environmental impact of electric vehicles: potential of ... · 33 plea: need for objectivity and a...

19
1 Environmental Impact of Electric Vehicles: Potential of the Circular Economy? Anika Regett Prof. Dr. Ulrich Wagner, Prof. Dr. Wolfgang Mauch, Jane Bangoj 13. Internationale MTZ-Fachtagung Zukunftsantriebe „Der Antrieb von morgen“ 24th of January 2019 Project “Ressourcensicht auf die Energiezukunft” funded by:

Upload: others

Post on 05-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1

Environmental Impact of Electric Vehicles:

Potential of the Circular Economy?

Anika Regett

Prof. Dr. Ulrich Wagner, Prof. Dr. Wolfgang Mauch, Jane Bangoj

13. Internationale MTZ-Fachtagung Zukunftsantriebe

„Der Antrieb von morgen“

24th of January 2019

Project “Ressourcensicht auf

die Energiezukunft” funded by:

Page 2: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

22

The Environmental Footprint of Electric Vehicle Batteries –

A Story of Misleading References and an Emotional Debate

An overview of the whole story:

https://edison.handelsblatt.com/erklaeren/elektroauto-akkus-so-entstand-der-mythos-von-17-tonnen-co2/23828936.html?social=twitter

so-called ”Sweden Study“

provides an overview of studies on the carbon

footprint of battery production

BUT: doesn‘t include these values…

Myth 1Carbon footprint of an electric vehicle battery = 17 t CO2

Myth 2Amortisation period of an electric vehicle = 8 years

Starting point:

A chain reaction…

Tesla-example of Swedish scientists and journalists

picked up by Danish and then German media

transfered to all electric vehicles

not considering range of validity (100 kWh and

150-200 kg CO2 eq./kWh) and future improvements

Page 3: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

33

Plea: Need for Objectivity and a Life Cycle Perspective!

Potential of the circular economy to reduce the environmental impact of electric

vehicles?

Page 4: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

44

1. Carbon Footprint of Battery Production – Impact of Efficiency

and Renewables

Page 5: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

55

1. Carbon Footprint of Battery Production – System Boundaries

Li-ion traction battery:

1 kWh capacity

Manufacturing of cells

and other components

Battery assembly

Material production

Raw material extraction

Fuel supply and

conversionGHG emissions

Valid for:

Energy-related greenhouse

gas (GHG) emissions

Cradle-to-Gate

Page 6: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

66

1. Carbon Footprint of Battery Production – Energy-related

Greenhouse Gas Emissions per Process

Large contribution of electricity in battery manufacturing process

But large variation of demand in current Life Cycle Assessment (LCA) studies

Valid for:

30 kWh system

NMC622 (Nickel-Manganese-

Cobalt)

Inventory data from Argonne

National Laboratory (2017)

Emission factors from ecoinvent

Battery production mix from

Fraunhofer roadmap

Page 7: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

77

1. Carbon Footprint of Battery Production – Impact of Electricity

Demand and Emission Factor in Battery Manufacturing

112 162 212

87 112 137

62 62 62

Electricity demand for battery manufacturing in kWh/kWh battery capacity

Em

issio

nfa

cto

rofele

ctr

icity

in b

att

ery

manufa

ctu

ring

in k

g/k

Wh

Energy-related GHG emissions of battery production

in kg CO2 eq. per kWh battery capacity

0.0

1.0

0.5

50 150100

industrial

plantpilot

plant

analysis

at hand

Swedish literature

overview

coal

renewable

German

electricity mix

battery

production mix

Strong dependency on state-of-the-art and location of production plant

Significant improvement potential for efficiency and renewables

Valid for:

30 kWh system

NMC622 (Nickel-Manganese-

Cobalt)

Inventory data from Argonne

National Laboratory (2017)

Emission factors from ecoinvent

Battery production mix from

Fraunhofer roadmap

Page 8: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

88

2. Battery Electric (BEV) vs. Internal Combustion Engine Vehicle

(ICEV) – Impact of Origin of Charged Electricity

Page 9: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

99

2. BEV vs. ICEV – Payback Periods

≙169 g/km

≙ 99 g/km

≙ 80 g/km

≙ 17 g/km

PV:

~1.6 years

Mix DE 2015:

~3.6 years

Valid for:

Well-to-Wheel

Golf class

30 kWh capacity

14 000 km/a

Battery: 106 kg

CO2 eq./kWh

Other components

from Hawkins et al.

