rugosa 0%

Lipase from Mucor miehei 0%

Lipase from Pseudomonas cepacia 0%

Lipase from Pseudomonas fluorescens 0%

Lipase from Rhizopus arrhizus 0%

Lipase from Rhizopus niveus 0%

Lipase from hog pancreas 0%

N CO3H

O2N

NO2

N CO2H

O2N

NO2

O

lipase

UHP

1,2-dichloroethane

N C O 3H

O 2N

N O 2

N C O 2H

O 2N

N O 2

O

D C C

U H P

dichlo rom ethane

Chemical proline-mediated epoxidation

O

O2N

Cl

OO2N

O

O

O

Cl

O

Alkene Epoxide Yield (%) ee (%)

74

59

57

72

48

12

00

00

00

00

00

00

A Osorio-Lozada and HF Olivo. Organic Letters 2008, 10, 617.

Chemo-enzymatic synthesis of indene

• Microorganisms in Organic Synthesis

Synthesis of epibatidine

Synthesis of modafinil

Synthesis of chiral building blocks

• Enzymes in Organic Synthesis

Resolution of alcohols and acid derivatives

Perhydrolysis of carboxylic acids

Epoxidations

Baeyer-Villiger oxidations

New chiral auxiliares

Summary

Some past members…

Past and Present members

Michael S. Hemenway (PhD ’00)

Francisco Velazquez (PhD ’03)

Dr. Srinivas Pusuluri

Dr. Henrique Trevisan

Dr. Yolanda Rios

Dr. Moises Romero

Dr. Nury Hernandez

Dr. Efrain Barragan

Dr. Ricardo Tovar

Dr. Adrian Ochoa

Dr. Patricia Mendez

Dr. Silvia Balbo

Dr. Suresh Wagmode

Dr. Lemuel Perez

Dr. Luis Hernandez

Dr. Veronica Rivas

Rodolfo Tello (PhD ‘08)

Antonio Osorio (PhD ’08)David A. Colby

Seth Sarduy

Mathis Hodge

Sena Dzakuma

Esdrey Rodriguez

Claudia Rojas

Laura Munive

Dr. Victor Gomez

Ernane De Souza

Gerardo Perez

Alvin De Gall

Moman Nazir

Horacio F [email protected]