Similar lifetime and

occupancy assumed

No additional benefits

(e.g. range of ICEV)

considered

Page 10: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1010

2. BEV vs. ICEV – Sensitivities of Payback Period

Further potential of End-of-Life approaches such as recycling and

Second-Life to improve the environmental footprint?

• Efficiency and renewables in

production (62 kg CO2 eq./kWh)

1.4 years for PV

• Large reduction potential through

increase of energy density (trend)

• Higher annual mileage

+

Payback Period of BEV vs. ICEV

• Comparison to Diesel

2.1 years for PV

• Larger battery

(simplified scaling to 50 kWh)

2.6 years for PV

• Lower annual mileage

-

PV: ~1.6 years

Page 11: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1111

3. Impact of Recycling and Second-Life (SL) on Critical Metal

Demand – Further Reduction Potential at End-of-Life (EoL)

Page 12: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1212

3. Impact of Recycling and SL on Critical Metal Demand –

Modelling Approach and Advantages

Figure: VDE Study on „Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen“: FfE, TUM, 2016

Approach

• Primary demand of lithium (Li) and

cobalt (Co)

• Dynamic Material Flow Analysis

• Stock-and-Flow-Model for Germany

• Production and EoL (recycling and SL)

• 2015 to 2050 (annual resolution)

• Batteries: electric vehicles, PV home

storage, power control reserve

• Linking of mobile and stationary

applications through SL

• Considerations of lifetimes

Time dependencies

Substitution effects in

stationary battery markets

Page 13: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1313

3. Impact of Recycling and Second-Life on Critical Metal Demand

– “Reference“ vs. “Recycling“ Scenario

As expected: large reduction of primary demand for Li and especially Co

But still high level of demand despite conservative electric vehicle scenario:

2 100 t Co in 2050 (about 2 % of current global production)

Valid for:

Market development:

NEP for stationary,

ERP for traction

Av. battery capacity:

34 kWh (2015) to 44

kWh (2050)

Rec. rate Co: 94%

Rec. Rate Li:

0 %, from 2020: 57 %

Max. collection rate:

100 %

Current mix of cell

technologies

Battery lifetime: 20 a

stationary, 12 a

traction

NEP=Netzentwicklungsplan, ERP=Energiereferenzprognose

Page 14: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1414

3. Impact of Recycling and Second-Life on Critical Metal Demand

– “Recycling“ vs. “Second-Life“ Scenario

Overall: reduction of primary Li and Co demand through Second-Life

But in the short- to medium-term: depending on boundary conditions

increase in critical metal demand (in this case Co)

Valid for:

Market development:

NEP for stationary,

ERP for traction

Av. battery capacity:

34 kWh (2015) to 44

kWh (2050)

Rec. rate Co: 94%

Rec. Rate Li:

0 %, from 2020: 57 %

Max. SL feasibility and

collection rate: 100 %

Current mix of cell

technologies

Battery lifetime: 20 a

for stationary, 12 a for

traction, 8 a SL

Page 15: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1515

4. Conclusion – The Bigger Picture

Page 16: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1616

4. Conclusion – Key Messages

1The higher efficiency of an electric vehicle is currently reduced by a larger environmental

impact in the production phase.

3The circular economy offers a considerable potential for an improvement of the environmental

performance in all phases of the battery’s life cycle.

2But overall, electric vehicles (batteries or fuel cells) are from today's view the only notable and

indispensable option for a comprehensive integration of renewables in the transport sector.

4In this context efficiency and renewables in battery production and the vehicle’s use phase

play a decisive role to improve the carbon footprint of electric mobility.

5A thought-through implementation of recycling and Second-Life approaches offers further

improvement potential, also with regard to critical metals such as lithium and cobalt.

Page 17: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1717

Analysis: „Carbon footprint of electric vehicles – a plea for more

objectivity“

Press release:

https://www.ffe.de/publikationen/pressemeldungen/856-klimabilanz-von-elektrofahrzeugen-ein-

plaedoyer-fuer-mehr-sachlichkeit

Detailed analysis:

https://www.ffe.de/attachments/article/856/Klimabilanz_Elektrofahrzeugbatterien_FfE.pdf

Supplementary material:

https://www.ffe.de/attachments/article/698/Begleitdokument_Klimabilanz_Elektrofahrzeugbatterien

_FfE.pdf

Data on recent production processes and battery systems to update this

analysis?

Page 18: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

18

Thank you for your attention!

Anika Regett, M.Sc.

+49 (89) 158121-45

[email protected]

Forschungsstelle für Energiewirtschaft (FfE) e.V.

Am Blütenanger 71

80995 München

www.ffe.de

Register now for “FfE-Energietage“ (1st - 4th of April 2019):

www.ffe.de/aktuelles/energietage2019

Page 19: Environmental impact of electric vehicles: potential of ... · 33 Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental

1919

Dynamische und intersektorale Maßnahmenbewertung zur kosteneffizienten Dekarbonisierung des Energiesystems

Dynamische Bewertung von

CO2-Verminderungsmaßnahmen

09:00 Uhr Einleitung, Motivation & Überblick über

Dynamis

• Begrüßung durch das

Bundesministerium für Wirtschaft und

Energie

• Das Projekt Dynamis im Kontext der

Energiewende

• Der Dynamis-Ansatz zur Bewertung von

CO2-Verminderungsmaßnahmen

10:30 Uhr Die großen Stellhebel zur

Dekarbonisierung der

Endenergiesektoren

Jeweils:

10 Minuten wissenschaftlicher Vortrag

+ 10 Minuten Kommentar eines

Industrievertreters

+ 10 Minuten Diskussion im Plenum

• Verkehr

• Industrie

• Haushalte & GHD

Zukunft in einem dekarbonisierten

Energiesystem

13:15 Uhr Potenziale der Erneuerbaren Energien

(Photovoltaik & Windenergie)

13:45 Uhr Elektrifizierung vs. Green Fuels – Partner

oder Konkurrenten?

15:15 Uhr 90 % bis 95 % CO2-Emissionsreduktion –

Ja bitte! Aber wie?

15:30 Uhr Podiumsdiskussion "Leben in einer

dekarbonisierten Welt: Chancen und

Herausforderungen für Energiewirtschaft

und Politik“

16:30 Uhr Zusammenfassung & Ausblick

16:45 Uhr Ausklang bei gemütlichem Get-Together

Agenda:Dynamis:

• Bewertung von

CO2-Verminderungsmaßnahmen unter sich

verändernden Randbedingungen des

Energiesystems hinsichtlich ihrer

Kosteneffizienz und ihres Potenzials zur

Emissionsreduktion

• Fokus insbesondere auf Rückwirkungen der

anwendungsseitigen Maßnahmen auf das

Energiesystem

• Abbildung der Maßnahmen durch

Erweiterung der Optimierungsmodelle der

Bereitstellungsseite um eine detaillierte

Modellierung der vier Endenergiesektoren

Verkehr, Haushalte, GHD und Industrie

• Berücksichtigung dynamischer

Wechselwirkungen in der Berechnung von

CO2-Verminderungskosten

Anmeldung: www.ffe.de/dynamis

Datum: 4. April 2019 | Teilnahmegebühr: Kostenlos | Räumlichkeiten: Bayerische Akademie der Wissenschaften in München

Vorabend Get-Together am 3. April 2019 von 17:30 bis 19:30 Uhr

Ergebnis-Symposium des Projekts Dynamis

Eckdaten: